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Abstract. We present a new global land-based daily pre-
cipitation dataset from 1950 using an interpolated network
of in situ data called Rainfall Estimates on a Gridded Net-
work – REGEN. We merged multiple archives of in situ data
including two of the largest archives, the Global Historical
Climatology Network – Daily (GHCN-Daily) hosted by Na-
tional Centres of Environmental Information (NCEI), USA,
and one hosted by the Global Precipitation Climatology Cen-
tre (GPCC) operated by Deutscher Wetterdienst (DWD).
This resulted in an unprecedented station density compared
to existing datasets. The station time series were quality-
controlled using strict criteria and flagged values were re-
moved. Remaining values were interpolated to create area-
average estimates of daily precipitation for global land areas
on a 1◦× 1◦ latitude–longitude resolution. Besides the daily
precipitation amounts, fields of standard deviation, kriging
error and number of stations are also provided. We also pro-
vide a quality mask based on these uncertainty measures.
For those interested in a dataset with lower station network
variability we also provide a related dataset based on a net-
work of long-term stations which interpolates stations with
a record length of at least 40 years. The REGEN datasets
are expected to contribute to the advancement of hydrologi-
cal science and practice by facilitating studies aiming to un-
derstand changes and variability in several aspects of daily
precipitation distributions, extremes and measures of hydro-
logical intensity. Here we document the development of the

dataset and guidelines for best practices for users with re-
gards to the two datasets.

1 Introduction

Earth’s climate is changing, leading to spatial and tempo-
ral variations in precipitation. These changes in precipitation
are strongly linked to social, economic and environmental
prosperity due to the role precipitation plays in global food
production and maintaining biodiversity. Theoretical expec-
tations are that the global hydrological cycle would intensify
in a warmer climate, associated with increases in mean and
extreme precipitation (whereby mean and total precipitation
would increase at lower rate than extreme precipitation due
to energetic constraints; Allen and Ingram, 2002). In addi-
tion to changes in precipitation due to climate change, pre-
cipitation is also characterised by strong variability in many
regions. Reliable observations are necessary to understand
these short- and long-term changes and to evaluate climate
models which help understand the processes driving these
changes. Hence in some ways gridded observations of the
past also help us to better plan for and adapt to these changes
in the future.

All observations have errors – for example, gauge-based
precipitation measurements are subject to undercatch, wind
related errors, evaporation loss, wetting loss, splash in/out
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errors and tipping errors (see McMillan et al., 2012 for de-
tails). However, alternatives to gauge-based measurements
such as satellite observations, model reanalysis products and
radar-based observations have additional limitations. Reanal-
ysis products assimilate observations and models to create a
synthesised estimate of the state of the earth system. They
are often misused as observations but in fact inherit issues
from the incomplete observations and imperfect models and
are based on complex assimilation techniques. Furthermore,
none of the reanalysis products assimilate surface precipita-
tion observations (MERRA2 however incorporates satellite
infrared and microwave measurements) and as such are not
representative of reality. This is evidenced by the classifica-
tion of precipitation as the least reliable class by Kalnay et al.
(1996). Reanalyses also contain temporal inhomogeneities
due to the changing amount of assimilated observations over
time (Compo et al., 2006). According to Lorenz and Kunst-
mann (2012) even the state-of-the-art reanalyses are unsuit-
able for climate trend and long-term water budget analysis.
Radar estimates provide high spatial and temporal resolution
estimates of rainfall over local regions; however, these esti-
mates can be inaccurate compared to rain gauges (Krajew-
ski et al., 2010; Villarini and Krajewski, 2010; McKee and
Binns, 2016), and very few national networks of radar obser-
vations exist.

Satellite products have become available in recent years.
These datasets are gridded and boast a global or quasi-
global coverage. The Tropical Rainfall Measuring Mis-
sion (TRMM) 3B42 (Huffman et al., 2007), Global Precip-
itation Climatology Projects 1 Degree Daily (GPCP-1DD)
(Huffman et al., 2001), Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) (Funk et al., 2015)
and the Precipitation Estimates from Remotely Sensed In-
formation using Artificial Neural Networks – Climate Data
Record (PERSIANN-CDR) (Ashouri et al., 2014) are some
examples of popular satellite-based precipitation products.
These satellite-based datasets, however, use complex algo-
rithms to derive precipitation estimates from indirect radi-
ation measurements, resulting in large uncertainties in pre-
cipitation estimates. For example GPCP-1DD measures in-
frared reflectivity of clouds to infer the cloud thickness and
then estimates precipitation rates based on the poor relation-
ship between clouds and rainfall (Kidd and Levizzani, 2011).
This estimate is also adjusted based on monthly gauge ob-
servations; however, the uncertainties remain high. In gen-
eral satellite products perform well in the tropics where the
rain rates are higher but struggle with snow and ice and
on complex terrain (Bytheway and Kummerow, 2013; Tian
and Peters-Lidard, 2010; Contractor et al., 2015). New satel-
lite missions and technology will be able to overcome these
shortcomings over time. For example, the recently launched
Global Precipitation Measurement (GPM) mission is an in-
ternational satellite mission that aims to improve the detec-
tion of light rain and snowfall as well as provide quantita-
tive estimates of precipitation particle size distribution (Hou

et al., 2014). The biggest limitation of satellite products,
however, is also their brevity. It was only after the Tropi-
cal Rainfall Measurement Mission (TRMM) in 1997 that we
entered an era of multi-sensor measurements across multi-
ple satellites to produce a globally consistent and complete
map of precipitation (Tian and Peters-Lidard, 2010). Thus
the satellite products do not allow for an analysis of global
rainfall changes that effectively separates the natural vari-
ability from anthropogenic climate change. Very recently,
datasets that blend together precipitation estimates from mul-
tiple sources such as gauge observations, satellite observa-
tions and even reanalyses have become available. Examples
include MSWEP V2 (Beck et al., 2019), CHIRPS (Funk
et al., 2015) and Shen et al. (2014). These datasets offer very
high spatial and temporal resolution data with a reasonably
long temporal record. However, these datasets may exhibit
increased temporal variability due to the incorporation of var-
ious observational sources over time and do not include as
many in situ station observations as the gauge-only datasets.

Observations have shown spatially varying changes in
mean precipitation across the globe (Trenberth, 2011; Hart-
mann et al., 2013) and robust increases in extreme precipi-
tation across various regions and in the global average (Gro-
isman et al., 2005; Westra et al., 2013; Donat et al., 2016).
These global analyses of observed precipitation changes
were based on datasets of monthly precipitation accumu-
lations (such as Climatic Research Unit’s CRU TS; Har-
ris et al., 2014; Mitchell and Jones, 2005, Global Precipita-
tion Climatology Centre’s GPCC Full Data Monthly; Becker
et al., 2013; Schneider et al., 2015, Global Historical Clima-
tology Network’s GHCN-Monthly; Peterson and Vose, 1997,
Global Precipitation Climatology Project GPCP-Monthly;
Adler et al., 2003; Huffman et al., 1997; and the Smith et al.,
2012 dataset), or datasets providing indices representing spe-
cific aspects of extreme precipitation (such as GHCNDEX;
Donat et al., 2013a, HadEX; Alexander et al., 2006 and
HadEX2, Donat et al., 2013b). Availability of daily precip-
itation data, however, would allow analysis of precipitation
at different parts of the distribution, and for a wider range
of temporal aggregations. A daily resolution dataset would
also enable a more robust estimate of the extremes since
monthly datasets average out the extremes and dampen the
variability in daily observations. Existing gauge-based quasi-
global gridded datasets of daily precipitation are short (such
as CPC Global Precipitation dating back to 1979 (Chen and
Xie, 2008; Xie et al., 2007; Chen et al., 2008) and GPCC Full
Data Daily V1 which dates back to 1988 (Schamm et al.,
2015). An updated version, GPCC Full Data Daily V2018,
was released in June 2018, covering from 1982 to 2016)
and therefore do not allow for robust analysis of long-term
variability or trends. The main reason for this is the lack of
data sharing between countries, which results in poor spatial
coverage earlier in time. Even in cases where meteorolog-
ical organisations have agreements in place with countries
to obtain gauge data (such as GPCC on behalf of Deutscher
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Wetterdienst – DWD), the length of their analysis is lim-
ited due to the lack of high-quality data extending back in
time. To reach a high level of quality, the GPCC applies a
quality control procedure with manual inspection of ques-
tionable values, which is very time consuming but preserves
the real extremes in the data. Many regional- or continental-
scale products are also available which are produced by lo-
cal meteorological organisations or researchers who have a
more complete set of daily gauge data available to them and
thus have longer temporal records. Examples of such datasets
include E-OBS for Europe (Haylock et al., 2008), CPC for
the United States (Chen and Xie, 2008; Chen et al., 2008;
Xie et al., 2007), AWAP for Australia (Jones et al., 2009),
APHRODITE for Asia (Yatagai et al., 2012), CLARIS for
South America (Menendez et al., 2010), and national and re-
gional products for UK (Perry and Hollis, 2005), Spain (Her-
rera et al., 2012), Germany (Rauthe et al., 2013), Switzerland
(Frei and Schär, 1998; Isotta et al., 2013), Norway (Lussana
et al., 2018), India (Rajeevan et al., 2006) and the Middle
East (Yatagai et al., 2008).

Spatially regular gridded data, rather than irregular station
data, facilitate many studies (such as climate variability stud-
ies investigating connections between regional or global pre-
cipitation phenomena and large-scale changes) that are not
spatially biased. Furthermore, climate models also rely on
gridded data. Gridded datasets are needed for initialising,
forcing and validating global and regional climate models.
Since the models also produce outputs representative of area
averages (Osborn and Hulme, 1998) as opposed to point-
based processes, gridded datasets are also necessary to eval-
uate them. Finally, gridded observations can provide reason-
able estimates in regions where local station data are unavail-
able but stations within the typical length scales of precipita-
tion systems in that region may be present.

Given all the limitations of existing datasets noted above,
our aim here was to create a new long-term global land-based
dataset with increased raw station density back to the mid-
twentieth century. In this study we present the data and meth-
ods used to create such a dataset, called Rainfall Estimates
on a Gridded Network (REGEN), and evaluate it against ex-
isting daily and monthly, global and regional products. We
also describe how uncertainty estimates are calculated and
finally provide guidelines for how to best use (and not use)
the dataset.

2 Data and methods

REGEN was created by acquiring daily station precipita-
tion data from various sources, quality controlling them us-
ing an automated algorithm and merging them into a sin-
gle archive, which was then interpolated with ordinary block
kriging. We created two related datasets: the first dataset
(REGEN AllStns V1-2019) interpolated the entire station
network referred to henceforth as REGEN and the sec-

ond dataset (REGEN LongTermStns V1-2019) interpolated
only the long-term stations referred to henceforth as RE-
GEN40YR. Stations considered long-term here are those
with at least 40 complete years of data, described in more de-
tail in Sect. 2.4. Both datasets cover the period 1950–2016. In
this section the various raw data sources, automated quality
control, automated station matching algorithm and the inter-
polation method are described.

2.1 Raw gauge data

The raw station data for REGEN has three sources:

1. the Global Precipitation Climatology Centre (GPCC),
operated by Deutscher Wetterdienst (DWD) (approxi-
mately 100 000 stations),

2. the Global Historical Climatology Network –
Daily (GHCN-Daily) version 3.22-upd-2017092104:
stations hosted by National Centers for Environmental
Information (NCEI) in the USA (Menne et al., 2012)
(103 635 stations), and

3. other stations Argentina and Russian (approximately
1000 stations).

The total number of stations interpolated each day in
REGEN range from a minimum of 35 460 to a maximum
of 56 190, with an average of 50 530 (Fig. 1a). Regionally,
the number of stations per day doubles in North America af-
ter 2000 and decreases substantially in South America from
the late 1990s. There are no Chinese stations in 1950 and
there is a large drop in stations in India in 1970, affecting the
total number of stations per day in Asia. Stations in Africa
are sparse throughout the time period of REGEN; however,
there are still more stations compared to other existing global
rainfall products. However, this highlights a very important
issue regarding the sharing of meteorological data between
countries. Global datasets of observations are limited by the
amount of station data available. Regions of poor station cov-
erage are most abundant in Africa and Asia because of lim-
ited capability or readiness of countries to share data, despite
the World Meteorological Organisation (WMO) data policy
encouraging free and unrestricted exchange of meteorologi-
cal data and products. Therefore, even the in situ data held by
GPCC can only be distributed in the form of derived products
such as the gridded dataset described in this article. We en-
courage maintainers and providers of data to advocate for in-
creased and more open sharing of meteorological data within
their organisations.

The majority of the underlying station data for REGEN is
sourced from the stations hosted by GPCC (Fig. 1b). Note
that Fig. 1b does not show the actual number of stations in
GHCN-Daily or Other archives, but rather the number of
daily records from stations in GHCN-Daily or Other that
were unique with respect to the stations in the GPCC archive.
Due to the large overlap between the archives, the number
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Figure 1. Final (interpolated), quality-controlled number of stations over time by (a) region and (b) source. Figure 4c shows a map of the
regions. Due to the varying station network over time, the total number of stations over the entire temporal domain sums to 135 178 stations.
The numbers in black, blue and green in (b) refer to the average number of stations from GPCC, GHCN and Other sources respectively.

Figure 2. Distribution of stations colour coded by source. “GPCC” refers to stations hosted by Deutsche Wetterdienst, “GHCN” refers to
stations hosted by National Centers for Environmental Information (NCEI), “Merged” refers to stations that have been identified as identical
in two or more archives resulting in a merger of the time series and finally “Other” refers to the Russian and Argentinian stations that were
added by us.

of stations from GHCN-Daily is higher when fewer stations
from GPCC are available. There is a gradual increase in sta-
tions from GPCC until 1990 and a steep decline after 2010.
All quality-controlled station data hosted by GPCC are even-
tually archived in a relational database (henceforth referred
to as GPCC database); however, there were additional ASCII
data files for various countries that were not processed at the
time of the analysis (henceforth referred to as GPCC ASCII
data files).

Figure 2 shows that most of the station data for Central
America, western South America, Europe, Africa, Middle
East and East Asia were sourced from GPCC.

We summarise the spatial and temporal distribution of the
station network comprising REGEN in Fig. 3a. Each map in
Fig. 3 refers to a decade and shows for each grid the percent-
age of days in each decade with at least one station, based on
REGEN (Fig. 3a), REGEN40YR (Fig. 3b) and also GPCC’s
Full Data Daily V1 (GPCC-FDD1; Schamm et al., 2015) for
comparison (Fig. 3c). We compare REGEN’s station network
with GPCC-FDD1’s because until REGEN, GPCC-FDD1
was the global dataset of daily precipitation with the high-
est station density. It can be seen that not only is REGEN’s
station network density higher than GPCC-FDD1 in all the
decades, but even the REGEN40YR station network with a
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Figure 3. Grids showing percentage of days with at least one station in each decade for (a) REGEN, (b) REGEN40YR and (c) GPCC-FDD1.
Grey areas indicate grids where no stations are present.
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much stricter completeness criterion has more stations in all
three comparable decades relative to GPCC-FDD1.

2.2 Quality control

The quality control procedures used in REGEN were adopted
from NCEI, part of National Oceanic and Atmospheric Ad-
ministration (NOAA) in the USA (Durre et al., 2010). The
quality control is done in two stages and climatologies gen-
erated in an auxiliary step are used in both stages. At the
end of the quality control process all data are written in a
common format identical to the GHCN-Daily format (see
README file, ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
readme.txt, last access: 22 September 2017). For a thorough
account of the validation of each quality control (QC) check
including the respective false-positive rates, see Durre et al.
(2010). The total false-positive rate based on all checks is
1 % (Durre et al., 2010).

The first quality control stage involves basic integrity
checks such as checks for erroneous zeros, conflicts between
multi-day accumulations and daily reports, duplication of en-
tire years or months, repetition or frequent occurrence of val-
ues, and world record exceedances. Only minor changes (to
account for different data formats) were made to the orig-
inal QC procedures from Durre et al. (2010) before apply-
ing them. In addition, this test stage also checks for outliers
by checking for gaps in tails of distributions and checks for
climatological outliers. The test also performs some tempo-
ral consistency checks by comparing values with consecutive
days to look for unrealistic spikes in precipitation. The sec-
ond quality control stage does spatial corroboration checks,
which determines whether the value at each station is con-
sistent with the values at neighbouring stations. For further
information and detail on the quality control algorithms, re-
fer to Durre et al. (2010). Data failing any tests at any point
of the quality control process are flagged (see GHCN-Daily
README file (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
readme.txt, last access: 22 September 2017) for a list of
quality flags and their meanings). In order to ensure a high-
quality final dataset, all flagged data are removed prior to
interpolation. Although the QC procedures were designed to
minimise the number of instances in which true extremes are
flagged as errors (Durre et al., 2010), it is possible that a few
such extremes are among the flagged values that were with-
held from the REGEN input data. Future versions of REGEN
may consider methods for recognising and saving possible
flagged extremes.

All data sources (each country in the GPCC ASCII data,
the GPCC database and Other data) were quality controlled
individually before merging. Since our QC procedures are
identical to the GHCN-Daily, we used the flags already in-
cluded with the GHCN-Daily data. The percentage of flagged
records per year in the final merged input data average around
0.05 %–0.06 % throughout the time period, spiking to 0.1 %
around 2010 (Fig. 4a). This may be because the number of

Figure 4. Percentage of records that (a) failed one or more qual-
ity control tests and were flagged and (b) were not used as input
for interpolation due to missing monthly totals and hence missing
anomaly values. Panel (c) shows a map of regions as used for (a)
and (b).

stations in the final merged station network sourced from
GHCN-Daily increase in time in the last decade of the tempo-
ral record while the number of stations sourced from GPCC
decrease. Since GPCC data are assumed to be of higher qual-
ity compared to GHCN-Daily due to the manual quality con-
trol they are subjected to, the flag rate increases with time as
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well due to the higher percentage of GHCN-Daily stations in
the last decade of the final merged station network. In gen-
eral we also see a trend of increasing missing months with
time in all regions (Fig. 4b). A month is marked as miss-
ing if it contains fewer than 70 % of the possible number
of daily data records. We chose a threshold of 70 % as it
was used by GPCC for creating their daily gridded products
(Schamm et al., 2014). Haylock et al. (2008) also use a sim-
ilar threshold of 80 %. As a result the percentage of miss-
ing months is also an indicator of the completeness of the
daily data records. The spike in missing month percentage in
South Asia is because there are no Indian stations available
after 1970.

2.3 Merger of GHCN-daily, GPCC and other smaller
data archives

Once the station data from various sources were quality con-
trolled individually they were merged with each other in mul-
tiple steps. First, the manually and automatically quality-
controlled data in GPCC’s database were merged with ASCII
data files for various countries that at the time of the anal-
ysis were not integrated into the GPCC database, to cre-
ate a combined archive of quality-controlled GPCC stations.
This GPCC archive was then merged with the GHCN-Daily
archive and subsequently the Argentinian and Russian data.

For consistent comparison GPCC shifts data for certain
countries so the daily amount always represents the day clos-
est to 07:00 LT on the day of the timestamp to 07:00 LT
the next day, local time. For example, if the source in situ
data timestamp represents the day from 09:00 LT the pre-
vious day to 09:00 LT on the day of the source timestamp,
then the resulting GPCC timestamps are shifted a day back
compared to the source timestamps. This results in clima-
tologically consistent timestamps. In our case, while merg-
ing the GHCN data, we shifted the GHCN data timestamps
identically to the way GPCC shifted their timestamps, for
all countries whose timestamps were shifted by GPCC. The
countries for which the data are shifted a day back (e.g. data
from 2 January are saved as 1 January) are listed in the Ap-
pendix. So far no countries’ data have been shifted forward.
This data shifting is important to keep in mind when compar-
ing REGEN with regional datasets. For example when com-
paring REGEN with the precipitation from the Australian
Water Availability Project regional dataset (AWAP; Jones
et al., 2009) we shifted AWAP a day backward. This may
also result in inconsistent comparisons between REGEN and
satellite datasets which represent 00:00 UTC on the day of
the timestamp to 00:00 UTC the next day, and also incon-
sistent comparisons across political borders where the time
zone changes. Figure 7b highlights this timestamp shifting
by plotting the unshifted precipitation amount from AWAP
averaged across Australia during Cyclone Yasi as a dashed
line, and the shifted AWAP and REGEN estimates as solid
lines. Note that some countries maintain a mix of manually

monitored and automated weather stations which may rep-
resent precipitation over differing 24 h windows that may
not be suitable for being shifted identically. For example,
around 10 % of observations in the US and around 30 sta-
tions in the Netherlands are midnight observations, i.e. ob-
servations over the 24 h period from midnight to midnight
UTC, which are assigned to the day on which the observ-
ing period ends. Although these observations have not been
manually adjusted in this version of REGEN, they will be
taken care of in the next iteration. Globally more countries
may exist whose gauge observations may represent a mix of
reporting times (due to the use of automatic weather stations
for example); however, without proper metadata about these
reporting times it is not possible for us to adjust their times-
tamp accordingly.

The merging algorithm used is described below. Two sta-
tions were considered identical if either of the following con-
ditions were fulfilled:

1. The latitude and longitudes matched to three deci-
mal places, and their elevation (to the nearest integer,
if non-missing) and World Meteorological Organisa-
tion (WMO) station IDs either match or are missing.
Alternatively the stations were also considered a match
if the WMO IDs were non-missing and matched and the
latitude and longitude matched to one decimal place.

2. If the coordinates were within 1◦ of each other,
WMO IDs either matched or were missing, the corre-
lation between the time series that overlap was greater
than 0.99 and the overlapping time series themselves
had at least 365 daily data records with a minimum of
10 d with precipitation greater than 1 mm. A search ra-
dius of 1◦ was necessary to allow for many stations to be
compared with each other in order to account for possi-
ble inaccuracies in station metadata (coordinates).

Note that the above algorithm can result in false matches
as nearby stations can be highly correlated; however, this will
mainly be an issue in highly dense networks such as US. For
the future version, a more quantitative measure of similar-
ity between station time series will be used. Also note that
WMO station IDs do not change after a station is relocated
to a site in the vicinity, which can result in two stations in dif-
ferent locations being merged together according to our crite-
ria. On occasions where precipitation amount from a station
was different between multiple sources, we prioritised data
from higher-quality sources and accepted values from these
sources. The data qualities and hence priorities in descend-
ing order (highest quality first) are GPCC database, GPCC
ASCII data files, Other data and GHCN-Daily data. This way
if data from a higher-quality source were missing, they were
replaced with data from a matching station from a lower-
quality source but not vice versa. Note that this approach may
induce inhomogeneities in the raw station data.
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2.4 Interpolation method

Station data were interpolated using ordinary block krig-
ing, exactly as in the method used by GPCC’s Full Data
Daily V1 (GPCC-FDD1; Schamm et al., 2015) product. Or-
dinary block kriging is a stochastic interpolation method
which means it accounts for the statistical structure of pre-
cipitation in terms of the spatial autocorrelation function.
The autocorrelation function models the statistical relation-
ship between the Euclidean distances between the observa-
tions and their correlation. The interpolation method calcu-
lates a weighted average of the nearest station values based
on their distance to the grid point and the autocorrelation
function. This interpolation method was chosen by Schamm
et al. (2014) after a comparison with various different meth-
ods. It produces area-average precipitation estimates implic-
itly by estimating the interpolated field at various points in-
side the grid box and then calculating their weighted sum.
This results in estimates directly comparable to other forms
of data that produce area-average estimates such as satellite
products or climate models. More details on the interpola-
tion method, including the autocorrelation function and its
parameters, equations to calculate kriging estimates and their
numerical implementation, are described in Schamm et al.
(2014) and Rubel (1996).

We interpolated ratios of the daily precipitation to the
total monthly precipitation. If both the daily records and
monthly totals were zero, the ratio was set to zero as well
to ensure consistency with monthly datasets. The monthly
totals for calculating daily ratios in the station time series
were obtained by summing the daily station data as well. A
month was considered complete if it had at least 70 % of
non-missing days. The absolute values were retrieved post-
interpolation by superimposing the interpolated ratios on the
GPCC Full Data Monthly V2018 product (Ziese et al., 2018).
This dataset was chosen because it is a well established
dataset recommended for historical precipitation, global wa-
ter cycle and trend analysis (Becker et al., 2013; Schneider
et al., 2014, 2017). Furthermore, GPCC-FDD1 also calcu-
lates ratios using an older version of this dataset (GPCC Full
Data Monthly V7, Schneider et al., 2015; the newer version
stops in 2016 whereas the older version stops in 2013) and it
was readily available on the GPCC High Performance Com-
puter (HPC) where the interpolation was performed. This
approach is commonly known as climatology-aided interpo-
lation (CAI) and has two advantages. Firstly CAI reduces
the influence of elevation and other variables (Hofstra et al.,
2008) which allows us to interpolate with only latitude and
longitude as input variables. Secondly, because monthly grid-
ded datasets are often based on much more reliable and stable
station networks, especially in areas with problematic daily
station coverage, the final absolute values may be more reli-
able in these regions. A disadvantage of interpolating anoma-
lies was that even if a daily record existed, it was not used
for interpolation if the monthly total was missing because of

the completeness criteria. Finally, since we use GPCC Full
Data Monthly V2018 to retrieve daily absolute precipitation
values, our analysis is also limited to the temporal extent of
this monthly dataset, which is currently up to the year 2016
(a previous version of REGEN, Version 1.0, used GPCC Full
Data Monthly V7 and hence stops in 2013). The interpolation
parameters and auto-correlation function were also identical
to the GPCC-FDD1 product and are described in Schamm
et al. (2014). The interpolation scheme uses the nearest 4 to
10 stations for interpolation (the numbers were chosen to
have similar settings as the modified SPHEREMAP scheme
utilised for the monthly analysis) and stations within 1 km
are averaged to remove station duplicates as well as reduce
the impact of such nearby stations on the estimate. For com-
plete coverage, however, the search radius is increased until
the minimum station requirement is met. This means that for
these stations in data-sparse regions, the search radius can be
much bigger than the decorrelation length scale of 347 km
which is reflected in the kriging error (see below). The decor-
relation length scale is calculated from the autocorrelation
function and is indicative of the extent of a station’s influ-
ence.

Besides the interpolated fields, three other fields charac-
terising the underlying data or uncertainty are provided with
the dataset. These are as follows:

1. Kriging error. This is not an absolute error but rather can
be interpreted as percentage of variance (Rubel, 1996).
It is a result of solving the kriging equations and is de-
pendent on the density of the observations and size of
the grid (Schamm et al., 2014).

2. Yamamoto standard deviation. This can be interpreted
as an absolute error as it is the variance between the
estimate and the observations used in interpolation,
weighted by the kriging weights (Yamamoto, 2000).

3. The field of number of stations inside each grid cell Note
that these are the actual number of observations inside
a grid box, and that this is not the number of stations
used for interpolation of that grid cell estimate as sta-
tions outside the grid cell may be used for interpolation
in some cases where density is low.

The 1950–2016 average kriging error (KE) and coefficient
of variation (CoV), and the data quality mask based on KE
and CoV are shown for REGEN and REGEN40YR in Fig. 5.
The CoV, defined as the ratio of the Yamamoto standard devi-
ation and the precipitation estimate, is a normalised measure
of the variance at each grid cell. The kriging error is largest in
regions with a low station density such as Greenland, Africa
and South America and is larger for REGEN40YR compared
to REGEN as expected (Fig. 5a and b). The coefficient of
variation, however, is comparable between REGEN and RE-
GEN40YR. The largest CoV values (maximum of 2.33) are
once again seen in Africa, South America, Greenland and

Hydrol. Earth Syst. Sci., 24, 919–943, 2020 www.hydrol-earth-syst-sci.net/24/919/2020/



S. Contractor et al.: Rainfall estimates on a gridded network (REGEN) 927

Figure 5. Kriging error (KE) (a, b) and coefficient of variation (CoV) (c, d) defined by the ratio of the Yamamoto standard deviation
(Yamamoto, 2000) averaged over 1950–2016 and the daily precipitation averaged over 1950–2016, and masks based on the KE and CoV (e, f)
based on REGEN (a, c, e) and REGEN40YR (b, d, f) data. SD: standard deviation.

Southeast Asia (Fig. 5c and d). This means that the variance
between the grid cell estimate and the observations used for
interpolation is more than twice as large as the average pre-
cipitation for these grids. Grids with CoV greater than 1.9
make up less than 0.05 % (22 all together) of the grid cells,
with the mode of CoV being around 1.25. The resulting data
quality mask based on kriging error and coefficient of vari-
ation for REGEN40YR has a smaller global land coverage,
with particularly sparse coverage in Africa, South America
and Asia in both version of the dataset (Fig. 5e and f).

As mentioned earlier, we interpolated two different sets
of underlying station data to create two related datasets. The
first interpolates all available station data while the second
interpolates only the long-term data defined by stations with
at least 40 complete years of data, where a year was consid-
ered complete if all 12 months were non-missing, i.e. each
month had at least 70 % non-missing days. The All station
dataset (REGEN) is useful for those users who do not have
access to a regional precipitation product based on a high
station density and would like an approximate estimate of
precipitation as well as for users interested in the best esti-
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mate (based on as many stations as possible) of precipita-
tion amounts at each time step, accepting that this may re-
sult in a decrease in temporal homogeneity. It is also useful
for users seeking more complete fields of precipitation over
global land areas and less interested in the uncertainties in-
troduced due to station network variability. REGEN40YR is
useful for users conducting a climate-scale analysis of pre-
cipitation such as looking at changes in various precipitation
indices over several decades, since the use of long-term sta-
tions minimises artificial variability of grid cell values due
to network variations. Users must use a dataset (REGEN or
REGEN40YR) that is suitable to their needs in conjunction
with a quality mask (described below).

We provide a quality mask for both datasets where the
masked grids are of lower quality. The masks were prepared
based on the kriging error and coefficient of variation. Fig-
ure 5e and f shows the data quality masks for the two RE-
GEN datasets. A grid cell was left unmasked if it either con-
tained at least 60 % of the days in every decade from 1950
to 2016 (7 in total) with at least one station, or both the grid
cell coefficient of variation and kriging error were under the
95th percentile threshold of the 1950–2016 average coeffi-
cient of variation and 1950–2016 average kriging error re-
spectively. For ease of use we provide a single mask for the
entire data period; however, we recognise that the coefficient
of variation, kriging error and number of stations per grid
vary over time, meaning a different mask could be calculated
for each day. Such a mask would keep all grid cells with at
least one station in addition to all grid cells with the coeffi-
cient of variation and kriging error within the 95th percentile
of all the grids on the day. A possible recommended use case
for the unmasked (high-quality) grids of REGEN would be
the evaluation of or comparison with another dataset (such as
a satellite product) or climate model output.

3 Results and evaluation

In this section we evaluate REGEN and REGEN40YR with
existing monthly and daily precipitation datasets by showing
comparisons of maps and time series.

3.1 Comparison with global gridded datasets of
monthly precipitation

Traditionally, global trends in historical precipitation are
analysed with monthly datasets since no other suitable long-
term daily datasets existed (e.g. Hartmann et al., 2013).
Here we reproduce the trend comparison from Hartmann
et al. (2013) while including REGEN. Annual precipitation
anomalies are compared in Fig. 6 between REGEN, RE-
GEN40YR, GPCC Full Data Monthly Version 7 (GPCC;
Schneider et al., 2015), CRU TS v4.01 (CRU; Mitchell
and Jones, 2005) and GHCN Monthly Version 2 dataset
(GHCN; Peterson and Vose, 1997). Anomalies were calcu-

lated by subtracting the average of total annual precipita-
tion from 1950 to 2010 from the total annual precipitation
for each dataset respectively. The variability in annual pre-
cipitation totals between REGEN and the other datasets is
very similar, especially when compared to GPCC-FDD1 and
CRU. GHCN has higher variability in many years compared
to the other datasets including REGEN and REGEN 40YR.

3.2 Comparison with regional gridded datasets of daily
precipitation

Regional gridded datasets of daily precipitation are often cre-
ated by local meteorological organisations and as such are
often based on a much denser station network than global
datasets (compare for e.g. Herrera et al., 2012 and Haylock
et al., 2008) and an interpolation method optimised for the lo-
cal regions. Furthermore, the local organisations also have a
much better understanding of the station metadata. The result
is a dataset with long temporal records ideal for analysing in-
dividual events and precipitation extremes. REGEN’s skill in
capturing individual significant precipitation events is high-
lighted by a comparison of time series of daily totals from
various events between REGEN, REGEN40YR and other
commonly used regional datasets available for Europe, the
USA, Australia and Asia (Fig. 7). There is good agreement
between the daily time series from REGEN, REGEN40YR,
and both 0.25 and 1◦ (regridded from 0.25◦version using
CDO remapcon2) versions of E-Obs Version 16 (Haylock
et al., 2008) (note that E-Obs also uses CAI with global krig-
ing to interpolate the daily anomalies) for the events of the
Great Flood of 1968 in southeast England (Jackson, 1977)
(Fig. 7a). Precipitation shown is spatially averaged over Ire-
land, southern England, northern France, Belgium and the
Netherlands with the events occurring in mid-September.
In Australia, the precipitation events around the landfall of
Cyclone Yasi in 2011 are compared between REGEN, RE-
GEN40YR and the AWAP (Jones et al., 2009) dataset, which
is the most commonly used dataset of daily precipitation.
Since the in situ data for Australia were shifted a day back
during the production of REGEN, the AWAP daily averages
were also shifted a day backward for this comparison and the
agreement is high between the three datasets. Similarly, daily
precipitation time series averaged over the Philippines dur-
ing the Tropical Storm Thelma in 1991 are shown in Fig. 7c.
In this case we compare REGEN and REGEN40YR against
APHRODITE (Yatagai et al., 2012), which is the longest-
running freely available dataset of daily precipitation in Asia
at the moment, and SA-Obs V1 (van den Besselaar et al.,
2017). REGEN and especially REGEN40YR contain a lot
fewer stations compared to APHRODITE and SA-Obs in
this region (Fig. 7c), which results in much larger differ-
ences in estimates between the datasets (Fig. 7a and b). RE-
GEN captures the daily variability in APHRODITE well on
most days; however, the long-term version (REGEN40YR)
with a lot fewer stations (due to the strict completeness crite-
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Figure 6. Comparison of annual precipitation anomaly time series with monthly datasets. Anomalies were calculated relative to the average
of daily precipitation totals over the entire time period (1950–2016) for each dataset.

ria) exhibits larger differences, substantially overestimating
compared to APHRODITE on 1 and 9 November. On the
other hand, REGEN40YR captures more of the variability
of SA-Obs compared to REGEN, especially from 3 Novem-
ber onward. Interestingly, the spike on 27 October is present
in APHRODITE, REGEN and REGEN40YR but not in SA-
Obs and the spike on 8 November is present in SA-Obs, RE-
GEN and REGEN40YR but not in APHRODITE. Finally,
based on a comparison of daily rainfall rates during Tropi-
cal Storm Amelia, which made landfall in southern United
States, there is also good agreement between REGEN, RE-
GEN40YR and CPC CONUS (Chen and Xie, 2008; Chen
et al., 2008; Xie et al., 2007) (Fig. 7d).

As a more detailed comparison, we calculated the differ-
ence in daily estimates between REGEN and the five re-
gional datasets mentioned above (CPC CONUS, E-Obs V16,
AWAP, APHRODITE and SA-Obs). The five regional
datasets were all regridded to the same 1◦ grid as REGEN
and daily differences were calculated for each corresponding
grid over the respective temporal periods of each regional
dataset (CPC CONUS – 1950–2006, E-Obs V16 – 1950–
2016, AWAP – 1950–2015, APHRODITE – 1950–2007, SA-
Obs V1 – 1981–2014). Temporal correlations between RE-
GEN and the respective regional datasets were also calcu-
lated at each grid. The mean difference between REGEN and
CPC CONUS is positive in eastern United States and nega-
tive in the west (Fig. 8a), the standard deviation (SD) of the
daily difference is high in coastal areas (Fig. 8b), and the tem-
poral correlation is high everywhere (Fig. 8c). The mean dif-
ference between REGEN and E-Obs V16 is positive in most
regions across the E-Obs domain (Fig. 8d), the SD of the dif-
ference is higher in the south and in Iceland compared to the
northern parts of the E-Obs domain (Fig. 8e), and the tempo-
ral correlations are higher in regions of high station density

(such as central Europe, the UK and Scandinavia) compared
to low station density regions (such as northern Africa and
Turkey) (Fig. 8f). The mean difference between REGEN and
AWAP is positive in northern and central Australia and neg-
ative elsewhere (Fig. 8g), the SD of the difference is high in
the northern and eastern coastal areas of Australia (Fig. 8h),
and the temporal correlation is high everywhere except for
the low station density regions of central Australia (Fig. 8i).
Note that similar to Fig. 7b the AWAP daily data had to be
shifted a day backward once again for a more suitable com-
parison. The mean of the daily difference between REGEN
and APHRODITE is positive in most regions, and both the
mean and SD of difference show higher values on the west
coast of the Indian Peninsula, the maritime continent and the
high-elevation Himalayan regions (Fig. 8j and k). The tempo-
ral correlation between REGEN and APHRODITE is high in
continental Asia and low in the maritime continent (Fig. 8l).
Finally, the mean difference between REGEN and SA-Obs is
positive in most regions of the SA-Obs domain, with larger
values of both the mean and SD of the difference in the
maritime continent. Conversely, the temporal correlation be-
tween REGEN and SA-Obs is high in northern Australia and
low in the maritime continent. High differences between RE-
GEN and all regional datasets are observed in coastal areas.
Note that it is possible that this is an artefact of the regridding
of the regional datasets to a 1◦ resolution.

A comparison of the number of stations interpolated
by each of the five regional datasets mentioned above
(APHRODITE, SA-Obs V1, E-Obs V16, CPC CONUS and
AWAP) and the corresponding stations interpolated by RE-
GEN and REGEN40YR in the respective regions of each
datasets is shown in Table 1. In some cases, due to a lack
of available information, the daily maximum number of sta-
tions has been listed as opposed to the total number of sta-
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Figure 7. Daily time series averaged over spatial regions of significant rainfall events. (a) Time series of daily rainfall during the great flood
of 1968 over southeast England. (b) Time series of daily rainfall during Cyclone Yasi in northeast Australia in 2011. (c) Time series of daily
rainfall during typhoon Thelma in Philippines in 1991. (d) Time series of daily rainfall during Tropical Storm Amelia in the USA in 1978.

tions for the entire time periods. In these cases, we also
provide the daily maximum number of stations interpolated
by REGEN and REGEN40YR. REGEN and REGEN40YR
interpolate fewer stations compared to APHRODITE and
SA-Obs. This is particularly striking in Southeast Asia,
where REGEN40YR interpolates only 64 stations compared
to 7956 interpolated by SA-Obs. On the other hand RE-
GEN interpolates more stations compared to E-Obs and CPC
CONUS. Note that some of these stations, especially in the
US, may be duplicates missed by our merging algorithm. Fi-
nally, there is little difference in the station network interpo-
lated by REGEN and AWAP.

3.3 Case study over sub-Saharan Africa

Based on the maps of kriging error (Fig. 5a and b) the most
data-sparse regions of REGEN are Africa, South America,
Greenland and northern Russia. Despite the sparsity of data,
REGEN can still be useful to get estimates of daily rain-
fall in some parts of these regions. We use the country of
Benin in sub-Saharan Africa as an example. Benin has a

tropical climate receiving the majority of rainfall around the
summer months of June–August (JJA). In the summer of
2008 Benin experienced catastrophic flooding events which
displaced around 150 000 people (WHO, 2010). The flood-
ing started with heavy rainfall in the last week of July (IRIN,
2008). The time series of daily rainfall from 1950 to 2013
highlights 2008 as the year with the third highest rainfall on
record based on REGEN (Fig. 9a), with the highest being
in 1957. On comparison of the daily rainfall time series be-
tween 1957 and 2008 (Fig. 9b), the anomalous rainfall in late
June and late July is apparent, even compared to 1957. This
highlights REGEN’s effectiveness in capturing the daily rain-
fall even in some parts of sub-Saharan Africa. Note that data
from the region of Benin are of higher quality compared to
surrounding regions as they are not masked in the data qual-
ity mask (Fig. 5e).
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Figure 8. Mean (a, d, g, j, m) and standard deviation (b, e, h, k, n) of the difference in daily values (mm d−1), and temporal correlation (c, f,
i, l, o) between REGEN and CPC CONUS (a–c), REGEN and E-Obs V16 (d–f), REGEN and AWAP (g–i), REGEN and APHRODITE (j–l),
and REGEN and SA-Obs V1 (m–o) over the respective periods of each regional dataset.
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Table 1. Total number of stations interpolated by five regional datasets and the corresponding number of stations in each region interpolated
by REGEN and REGEN40YR datasets over the entire time period of each respective regional dataset (CPC CONUS – 1950–2006, E-Obs V16
– 1950–2016, AWAP – 1950–2015, APHRODITE – 1950–2007, SA-Obs V1 – 1981–2014).

Regional dataset Regional dataset REGEN stations REGEN40YR (long term)
name stations in region stations in region

APHRODITE Daily max 8000+ 8551 (daily max 4985) 1539 (daily max 1743)
SA-Obs V1.0 7956 2527 64
E-Obs V16 17 468 28 338 11 261
CPC CONUS ∼ 28500 42 229 3940
AWAP Daily max ∼ 7500 12 993 (daily max 7509) Daily max of 3909

Figure 9. Time series of daily precipitation from REGEN averaged over Benin in western Africa. Panel (a) shows the entire time series
from 1950 to 2016 with the years containing the days with the highest three daily rainfall rates (1957, 1963 and 2008) shown in a darker
shade. Panel (b) shows a comparison of the time series of daily rainfall between 1957 (year containing the day with the record highest rainfall
based on REGEN) and 2008 (year during which the 2008 Benin floods occurred). Benin was chosen because of its good coverage of stations.

3.4 Comparison with existing global datasets of daily
precipitation

Finally, in this section the only other existing global gridded
gauge-based datasets of daily precipitation are compared.
The temporally averaged annual total, annual maximum pre-
cipitation, trends in annual total and trends in annual max-
ima are compared against NOAA Climate Prediction Cen-
ter’s (CPC) Unified Gauge-Based Analysis of Daily Precip-
itation (CPC-Global) (Chen and Xie, 2008; Xie et al., 2007;
Chen et al., 2008) and GPCC Full Data Daily V1 (GPCC-
FDD1) (Fig. 10). For comparability CPC-Global, whose na-
tive resolution is 0.5◦ was regridded to 1◦ to match the
GPCC-FDD1 and REGEN. The temporal coverage of CPC-
Global and GPCC-FDD1 is 1979–2017 and 1988–2013 re-
spectively. The temporal averaging and comparison was
therefore done over 1988–2013, which is the longest com-
mon period between the three datasets. As expected REGEN
is more similar to GPCC-FDD1 and REGEN40YR compared
to CPC-Global for both the means and trends of both in-
dices. This is because REGEN and GPCC-FDD1 use the
same interpolation method and for the most part even the
same underlying data. The largest differences between the
three datasets arise in data-sparse regions in the high lati-

tudes, Africa, Southeast Asia and the high-altitude regions
in western South America. The spatial variability of the dif-
ferences in annual total and annual maxima trends is higher
compared to the spatial variability of differences in aver-
ages of the annual totals and annual maxima. Due to the
lack of long-term stations in Saharan Africa, differences in
all four indices between REGEN and the long-term-station-
based REGEN40YR are larger compared to differences be-
tween REGEN and GPCC-FDD1 in northern Africa. Herold
et al. (2016) showed CPC-Global produces lower annual to-
tals compared to an ensemble of observational datasets in-
cluding GPCC-FDD1, satellite products and reanalyses. This
is consistent with our results since the difference in annual
totals between REGEN and CPC-Global are positive in a
majority of global land areas with the exception of northern
North America and northern Africa.

Temporal and spatial correlations between REGEN and
GPCC-FDD1 (Fig. 12a and b) are also higher compared
to temporal and spatial correlations between REGEN and
CPC-Global (Fig. 12c and d). Correlations between RE-
GEN and CPC may be lower in parts where the underlying
stations were shifted a day backward (see Appendix). In-
deed, based on correlations between REGEN lagged +1 d
and CPC (Fig. A1), the correlations are higher compared
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Figure 10. Percentage difference in averaged total annual precipitation (c, e, g) and averaged maximum annual precipitation (d, f, h) between
REGEN and GPCC (c, d), REGEN and CPC (e, f), and REGEN and REGEN40YR (g, h) data. The first row shows the absolute values of
total annual precipitation (a) and annual maxima (b) averaged over 1988–2013 (the longest common time period between the three datasets).
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Figure 11. Percentage difference in total annual precipitation trends (c, e, g), and annual maximum precipitation trends (d, f, h) between
REGEN and GPCC (c, d), REGEN and CPC (e, f), and REGEN and REGEN40YR (g, h) data. The first column shows the absolute values
of total annual precipitation trends (a) and annual maximum precipitation trends (b) averaged over 1988–2013 (the longest common time
period between the three datasets).
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Figure 12. Spatial (field) correlation at each daily time step (a, c, e) and temporal correlation between time series at each grid cell (b, d
and, f) between REGEN and GPCC (a, b), REGEN and CPC (c, d), and REGEN and REGEN40YR long-term (e, f) data. Comparisons
are over the entire common temporal period between each dataset pair (1988–2013 for REGEN vs. GPCC-FDD1, 1979–2016 for REGEN
vs. CPC and 1950–2016 for REGEN vs. REGEN40YR).

to Fig. 12d in and around the countries where data were
shifted a day back (e.g. Vietnam, Brazil, Uruguay, Peru, Suri-
name, the Netherlands, Norway, Ukraine and Turkey). Cor-
relations do not change compared to Fig. 12d in all regions
where REGEN raw station data are not shifted. The spa-
tial and temporal correlation between REGEN and GPCC-
FDD1 is even higher than the correlation between REGEN
and REGEN40YR (Fig. 12e and f) because REGEN’s sta-
tion network is more similar to GPCC-FDD1 than RE-
GEN40YR. The areas with poor temporal correlation be-
tween REGEN and REGEN40YR correspond to areas with
low station density such as the high latitudes, Africa and
South America. Compared to the field correlation between
REGEN and GPCC-FDD1, the correlation between REGEN

and REGEN40YR is also more variable. This may be be-
cause the lower station density results in an increase in daily
variability in interpolated fields. The drop in field correla-
tion between REGEN and GPCC-FDD1 around 2010 corre-
sponds to the higher percentage of GHCN stations in the last
few years (Fig. 1b). There is also a decline in field correla-
tion over time between REGEN and REGEN40YR, which
may be related to the decline in the number of long-term sta-
tions over time. The temporal correlation between REGEN
and CPC-Global is highest in the USA, Australia, East Asia
and a small part of Europe. These regions all correspond to
regions with good station density throughout the time period.
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4 Summary, limitations and best practice
recommendations for users

We present a new gauge-based dataset of gridded daily
precipitation with a grid resolution of 1◦× 1◦, global land
coverage and temporal coverage from 1950 to 2013 called
REGEN. REGEN was produced by interpolating quality-
controlled in situ daily rainfall time series data using ordi-
nary block kriging. The interpolation method for REGEN is
identical to GPCC-FDD1 (another gridded dataset of daily
precipitation from 1988–2016). REGEN also uses all the in
situ daily data used by GPCC-FDD1 but expands on this raw
data by combining it with GHCN-Daily and raw data from
other sources. This resulted in an extended in situ daily pre-
cipitation network with coverage back to 1950. The raw data
were subjected to comprehensive automated control proce-
dures identical to the one used by the GHCN-Daily dataset
and all suspicious data were removed, interpolating only the
high-quality data. We used climatologically aided interpola-
tion (CAI) which involved interpolating ratios of daily totals
and monthly totals and retrieving absolute values by super-
imposing gridded monthly precipitation fields on the inter-
polated anomalies. This approach results in more reliable es-
timates in regions with sparse daily in situ data network and
a comparatively denser monthly in situ data network. CAI
also reduces the influence of variables such as elevation, dis-
tance to the coast etc., which allows us to interpolate using
only the latitude and longitude as input variables. The grid-
ded monthly fields used to retrieve the absolute daily precipi-
tation rates came from GPCC Full Data Monthly V7 dataset.

REGEN is currently the longest dataset of daily precipi-
tation based on gauge-only records with global land cover-
age, making it ideal for any global analysis at climatolog-
ical scales. We therefore hope it will contribute to the ad-
vancement of hydrological science and practice by enabling
a number of studies aiming to understand changes and vari-
ability in several aspects of daily precipitation distributions,
including precipitation extremes, and measures of hydrolog-
ical intensity. So far the only datasets that allowed global
climatological-scale analyses of precipitation were monthly
datasets or gridded ETCCDI indices; however, the monthly
datasets tend to average out the extremes, in turn losing their
usefulness when it comes to high-impact phenomena related
to intense rainfall at shorter timescales. REGEN due to its
daily temporal resolution fills this data gap. REGEN, like
GPCC-FDD1, also provides various uncertainties related to
the daily gridded fields. These include the Yamamoto stan-
dard deviation, which is indicative of the proximity of the
estimated fields to the raw station values, the kriging error
which is indicative of the density of stations inside the grid
cell and finally also the exact number of stations inside each
grid cell. Based on these measures a quality mask for RE-
GEN that combines all three pieces of uncertainty informa-
tion indicating the high-quality grid cells (with low uncer-
tainties) is also presented. Users of REGEN should use the

quality mask in all cases except when spatial completeness
is of utmost importance. Alongside REGEN (which interpo-
lates all station data) another related dataset that minimises
artefacts due to station network variability by interpolating
only the long-term stations (i.e. stations with at least 40 years
of complete data) is also produced. Both datasets include be-
spoke data quality masks. As a result, although the station
density is lower in the long-term version, users can use its
quality mask to restrict their analysis to higher-quality areas.
For analyses sensitive to the station network variability the
long-term station version with the high-quality mask would
be the most suitable. Note, however, due to the lower station
density, the long-term station version may be less suitable for
investigating individual events or short time series. The All
station version on the other hand would be more suitable for
analysis where a complete global coverage is important but
temporal homogeneity is of lower priority. In any analysis it
is recommended to use the data quality mask; however, in
regions where no other daily datasets are available (such as
parts of Africa), REGEN may provide a suitable rough esti-
mate of precipitation even in lower-quality grids.

REGEN has been compared with global monthly and daily
as well as regional daily gridded datasets of precipitation.
The annual precipitation anomalies have been shown to re-
semble those from the other monthly datasets, and the spa-
tial fields of annual totals and maxima as well as their trends
more closely resemble GPCC-FDD1 than CPC. Even the
daily time series of individual events of significant precip-
itation resemble the respective regional datasets closely in
Europe, Australia and the USA. The larger inconsistencies
between the long-term REGEN data and APHRODITE in
Asia are indicative of the lower station densities in REGEN
in this region. Also note that there is almost no raw in situ
daily data in mainland China in 1950. As such any analy-
sis focusing on China using this dataset should not go fur-
ther back than 1951. Finally, note that despite our best efforts
to homogenise station data before interpolating, because the
raw data are sourced ultimately from various countries with
different measurement practices (such as time of measure-
ment, use of units, quality control and homogenisation steps
etc.), inhomogeneities across political borders are possible
(Trewin, 2010).

Rainfall is highly variable and a 1◦ spatial resolution
(roughly 10 000 km2) dataset such as REGEN is unlikely to
contain the information necessary for many typical local-to-
regional rainfall applications. However, we note the actual
rainfall amounts in gridded datasets are subject to large un-
certainties anyway (Herold et al., 2016), whereas estimates
of variability are more robust. We therefore believe REGEN
will prove itself valuable for climatological applications in-
cluding studies of climate variability and long-term changes
in daily precipitation intensity and extremes, as it provides
long temporal coverage of quasi-global daily precipitation
observations. The biggest strength of REGEN is the long
temporal coverage of quasi-global daily precipitation obser-
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Figure 13. Total annual precipitation (a, e), maximum annual precipitation (b, f) and respective trends (PRCPtot; c and g and RX1DAY;
d and h) averaged over 1950 to 2016 based on REGEN data (a–d) and REGEN40YR data that only interpolates stations with at least 40
complete years of data (e–h).
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vations. Regional datasets are often developed by national
meteorological organisations and often have access to sig-
nificantly more data than shared with Global archives such
as GHCN-Daily and GPCC. For example the Spanish Me-
teorological Agency (AEMET) itself manages roughly over
9000 stations (Herrera et al., 2012), which is almost the same
number of stations as those used by E-Obs for the entirety
of Europe (around 12 000 gauges at its maximum). Further-
more, Herrera et al. (2012) only used the high-quality sta-
tions, which accounted for roughly 30 % of total stations
available from AEMET. Often the respective meteorological
organisation also have the resources to more thoroughly and
in some cases even manually quality control the raw data.
As a result, regional datasets (where available) may provide
more accurate precipitation estimates than REGEN.

At the moment REGEN is not an operational product,
meaning the analysis for REGEN was done as a single in-
stance and there are currently no plans to update it regularly,
such as on an annual or biennial basis.

Figure 13 reflects REGEN’s strengths by showing annual
totals and maxima and trends over the high-quality regions
over the entire 67-year record of REGEN. Both the total an-
nual precipitation and annual maxima based on REGEN are
reasonable, with higher totals and maxima in the known wet
regions such as the tropics and lower totals and maxima in the
known dry regions such as Saharan Africa (Fig. 13a and b).
Trends in total precipitation based on REGEN (Fig. 13c) are
also comparable to the trends in total precipitation shown
in the IPCC’s 5th Assessment report (Fig. 2.29, Hartmann
et al., 2013). The total annual precipitation, annual maxima
and respective trends in the two indices based on the long-
term REGEN data (REGEN40YR) (Fig. 13e–h) are also very
similar to REGEN, which suggests that the effects of station
variations appear negligible at this scale (for trends and av-
erages over 1950–2013) for the high-quality grids. The trend
maps shown in Fig. 13 have been masked based on the qual-
ity masks as shown in Fig. 5e and f.

REGEN provides precipitation estimates comparable to
those from the currently most reliable datasets such as
GPCC-FDD1. With a temporal coverage 152 % longer than
that of GPCC-FDD1’s and a similar global land coverage,
REGEN is highly suitable for analysing climate change. We
recognise that observations are not the “truth” but rather
just our best estimates of it. REGEN and its variant RE-
GEN40YR (which minimises station network variability) are
therefore accompanied by various uncertainty estimates as
well as a quality mask, allowing users a firm handle of the
observational uncertainties in their analysis.
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Appendix A: List of countries for which the timestamps
have been shifted a day back

The countries for which the data are shifted a day back
(e.g. data from 2 January are saved as 1 January) are
Angola, Antarctica, Argentina, Australia, Azerbaijan, Ba-
hamas, Bangladesh, Barbados, Benin, Bolivia, Botswana,
Brazil, Bulgaria, Burkina Faso, Cameroon, Chad, Chile,
Costa Rica, Croatia, Denmark/Greenland, Ethiopia, French
Polynesia, Gabon, Georgia, Indonesia, islands in the Indian
Ocean (IOT), Ivory Coast, Japan, Kenya, Libya, Madagas-
car, Malawi, Mali, Marshall Islands, Mauritania, Mozam-
bique, the Netherlands, Niger, Norway, Peru, Senegal, Slove-
nia, Solomon Islands, Sudan, Suriname, Tanzania, Tunisia,
Turkey, Ukraine, Uruguay, Vanuatu, Vietnam, Zambia and
Zimbabwe.

Figure A1. Temporal correlations between REGEN and CPC, similar to Fig. 12d, but this time with CPC shifted a day backwards.

www.hydrol-earth-syst-sci.net/24/919/2020/ Hydrol. Earth Syst. Sci., 24, 919–943, 2020



940 S. Contractor et al.: Rainfall estimates on a gridded network (REGEN)

Data availability. REGEN AllStns V1-2019 (REGEN) and RE-
GEN LongTermStns V1-2019 (REGEN40YR) data have now
been published with unique Digital Object Identifiers (DOIs)
https://doi.org/10.25914/5ca4c380b0d44 (Contractor et al., 2019a)
and https://doi.org/10.25914/5ca4c2c6527d2 (Contractor et al.,
2019b) respectively. Older versions of both datasets, REGEN All-
Stns V1.0 and REGEN LongTermStns V1.0, are also available
(https://doi.org/10.25914/5b9fa55a8298c, Contractor et al., 2019c
and https://doi.org/10.25914/5b9fa67fce5d6, Contractor et al.,
2019d respectively), however, we recommend users use the
newer versions. Both datasets can be acquired in netcdf for-
mat along with netcdfs of the quality masks via the Re-
search Data Australia (RDA) web pages https://researchdata.
ands.org.au/rainfall-estimates-gridded-v1-2019/1408744 (last ac-
cess: 15 January 2020) and https://researchdata.ands.org.au/
rainfall-estimates-gridded-v1-2019/1408742 (last access: 15 Jan-
uary 2020) respectively. The RDA records contain further informa-
tion about the datasets such as the dataset abstract, citation infor-
mation, related organisations, grants, researchers and dataset man-
agers (SC).

Dataset License and Rights. Non-Commercial License: CC-BY-
NC-SA
Creative Commons – Attribution – Non Commercial – No Deriva-
tives 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
Access to this dataset is free, the users are free to download this
dataset and share it with others and adapt it as long as they credit
the dataset owners, provide a link to the license, and if changes were
made, indicate it clearly and distribute their contributions under the
same license as the original, commercial use is not permitted.
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