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Abstract. Aquifer heterogeneity in combination with data
scarcity is a major challenge for reliable solute transport
prediction. Velocity fluctuations cause non-regular plume
shapes with potentially long-tailing and/or fast-travelling
mass fractions. High monitoring cost and a shortage of sim-
ple concepts have limited the incorporation of heterogeneity
into many field transport models up to now.

We present an easily applicable hierarchical conceptu-
alization strategy for hydraulic conductivity to integrate
aquifer heterogeneity into quantitative flow and transport
modelling. The modular approach combines large-scale de-
terministic structures with random substructures. Depending
on the modelling aim, the required structural complexity can
be adapted. The same holds for the amount of monitoring
data. The conductivity model is constructed step-wise fol-
lowing field evidence from observations, seeking a balance
between model complexity and available field data. The start-
ing point is a structure of deterministic blocks, derived from
head profiles and pumping tests. Then, subscale heterogene-
ity in the form of random binary inclusions is introduced to
each block. Structural parameters can be determined, for ex-
ample, from flowmeter measurements or hydraulic profiling.

As proof of concept, we implemented a predictive trans-
port model for the heterogeneous MADE site. The proposed
hierarchical aquifer structure reproduces the plume develop-
ment of the MADE-1 transport experiment without calibra-
tion. Thus, classical advection–dispersion equation (ADE)
models are able to describe highly skewed tracer plumes by
incorporating deterministic contrasts and effects of connec-
tivity in a stochastic way without using uni-modal hetero-

geneity models with high variances. The reliance of the con-
ceptual model on few observations makes it appealing for a
goal-oriented site-specific transport analysis of less well in-
vestigated heterogeneous sites.

1 Introduction

Groundwater is extensively used worldwide as a major drink-
ing water resource and consequently needs to be protected
with respect to quantity and quality. Increasing pressure on
the quality originates from the intensification of agriculture
using agrochemicals (non-point sources) and an increased ur-
banization with the resulting solid and liquid waste and con-
taminant spills from industrial applications (point sources).

Essential for groundwater protection is the quantitative
analysis of the fate and transport of various contaminants in
the groundwater body. This can be either for a provisional
risk assessment or for the clean-up of an already existing
groundwater contamination. Numerical models are common
tools to quantify the flow and transport, where partial differ-
ential equations are solved using initial and boundary condi-
tions.

For simplicity, we restrict ourselves to saturated flow
and transport of a dissolved, non-reactive contaminant.
The governing equation for its concentration C(x, t) is the
advection–dispersion equation (ADE) (Bear, 1972):

∂C(x, t)

∂t
=−u(x, t) · ∇C(x, t)+∇ (D · ∇C(x, t)) , (1)
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given in space x = (x,y,z) and time t . D is the dispersion
coefficient tensor, and u(x, t) is the Darcy velocity vector.
The latter is a function of the hydraulic gradient J and the
heterogeneous hydraulic conductivity K(x) through Darcy’s
law. A proper description of the velocity field u(x, t), thus
aquifer heterogeneity, is crucial for predicting the concentra-
tion distribution C(x, t).

The adequate parameterization of the heterogeneous con-
ductivity K(x) poses a significant challenge in the practical
model setup due to data scarcity. Numerous deterministic and
stochastic approaches have been developed to incorporate the
effects of spatial heterogeneity of conductivity on flow and
transport, particularly in the context of stochastic subsurface
hydrology (Koltermann and Gorelick, 1996). Representing
conductivity by an effective uniform value is convenient for
aquifers of low heterogeneity since it can be inferred from
pumping tests with decent monitoring effort. But predicting
transport in aquifers of significant variability fails when ne-
glecting local effects of heterogeneity and preferential flow.

Stochastic methods allow the heterogeneity to be re-
solved and thus capture the induced uncertainty in flow and
transport predictions. However, the amount of observation
data required is usually high, depending on the method’s
complexity. Common methods are (i) Kriging (Kitanidis,
2008), (ii) Gaussian random fields (Dagan, 1989; Gómez-
Hernández and Gorelick, 1989; Zinn and Harvey, 2003), po-
tentially combined with Kriging for conditioning to observa-
tions; (iii) indicator/hydrofacies models (Journel and Gómez-
Hernández, 1993; Carle and Fogg, 1996; Fogg et al., 2000);
or (iv) multi-point statistics/training images (Strebelle, 2002;
Renard et al., 2011; Linde et al., 2015).

For many unconsolidated sediments, field observations
showed that conductivity is approximately log-normal (Del-
homme, 1979; Gelhar, 1993; Rubin, 2003), characterized by
the geometric mean KG and the log-conductivity variance
σ 2
Y . Variogram analysis provides structural parameters such

as correlation length ` and anisotropy ratio e based on spa-
tially distributed observations, e.g. from flowmeter, perme-
ameter, or injection logging. Despite increased efficiency in
exploration methods, data are not even sufficient for vari-
ogram analysis in most practical cases, thus hampering the
practical application of Kriging and Gaussian random fields.
Alternatively, hydrofacies models use indicator geostatistics
with transition probability to generate geological heterogene-
ity structures. Although conceptually different, the required
amount of input data is similarly high. Multi-point statistical
methods provide heterogeneity structures of high geological
realism, when training images are available. Although satel-
lite data might provide areal training images, vertical struc-
tures rely on extensive literature on geology or outcrop stud-
ies. Both are hardly available at the scale representative of
plume transport, impeding the method’s use at hydrogeolog-
ical sites.

A recent debates series (Rajaram, 2016; Fiori et al., 2016;
Fogg and Zhang, 2016; Cirpka and Valocchi, 2016; Sanchez-

Vila and Fernàndez-Garcia, 2016) outlined the gap between
the advanced research in stochastic subsurface hydrology and
its application in the practice of groundwater flow and trans-
port modelling. We see a significant reason in the lack of
data for complex stochastic models. Thus, we advocate the
use of hierarchical approaches, combining deterministic and
stochastic hydraulic conductivity conceptualization. Hierar-
chical approaches are regularly used in reservoir modelling
(Damsleth et al., 1992; Smith et al., 2001; Bryant and Flint,
2009), particularly for consolidated sediments. Aside from
qualitative approaches for multi-scale heterogeneity repre-
sentation, e.g. Neton et al. (1994), Herweijer (1997), or
Koltermann and Gorelick (1996) (and references therein),
only few quantitative approaches were proposed, such as
generating sequences of facies assemblages using indica-
tor geostatistics and transition probability at various scales
(Weissmann and Fogg, 1999; Proce et al., 2004) or combin-
ing training images for large-scale facies realizations with
variogram-based geostatistical methods for random intrafa-
cies permeability (Huysmans and Dassargues, 2009). Both
approaches show a high level of model complexity and re-
quired (hydro)geological input data.

Here, we present a parsimonious hierarchical heterogene-
ity conceptualization which is easy to apply in quantita-
tive models for predicting flow and solute transport. In a
deterministic–stochastic framework we combine descriptive
zonation with statistical methods, following the lines of
Gómez-Hernández and Gorelick (1989). The goal is to op-
timize the aquifer structure setup given the simulation target
constrained by the available field data. Therefore, we aim to
provide tools making aquifer heterogeneity more accessible
for practical applications, including hands-on software. The
approach is based on the fact that subsurface heterogeneity
can be generally classified into (a) larger scale dominant fea-
tures which primarily determine the general flow direction
together with the average groundwater flow velocity and (b)
smaller scale features which are responsible for the disper-
sion, more specifically, the spatial spreading of a solute.

We create a deliberate connection between the model pa-
rameterization requirements and the field characterization
methods beyond a single monitoring method. Pumping tests,
for example, are best suited to determine the spatially av-
eraged transmissivity, i.e. hydraulic conductivity, even in a
heterogeneous aquifer environment (Herweijer, 1996; Zech
et al., 2016). Together with head gradients from piezometric
level maps, this yields good estimates of the mean ground-
water flow velocities. High-resolution, small-scale borehole
logs of hydraulic conductivity (e.g. from flowmeter or direct
push methods) provide information on conductivity variabil-
ity and consequently the dispersion parameters needed. Here,
we consider two stochastic methods representing spatial vari-
ability: Gaussian random fields, which require distributed ob-
servation data for a variogram analysis, and a simplistic bi-
nary structure, which relies only on a few (e.g. two–four)
well logs but takes parametric uncertainty into account. The
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latter is developed as an option for less investigated sites,
only requiring a decent amount of field data from standard
monitoring methods for heterogeneous aquifer modelling.

We demonstrate the methodology for MADE, a heteroge-
neous, well investigated research site (e.g. Boggs et al., 1990;
Zheng et al., 2011; Gómez-Hernández et al., 2017). Follow-
ing our adaptive approach, we use various amounts and types
of hydraulic observation data for heterogeneity conceptual-
ization to construct numerical transport models. Predictions
are independently evaluated against field tracer data from the
MADE-1 experiment (Boggs et al., 1992). We do not recon-
struct the actual conductivity structure at MADE but predict
tracer plume behaviour following a Monte Carlo approach
devoid of calibration. Model results show good agreement
with observed plume data, also compared to other predictive
transport models for MADE (e.g. Salamon et al., 2007; Fiori
et al., 2013, 2017; Bianchi and Zheng, 2016). In this line,
we provide an alternative approach for predictive transport
modelling at a significantly heterogeneous site with a simple
conceptualization and decent observation effort.

The course of the paper is the following: Sect. 2 features
the approach in light of different modelling aims. Section 3
is dedicated to the application of the methodology for the
MADE aquifer. We close with a summary and conclusions
in Sect. 4.

2 Approach

Large-scale hydraulic structures of hundreds of metres or
more determine the groundwater flow direction and mag-
nitude in combination with groundwater catchment bound-
aries. Subsequently, they set the mean transport velocity. This
is the key parameter to predict the location of the bulk mass
of substances dissolved in the groundwater when input con-
ditions are known.

Variations of hydraulic properties on intermediate scale, in
the range of tens of metres, generate spatially variable flow
fields. They also render transport velocities variable at these
scales, resulting in larger spreading of plumes. This is partic-
ularly important for modelling tailing or leading mass fronts.
Fluctuations on scales smaller than these intermediate scales
have a blending effect, generally increasing local mixing and
enhancing dispersion (Werth et al., 2006).

Following this conceptual view, we generate hydraulic
conductivity fields composed of three components: Mod-
ule (A), (B), and (C), which capture the effects at large-
, intermediate-, and small-scale heterogeneity, respectively.
Each component is selected according to the model aim and
the data at hand to parameterize the hydraulic conductivity
for this component.

The procedure is exemplified for the MADE site. This
significantly heterogeneous site was intensively investigated
with various measurement devices providing many different
data sets, such as pumping tests and flowmeter and DPIL

(direct push injection logging) measurements (Boggs et al.,
1990; Bohling et al., 2016). Detailed information on MADE
can be found in Sect. 3 and the Supplement.

In the approach, we consider several steps:

1. specifying the aim of the model (what do we want to
predict?);

2. selecting processes and process components which need
to be accounted for in the model (what does this imply
for the conceptualization of hydraulic conductivity?);

3. selecting suitable measurement methods (which method
can deliver the data needed for parameterizing hydraulic
conductivity with affordable effort?);

4. conceptualizing hydraulic conductivity;

5. calculating flow and transport.

Before specifying the hydraulic conductivity components,
Modules (A), (B), and (C), we illustrate our concept, dis-
cussing two exemplary model aims.

2.1 Exemplary model aims

2.1.1 Model aim “mean arrival”

1. Aim. The mean arrival of a contaminant from a point
source is predicted.

2. Processes. Regional groundwater movement and direc-
tion and magnitude of flow are estimated, making use of
the groundwater flow equation and Darcy’s law. Trans-
port is modelled by advection. For the sake of simplic-
ity, we do not consider reactivity.

3. Field characterization. Regionalized groundwater-level
measurements provide the direction and magnitude of
the hydraulic gradient. It is critical to outline areas
of different gradients (zones), indicating regional hy-
draulic conductivity trends and large-scale heterogene-
ity. Pumping tests can provide independent values of ef-
fective transmissivity within each zone.

4. Conceptualization of hydraulic conductivity. Conduc-
tivity is considered homogeneous within each large-
scale zone. Effects of heterogeneity are captured in ef-
fective parameters representing average flow behaviour,
e.g. determined from pumping tests.

5. Solving flow and transport. Flow is solved either ana-
lytically, e.g. for one or two zones of different effective
hydraulic conductivity, or numerically in the case of a
more complex spatial distribution of zones. Transport
can be determined, making use of analytical or numeri-
cal solutions of the ADE according to initial and bound-
ary conditions.
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Figure 1. (a) Potentiometric surface map of head measurements according to Boggs et al. (1990). The orange–green line indicates the location
of the cross section displayed in (b): concept (Module A) for large conductivity structure with deterministic zones of low (orange) and high
(green) conductivity. The arrow indicates the flow direction. The location of the interface between structures corresponds to a change in the
hydraulic head pattern at x = 20 m.

Example MADE

The piezometric surface map of MADE (Boggs et al., 1992;
Fig. 3) shows a significant non-uniform hydraulic head pat-
tern. At 20 m downstream of the injection location, head
isolines reduce abruptly. The reproduced head contours in
Fig. 1a allow two major zones to be delineated: an area of
low conductivity upstream (left) and high conductivity down-
stream (right). Two large-scale pumping tests confirm the
contrast in mean conductivity of about 2 orders of magni-
tude (Boggs et al., 1992). Consequently, flow should be mod-
elled with distinct mean conductivity in two vertical zones
(Fig. 1b) when aiming to model mean arrival times for the
MADE site.

2.1.2 Model aim “risk assessment”

1. Aim. The early or late arrival of contaminants com-
monly used in risk assessments is predicted.

2. Processes. Flow is described by Darcy’s law, and trans-
port is quantified through the ADE (Eq. 1). It is particu-
larly relevant to capture variability in transport velocity
to estimate the spreading behaviour of plumes.

3. Field characterization. High- and low-conductivity sub-
surface structures with a characteristic horizontal length
scale of several metres need to be detected. Typical ex-
amples are channels formed in braided river systems.
Typical investigation methods giving field evidence of
such heterogeneity structures are small-scale slug tests,
borehole flowmeter logs, or permeameter tests detecting
strongly vertically varying conductivity.

4. Conceptualization of hydraulic conductivity. The non-
uniform spatial structure of conductivity needs to be
considered.

5. Solving flow and transport. Small variations in conduc-
tivity allow analytical solutions to be applied with ef-
fective measures, e.g. from first-order theory (Dagan,

1989). Spatially resolved heterogeneity requires numer-
ical solutions of flow and transport using numerical
tools (Monte Carlo approach).

Example MADE

Borehole flowmeter logs at MADE (Rehfeldt et al., 1989;
Boggs et al., 1990) reveal horizontal layers with conductiv-
ity differences over 2–3 orders of magnitude. For instance,
the flowmeter log F-40 shown in Fig. 2a has a bulk of high
conductivity values, with about 15% of values being 2 or-
ders of magnitude smaller. Logs at other locations (F-09 and
F-18) show the inverse behaviour: a bulk of low conductivity
values with high conductivity inclusions embedded.

Such strong vertical variation indicates the presence of
high conductivity channels acting as preferential flow paths
and low conductivity zones with stagnant flow, which both
impact plume spreading behaviour strongly. Consequently,
when aiming to model early and late plume arrival, these fea-
tures need to be accounted for in a flow and transport model
for the MADE site.

2.2 Scale-dependent conductivity modules

Given the scale dependency of hydraulic conductivity fea-
tures and their distinct relevance for flow and transport pre-
dictions, we propose three components: Module (A), (B), and
(C), which capture large-, intermediate-, and small-scale het-
erogeneity effects, respectively. Given a certain model aim,
components are selected (or not) with regard to the available
field data. We shortly discuss the modules and motivations
of their use based on the data of the MADE site example for
different aims.

2.2.1 Module A

The aquifer domain of interest is divided into deterministic
zones of significantly different mean conductivity (i.e. more
than 1 order of magnitude). The structure can comprise hori-
zontal or vertical layering, simply in blocks or complex zone
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Figure 2. (a) Four flowmeter logs of hydraulic conductivity K(z) versus depth z. The logs F-09 and F-18 are close to the tracer test injection
location, and F-20 and F-40 are several tens of metres downstream (see Fig. 3). (b) Concept of binary inclusion structure (Module B) with
15 % high conductivity inclusions (green) embedded in the bulk of low conductivity (orange). Inclusion lengths are arbitrarily chosen to be
Ih = 5 m and Iv = 0.5− 1 m.

geometries, depending on the information available. The use
of Module A is warranted when observation data indicate sig-
nificant areal conductivity contrasts.

The zones represent large-scale geological structures ex-
hibiting conductivity differences potentially over several or-
ders of magnitude as a result of changes in deposition history
or changes in the material’s composition (Bear, 1972; Gelhar,
1993). Zones can be delineated using geologic maps, piezo-
metric surface maps, and geophysical methods, providing in-
formation on aquifer structure, sedimentology, and genesis.
Pumping tests are suitable for identifying mean conductiv-
ities for each zone due to their large detection scale. Flow
simulations on the deterministic zone structure should repro-
duce the observed head pattern.

The MADE site is an example for which the concept of
two zones of different mean hydraulic conductivity (Fig. 1b)
can reproduce the hydraulic head pattern conceptually. De-
tails will be discussed in Sect. 3.

2.2.2 Module B

When hydraulic conductivity shows heterogeneous features
at the same length scale as the plume transport itself, they
require proper resolution. A contaminant plume typically
passes several of these intermediate-scale features but not
enough to ensure ergodic transport behaviour. Thus, using ef-
fective parameters is not warranted. Since limited data avail-
ability precludes a deterministic representation of these fea-
tures, stochastic approaches are best suited.

Binary stochastic models are a simple way to capture the
effects of intermediate-scale features (Haldorsen and Lake,
1984; Dagan, 1986; Rubin, 1995). Figure 2b shows an exam-
ple of how to conceptualize a medium with two K values:
inclusions (K2) are embedded in the bulk conductivity (K1),
with p characterizing the volume fraction of K2. Inclusions

of high conductivity may represent preferential flow paths,
whereas inclusions of low conductivity can be obstacles like
clay lenses.

The inclusion topology is a matter of choice and data avail-
ability. A simple design is a distribution of non-overlapping
blocks with horizontal length Ih and thickness Iv. Figure 2b
provides an impression with an arbitrary choice of parame-
ters. More complex layering structures can be adapted if ad-
ditional topological information is available. However, the
specific topology often plays a subordinate role. When not
having any information on spatial correlation of heterogene-
ity, it is beneficial to assume some instead of sticking to a
homogeneous model.

Characteristic length scales in a vertical direction Iv are
detectable with low effort from a few borehole logs (Fig. 2a).
Characteristic horizontal length measurements, Ih, are crit-
ical since they require spatially distributed observations. A
parametric uncertainty approach can keep the effort low. A
range of reasonable Ih values is estimated and applied in the
random inclusion model. A sensitivity analysis reveals the
impact of the parametric uncertainty of Ih on transport re-
sults. The estimates of Ih could result from auxiliary data
such as vertical length scale in combination with anisotropy
ratios. Another option is expert knowledge based on geolog-
ical structures and similarities to outcrop studies. Methods
such as diffusivity tests (Somogyvári et al., 2016) or novel
approaches for pumping test interpretation (Zech et al., 2016)
also offer options to gain estimates for Ih.

The binary structure as in Fig. 2b is beneficial in its plain
stochastic concept, relying on few input data, simple imple-
mentation, and low computational requirements. It can be
combined with Module (A) by implementing it within every
deterministic zone preserving the mean conductivities. As for
MADE, the inclusions represent the contrasting vertical lay-
ers as observed in flowmeter logs (Fig. 2a), from which the
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Figure 3. (a) Locations of measurements and tracer test observation network according to Boggs et al. (1990) and Bohling et al. (2016). (b)
Gaussian random field with exponential co-variance structure as a conceptual module for small-scale conductivity (Module C).

inclusion parameters can be deduced for every deterministic
zone (Sect. 3).

2.2.3 Module C

Variations in grain size and soil texture form small-scale het-
erogeneities of characteristic length scales up to 1 m. Their
relevance for transport predictions depends on the degree
of heterogeneity and ergodicity. A plume is considered er-
godic when the behaviour within one realization is statis-
tically representative, i.e. exchangeable with ensemble be-
haviour. Figuratively speaking, an ergodic plume has trav-
elled long enough to sufficiently sample heterogeneity. This
is usually assumed for transport distances of 10–100 char-
acteristic lengths (Dagan, 1989), with higher values for an
increasing degree of heterogeneity. When ergodic, effective
parameters can capture effects of heterogeneity. Otherwise,
the use of a spatial random representation is warranted.

If required, small-scale features can be conceptual-
ized with a log-normal conductivity distribution K(x)∝

LN (KG,σ
2
Y ) with a geometric mean KG and log-variance

σ 2
Y . Including a spatial correlation structure depends on the

acquired complexity and the availability of two-point statis-
tical data such as correlation length and anisotropy. Figure 3b
gives an example.

Geostatistical parameters can be inferred from spatially
distributed observations (Fig. 3a), e.g. permeameter, bore-
hole flowmeter, or injection logging (Fig. 4). This is related
to high effort and costs. Novel techniques like DPIL (Dietrich
et al., 2008; Bohling et al., 2016) can provide a large amount
of data at acceptable costs and time, but they are only ac-
cessible for shallow sites. Alternative approaches derive geo-
statistical parameters directly from pumping tests (Zech and
Attinger, 2016; Zech et al., 2016) or dipole tracer tests (Zech
et al., 2018). Note the discrepancy in geostatistical estimates
among observation methods (Fig. 4), which is not uncommon
for heterogeneous sites. Differences are attributed to scale ef-
fects as a result of different method characteristics, such as
support volume and resolution. This underlines the caution

that has to be given to the appropriate use of observation data
in conductivity conceptualization.

When combined with larger heterogeneity structures,
small-scale fluctuations are subordinate. In the case of field
evidence, Module (C) can be combined with Modules (A)
and (B) by adding zero-mean fluctuations. According to Lu
and Zhang (2002), the variances of heterogeneous substruc-
tures are additive. Thus, the log-normal variance relates to a
“variance gap” between the total variance, e.g. from a geosta-
tistical analysis of the entire domain, and the binary model’s
variance (Module B). It can be interpreted as the system’s
variance which is not captured by intermediate- and large-
scale heterogeneity. The length scales for a correlation struc-
ture should be significantly smaller than the inclusion lengths
of Module (B). Including small-scale heterogeneity enhances
the realism of conductivity structure – however, at the ex-
pense of increasing investigation costs.

The MADE site is a rare example with geostatistics from
multiple observation methods (Figs. 3a and 4). Methods well
suited for small-scale heterogeneity show large variances
from 4.5 up to 5.9. Given the high variance and the low mean
conductivity, ergodic conditions cannot be assumed for trans-
port within the range of a few hundred metres.

The large value in variance, as determined for MADE,
could likely be the result of preferential flow and/or trends in
mean conductivity. Thus, explicitly representing determinis-
tic zones (Module A) and preferential flow paths (Module B)
might render the representation of small-scale features (Mod-
ule C) redundant. Modelling hydraulic conductivity as log-
normal fields solely based on Module (C) seems warranted
when there is no indication of deterministic zones or prefer-
ential pathways.

2.3 Hierarchy of scales

The hierarchy of scales poses an inherent problem for each
groundwater model based on heterogeneous field data. Data
interpretation often does not allow general trends to be
clearly distinguished from randomness. The three modules
provide a simple classification of transport-relevant hetero-
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Figure 4. Geostatistical values for MADE from DPIL (direct push injection logging) (Bohling et al., 2016), flowmeters, grain size analysis,
slug tests (Rehfeldt et al., 1992), and effective mean values (Keff) of two large-scale pumping tests (Boggs et al., 1990): log-conductivity
variance σ 2

lnK and horizontal and vertical correlation length `h and `v, respectively. Visualization of the range of observed values from
minimal (Kmin) to maximal (Kmax), variance range, and geometric mean KG.

geneity scales: (A) beyond the plume scale, i.e. above 100 m;
(B) in the range of the plume scale (about 10–100 m); and
(C) subscale (< 1 m). This classification might not hold for
every field and transport situation but provides an orienta-
tion for developing site-specific heterogeneous conductivity
structures.

Which module to integrate at a specific site depends on
multiple aspects: (i) is there field data evidence for a hetero-
geneity structure of a certain length scale? (ii) Is there suf-
ficient data to parameterize a conceptual heterogeneity rep-
resentation? (iii) Is it necessary to present the heterogeneity
given the travel distance of the plume (ergodicity)? Having a
positive answer to each of these questions for a certain mod-
ule warrants its consideration in the conductivity conceptual
model.

3 Predictive transport model for MADE

We validate our approach by performing flow and transport
calculations for the MADE setting without parameter cali-
bration. Although many approaches to model the transport at
the MADE site exist, including detailed aquifer conceptual-
izations (e.g. Herweijer, 1997; Julian et al., 2001, for a de-
tailed review see Zheng et al., 2011), only few of them have
a predictive character, i.e. devoid of calibration to transport
results (Fiori et al., 2013, 2017; Dogan et al., 2014; Bianchi
and Zheng, 2016).

Based on the scale-dependent conductivity modules
(Sect. 2.2), we develop different conductivity structures ac-
cording to the field evidence given the structural data at
MADE. We thereby aim to identify the “most simple” of our
concepts, which still provides a reasonable prediction of the
complex observed mass distribution. The computed tracer
plumes are compared to the MADE-1 transport experimental
results (Boggs et al., 1992; Adams and Gelhar, 1992). Since
the observed spatial concentration distribution is not avail-
able, we make use of 1D longitudinal mass transects at spec-
ified times.

Following the approach steps outlined in Sect. 2, we define
our model aim broader then specified in Sect. 2.1: the goal
is predicting the general plume behaviour. This might serve
different purposes as, for example, remediation and includes
the mean flow behaviour. The fact that there are no break-
through curve data available for MADE inhibits the subject
of arrival times being studied. Particularly critical is first ar-
rival, as discussed in Adams and Gelhar (1992). Processes
involved here are flow and transport governed by Darcy’s law
and the advection–dispersion equation (Eq. 1).

3.1 MADE field data

The MADE site is located on the Columbus Air Force Base
in Mississippi, United States. The aquifer was characterized
as shallow, unconfined, of about 10–11 m thickness (Boggs
et al., 1992). It consists of alluvial terrace deposits composed
of poorly sorted to well-sorted sandy gravel and gravely sand
with significant amounts of silt and clay. The first extensive
field campaign by Boggs et al. (1990) yielded a multitude
of hydrogeological information, as, for example, piezometric
surface maps and hydraulic conductivity observations from
soil samples, flowmeters, and pumping tests (Fig. 4). Field
campaigns in subsequent years supplemented observations
and data interpretations. For an overview see, for example,
Zheng et al. (2011), Bohling et al. (2016), or Table 1 in the
Supplement. We apply a porosity of 0.31. Recharge is as-
sumed uniform and very small (Boggs et al., 1990). Both
quantities are kept constant due to the dominating effect of
hydraulic conductivity given the significant variations and
the uncertainty associated with observations (Fig. 4).

The MADE-1 transport experiment was conducted in the
years 1986–1988 (Boggs et al., 1990, 1992; Rehfeldt et al.,
1992; Adams and Gelhar, 1992). A pulse of bromide was
injected over a period of 48.5 h, applying a flow rate of
3.5 l/min. The forced input conditions enlarged the tracer
body at the source. Transport then took place under ambient
flow conditions.

Concentrations were observed within a spatially dense
monitoring network at several times after injection. We fo-
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Figure 5. Realizations of hydraulic conductivity structures. (a)
Deterministic zones (Module A), low K1 in black, high K2 in
white. (b) Inclusions in deterministic zones (Modules A + B); vol-
ume fraction of inclusions p = 15%, inclusion lengths Ih = 10 m,
Iv = 0.5 m. (c) Inclusions in deterministic zones and subscale het-
erogeneity (Modules A + B + C); correlation lengths λh = 2.5 m,
λv = 0.125 m.

cus on the reported longitudinal mass distribution of Adams
and Gelhar (1992; Fig. 7) at six times: 49, 126, 202, 279, 370,
and 503 d after injection. Values are integrated measures over
transverse planes and accumulated over segments of 10 m
length, given at the centres of segments at −5, 5, 15, . . ..
The reported mass does not display mass recovery except at
126 d with recovery rates of 2.06,0.99,0.68,0.62,0.54, and
0.43, for the six times, respectively. We do not normalize the
reported mass to recovered mass but stick to the actually ob-
served values associating the mass loss with insufficient sam-
pling in the downstream zone, as discussed in detail by Fiori
(2014).

3.2 Hydraulic conductivity structures

Three hydraulic conductivity conceptualizations are de-
signed in line with the specifications for MADE in Sect. 2,
which serve different model aims. Modules (A), (B), and (C)
are combined successively to capture the scale hierarchy of
heterogeneity at the MADE site. Figure 5 illustrates exam-
ples for each conceptualization.

3.2.1 Deterministic zones (A)

Following the lines of Rehfeldt et al. (1992), we create con-
ductivity zones based on the changes in the piezometric sur-
face map (Fig. 1). We chose two vertically arranged deter-
ministic zones (Fig. 5): a zone of low average conductivity,
Z1, from upstream of the tracer input location to x = 20 m
downstream, and zone Z2, an area of high average conduc-
tivity from 20 m downstream of the source (Sect. 2.1).

We fix mean conductivity values in the zones as K̄Z1 =

2e−6 m/s and K̄Z2 = 2e−4 m/s with a contrast of 2 orders of

magnitude as stated by Boggs et al. (1992). The specific val-
ues are chosen according to the two large-scale pumping tests
(Boggs et al., 1992) and the head level rise during injection,
which is particularly important for early plume development.
Details are given in the Supplement.

When fixing regional conductivities from pumping tests,
the model scale coincides with the measurement scale. This
way, our structures are independent of the upscaling of the
method-specific (and location-specific) geometric means re-
ported for MADE (Fig. 4). The deterministic conductivity
conceptualization is suitable for properly modelling the re-
gional groundwater in line with the model aim “mean arrival”
as specified in Sect. 2.1.

3.2.2 Inclusion structure in zones (A + B)

Flowmeter logs from MADE show a significant discontinu-
ous heterogeneity in the layering (Fig. 2). We represent these
structures, making use of the binary inclusion structure de-
scribed in Sect. 2.2.2. We assume little to no information on
horizontal structures and connectivity to mimic typical field
situations – thereby deliberately ignoring the large amount of
data at MADE. We make use of solely four flowmeter logs
(Fig. 2a).

The binary conductivity distribution is constructed for the
entire domain comprising both deterministic zones. The up-
stream zone Z1 consists of a bulk of low conductivity K1
with a percentage p of high conductivity K2 inclusions, the
downstream zone Z2 vice versa (Fig. 5).

We identify the specific values of K1 and K2 from the
statistical relationship for binary structures (Rubin, 1995):
lnK̄Z1 = (1−p) · lnK1+p · lnK2 and lnK̄Z2 = p · lnK1+

(1−p) · lnK2 using the mean conductivities of the zones
K̄Z1 = 2e− 6 m/s and K̄Z2 = 2e− 4. p is deduced from the
flowmeter profiles (Fig. 2a). Being from both zones Z1 and
Z2, the profiles differ significantly in their average value.
However, all show a tendency to binary behaviour, with a
significant spread over depth. The data are grouped into high
and low values, being at least 2 orders of magnitude apart.
Then, p is the fraction of values in the minor group, which is
10 %–20 % for the MADE flowmeter profiles (Fig. 2a), lead-
ing to p = 15% as a default value.

The inclusions’ structure in both zones is designed accord-
ing to the simplified block structure outlined in Sect. 2.2.2.
The domain is divided into horizontal blocks of length Ih.
Each block contains randomly located inclusions of thick-
ness Iv. The flowmeter logs at MADE indicate a change in
vertical layering every 0.25–1 m (Fig. 2a). Thus, we chose
Iv = 0.5 m. In combination with a volume fraction of inclu-
sions of p = 15% and an aquifer thickness of 10 m, this gives
three inclusions per block.

The parameter Ih is the most difficult to extract from data,
due to the limited amount of information on horizontal struc-
tures and connectivity. We specify Ih through a pragmatic but
stochastic meaningful approach by combining estimates with
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Figure 6. Longitudinal mass distribution at T = 126 days for conductivity concepts: (A) deterministic zones (a), (A + B) inclusions in zones
(b), and (A + B + C) inclusion in zones with subscale heterogeneity (c) (Fig. 5). Shaded areas (light blue and green) indicate parametric
uncertainty bands. Mass distribution observed at MADE experiment in red; the semi-log scale is in the subplot.

parametric uncertainty to rely on as few data as possible. A
first guess results from auxiliary data analysis: an anisotropy
ratio of e = 0.1− 0.025 is given from the large-scale pump-
ing tests (Boggs et al., 1990). Combining it with the inclu-
sion thickness of Iv = 0.5 m gives a range of Ih ∈ [5m,20m].
To cover parametric uncertainty we use three different val-
ues of Ih, namely 5, 10, and 20 m, instead of only one. The
different inclusion lengths produce distinct effects on con-
nected pathways and thus on the mass distribution. A com-
bined ensemble integrates the character of each inclusion
length. Figure 5b shows an example structure for Ih = 10 m.
Note that inclusions can touch, so some inclusions are thicker
(e.g. 2Iv = 1 m) and longer (e.g. 2Ih = 20 m).

For the Monte Carlo approach, we create ensembles of 600
individual random realizations, with 200 realizations of each
inclusion length Ih, while all other parameters are fixed. Pre-
liminary investigations showed that 200 realizations are suf-
ficient to ensure ensembles convergence. Reported flow and
transport results for the inclusion structure in zones (A + B)
are ensemble means.

3.2.3 Subscale heterogeneity in zones (A + B + C)

We combine Modules (A), (B), and (C) to an inclusion
structure in deterministic zones with small-scale fluctuations
(A+B+C), depicted in Fig. 5c. Structural aspects of Modules
(A) and (B) are the same as described before, including para-
metric uncertainty for the inclusion length Ih ∈ {5,10,20}m.
Module C is integrated as log-normal-distributed conductiv-
ity fluctuations (Sect. 2.2.3). The characterizing parameters
for Module (C) depend on the statistics of the super-ordinate
modules (A) and (B).

The log-normal fluctuations lnY (x) are generated using
gstools (Müller and Schüler, 2019) with zero mean, since the
overall mean conductivity refers to K̄Z1 and K̄Z2 of the de-
terministic zones. The log-conductivity variance σ 2

Y follows
from the variance gap, as a difference between the variance
of the inclusion structure and the overall variance. The binary
inclusions for the chosen setting have a variance of σ 2

Z =

5.52 resulting from σ 2
Z = p · (1−p) · (lnK1− lnK2)

2 (Ru-
bin, 1995). With an overall variance of σ 2

F = 5.9 as indicated
by Bohling et al. (2016) (Fig. 4), we arrive at a fluctuation
variance of σ 2

Y ≈ 0.5. We apply an exponential co-variance
function with length-scale parameters being a fraction of the
inclusion length scales: λh = 1/4Ih and λv = 1/4Iv. Testing
several ratios, we saw that its impact on transport behaviour
is negligible. Ensembles consist of 600 realizations.

3.3 Numerical model settings

Flow and transport are calculated making use of the finite
element solver OpenGeoSys (Kolditz et al., 2012) in the
ogs5py Python framework (Müller et al., 2020). The simu-
lation domain is a 2D cross section within x ∈ [−20,200]m
and z ∈ [52,62]m, generously comprising the area of the
MADE-1 tracer experiment (Boggs et al., 1992). We applied
constant head boundary conditions at the left and right mar-
gin, with a mean head gradient of J = 0.003. Tracer is in-
jected at a well located at x = 0, with a central screen of
0.6 m depth. Injection takes place over a period of 48.5 h
with an injection rate of Qin = 1.166e− 5 m3/s according to
the initial conditions reported by Boggs et al. (1992). We use
a flux-related injection, representing natural conditions. For
technical details, the reader is referred to the Supplement.

We checked the impact of dimensionality. A detailed dis-
cussion is provided in the Supplement. We found almost no
differences between 2D and 3D simulation setups, where the
binary structure (Module B) dominates. Extending the binary
structure in the horizontal direction perpendicular to main
flow does not provide additional degrees of freedom for the
flow. Thus, extending the model hardly impacts the flow and
thus transport pattern while significantly increasing compu-
tational effort. However, dimensionality effects hold for con-
ductivity conceptualization, with prevailing log-normal dis-
tribution, i.e. dominated by Module C. The option of com-
plexity reduction by using 2D instead of 3D models is war-
ranted for this application by the fact that conductivity con-
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Figure 7. Mass distributions at times T = 49, 202, 279, 370, 503, and 1000 d. The colour code is as follows: red denotes the MADE-1
experiment; yellow denotes concept (A); blue denotes concept (A + B); green denotes concept (A + B + C). Shaded areas (light blue and
green) indicate parametric uncertainty bands; the semi-log scale is in the subplot.

ceptualizations are dominated by the binary structure (mod-
ule B).

Simulation results are processed like the MADE-1 experi-
mental data. Longitudinal mass distributions are vertical av-
erages and accumulated horizontally over 10 m segments.
Note that the simulated distributions show a full mass recov-
ery. Besides spatial mass distributions for the six times for
which experimental data are available, we present the break-
through curves (BTCs) as temporal mass evolution at critical
distances, although no BTC data are reported for the MADE-
1 experiment.

3.4 Simulation results

Figure 6 shows the simulated longitudinal mass distributions
M(x)/M0 of the specified conductivity conceptualizations
(Sect. 3.2) at T = 126 days after injection. They are com-
pared to the MADE-1 experiment data, which had a mass
recovery of 99% at that time.

The mass distribution for the deterministic structure (con-
cept A, yellow) shows a sharp peak close to the injection lo-
cation and no mass downstream. The conductivity structures
with inclusions in deterministic zones (A + B, blue) and with
subscale heterogeneity (A + B + C, green) result in skewed
mass distributions, with a peak close to the injection area
and a small amount of mass ahead of the bulk. Shaded ar-
eas indicate parametric uncertainty due to the variable inclu-
sion length Ih. The shade area margins refer to ±3 ensemble

standard deviations, which is similar to the 99% confidence
intervals, considering a Gaussian distribution of variations.

A direct comparison of the mass distributions M(x)/M0
for the structures is depicted in Fig. 7 for six temporal snap-
shots, including T = 1000 d, for which no experimental data
are available. The general form of the mass distributions is
persistent in time for all conductivity structures.

Figure 8 shows simulated breakthrough curves (BTCs)
for the deterministic block and inclusion conductivity struc-
ture at three distances to the injection location. The results
for concept (A + B + C) are very close to those of concept
(A + B), thus are not displayed. Apparent differences to the
longitudinal mass distributions as in Fig. 7 are due to the
spatial data aggregation. The BTC for Module A has the ex-
pected Gaussian shape with a late breakthrough at x = 5 m
given the very low conductivity in the injection area. The
stochastic models have an earlier breakthrough and strong
tailing at all distances.

BTCs are not available for the MADE-1 transport experi-
ment. However, we added the aggregated mass values at the
three locations for the six reported times in a subplot to indi-
cate a trend of temporal mass development. Note that mass
values of the BTCs and those at MADE are at different scales
due to data aggregation and mass recovery.
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Figure 8. Breakthrough curves: total mass M(t)/M0 versus time
at selected control plane locations for inclusion structure (A + B),
(blue) at x = 5 m (solid), x = 15 m (dashed), and x = 45 m (dotted)
and for deterministic structure (A) at x = 5 m (solid yellow line).
Reported mass values for MADE at the three locations (red mark-
ers) are given in the subplot. Note the difference in scale due to the
spatial averaging of experimental data.

3.5 Discussion

All conductivity structures were able to reproduce the
skewed hydraulic head distribution as observed at MADE
(Fig. 1a). The corresponding mean flow velocity determines
the travel time. As a result, all models properly reproduced
the spatial position of the mass peak (Fig. 6).

The deterministic block structure (A) failed to reproduce
the skewed mass distribution observed at MADE. The lead-
ing front mass travelling through fast flow channels could not
be predicted (Fig. 7) solely using average K values in zones.
In line with the model aim “mean arrival” (Sect. 2.1), the
simple structure allows the regional groundwater movement
to be estimated and the location of the bulk mass to be pre-
dicted. However, in the case of the “risk assessment” aim, the
arrival times of mass would be significantly underestimated,
as clearly observable when comparing BTCs (Fig. 8).

Tracer transport in a binary conductivity structure with in-
clusions (concept A + B) reproduces the observed mass, both
for the peak near the injection site and the leading front.
The simulated longitudinal mass distribution shows a second
peak downstream (Fig. 7), which increases with time. The
position is related to the interface between the low and high
conductivity zones at 20 m distance to the source. Such a sec-
ond peak is absent in the observed MADE plume; however it
might be associated with the mass loss for the later times. The
skewed mass distribution is related to significantly smaller
first arrival times as can be seen for the BTCs in Fig. 8 com-
pared to the deterministic structure. The BTCs are clearly
non-Gaussian with heavy tailing. It shows the same temporal
behaviour as the MADE experiment data.

The horizontal inclusion length Ih for structure (A + B)
was not fixed but was varied over the range of Ih ∈

{5,10,20}m. The uncertainty bands in Fig. 6b indicate that
Ih mostly influences the height of the mass peak close to the
source. Ih characterized the connectivity of the source area
Z1 to the high conductivity zone Z2. Thus, it determines the
distance of the bulk mass being trapped in the low conduc-
tivity area. The larger the Ih, the higher the amount of mass
transported downstream. The shape of the leading front is
less impacted by Ih given that its value does not influence
the effect of the inclusions as preferential flow per se.

The predicted plume shape for the conductivity struc-
ture with inclusions and subscale heterogeneity (A + B + C)
is almost similar to the one without subscale heterogene-
ity (A + B). Consequently, the inclusion structure is the one
which determines the shape of the distribution, whereas the
impact of subscale heterogeneity is minor. Given the model
aim of plume prediction, the additional effort for determin-
ing characterizing geostatistical parameters for the subscale
heterogeneity is not warranted.

The binary conductivity conceptualization (A + B) was de-
rived for MADE with few observations from standard meth-
ods, as can be expected to be present at many field sites.
The price for the limited amount of data is parametric un-
certainty. A sensitivity study revealed that the mass distribu-
tion resulting from the binary conductivity structure is very
robust against the choice of parameters. The inclusion length
Ih and the choice of the K contrast between the zones show
the highest impact. The latter was expected as the mean con-
ductivity determines the average flow velocity and by that
the peak location and the general distribution shape. The im-
pact of Ih is represented in the uncertainty bands (Figs. 6b,
7). Other parameters, such as the volume fraction of inclu-
sions p, and subscale heterogeneity parameters, such as the
variance, have minor effects. For details, the reader is re-
ferred to the Supplement. In this regard, the binary structure
is very stable towards parametric uncertainty.

4 Summary and conclusions

We introduce a modular concept of heterogeneous hydraulic
conductivity for predictive modelling of field-scale subsur-
face flow and transport. The central idea is to combine de-
terministic structures with simple stochastic approaches to
rely on few measurements and to forgo calibration. The scale
hierarchy of hydraulic conductivity induces three structure
modules which represent (A) deterministic large-scale fea-
tures like facies, (B) intermediate-scale heterogeneity-like
preferential pathways or low conductivity inclusions, and (C)
small-scale random fluctuations. Field evidence of hetero-
geneity features and module’s input parameters are provided
by observation methods with the appropriate detection scale.
The specific form of the scale-dependent features depends on
the site characteristics and field data. We propose a determin-
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istic model for large-scale features, a simple binary statistical
model for intermediate-scale features, and a log-normal ran-
dom model for small-scale features. However, the integration
of alternative conductivity structures is possible. Thus, the
concept is easily adaptable to any field site, making aquifer
heterogeneity accessible for practical applications.

An illustrative example is given for the heterogeneous
MADE site. Three modular conductivity structures are con-
structed, based on two observations: (i) the existence of dis-
tinct zones of mean flow velocity and (ii) high conductivity
contrasts in depth profiles, suggesting local inclusions acting
as fast flow channels. The structures are used in a predic-
tive flow and transport model which is free of calibration.
The comparison of results to the MADE-1 field tracer exper-
iment showed that all conceptualizations can be of value, de-
pending on the modelling aim. However, predicting the mass
plume behaviour required heterogeneity to be taken into ac-
count.

The combination of deterministic and simple binary
stochastic showed the best results given the trade-off be-
tween transport prediction and need for measurements. Real-
izations of hydraulic conductivity were composed of binary
inclusions in two blocks with different average conductivity.
Details on the topology are thereby secondary, since binary
structures show robustness towards the choice of specific pa-
rameters.

The simple binary structure was able to capture the over-
all characteristics of the MADE tracer plume with reason-
able accuracy, requiring only a small number of observations.
Among the few predictive transport models for the MADE
site, the approach presented shows a higher level of simula-
tion effort due to the Monte Carlo simulations. However, the
lower level of data requirements makes it attractive for ap-
plication at less investigated sites. Note that when applying
the proposed heterogeneity conceptualization in other mod-
elling applications, a 3D model setup should be considered
first, in particular when heterogeneity is conceptualized by a
log-normal distribution (Module C). A complexity reduction
to 2D models is warranted when the heterogeneous conduc-
tivity conceptualizations do not impact the flow pattern in the
transverse horizontal direction, such as the binary structure.
The generality of the binary concept makes it easily transfer-
able to other sites, particularly when focusing on a few, but
scale-related measurements.

A hierarchical conductivity structure allows for balance
between complexity and available data. Large-scale struc-
tures determine the mean flow behaviour, which is most crit-
ical for flow predictions. They can be integrated into a model
with reasonably low effort. Structural complexity increases
with a decreasing heterogeneity scale, where small-scale fea-
tures have the highest demand on observation data. However,
even with limited information on the conductivity structure,
simple stochastic modules can be used to incorporate the ef-
fect of heterogeneity. Considering small-scale features, the

conductivity structure can be extended by including modules
when additional measurements are available.

Distinguishing the effects of the scale-specific features on
flow and transport also allows the need for further field inves-
tigations and potential strategies to be identified. The adap-
tive construction based on scale-specific modules allows a
conductivity structure model to be created as complex as nec-
essary but as simple as possible.

The use of simple binary models is very powerful when
dealing with strongly heterogeneous aquifers. They require
fewer observation data compared to uni-modal heterogene-
ity models, as log-normal conductivity with high variances.
Binary models also allow effects of dual-domain transport
models to be incorporated without the drawback of having
non-measurable input parameters which require model cali-
bration. Our work shows that highly skewed solute plumes
can be reproduced with classical ADE models by incorporat-
ing deterministic contrasts and effects of connectivity statis-
tically. In summary, we conclude the following:

– Modular concepts of conductivity structure allow the
multiple scales of heterogeneity to be separated. Scale-
related investigation methods provide field evidence and
conductivity model parameters. A hierarchical approach
for conductivity can thus reduce observation effort by
focusing on the model aim.

– Site-specific heterogeneous hydraulic conductivity can
be easily constructed with simple methods, taking the
(limited) amount of data into account. For aquifers with
a high conductivity contrast, we recommend combin-
ing large-scale deterministic structures and simple bi-
nary stochastic models.

– The application example at MADE showed that com-
plex field structures can be represented appropriately for
transport predictions with an economic use of investiga-
tion data.

This work aims to contribute to bridging the gap between the
advanced research in stochastic hydrogeology and its limited
use by practitioners, being a subject of recent debate (e.g. Ra-
jaram, 2016). We advocate the use of heterogeneity in trans-
port models for successfully predicting solute behaviour, par-
ticularly in complex aquifers. This can be done with few data
and simple tools: adaptive structures allowing deterministic,
random binary, and geostatistical models to be combined, de-
pending on the available data and the site-specific modelling
aim.

Code and data availability. Study-related Python scripts are pub-
licly available at https://github.com/GeoStat-Examples/Binary_
Inclusions, last access: 26 October 2020 (Zech and Müller, 2020),
including scripts for (i) generating and (ii) visualizing binary in-
clusion structures as well as scripts for (iii) transport simulations
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in the random inclusion structure adapted to the MADE-1 site set-
tings. The Python API ogs5py (Müller, 2019) and the geostatistics
packages gstools (Müller and Schüler, 2019) used in this study are
both available at https://github.com/GeoStat-Framework. Data on
the MADE aquifer can be accessed via the stated literature sources.
Data generated for this study are available upon request to the cor-
responding author.

Supplement. The supplement related to this article is available on-
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