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Abstract. The calibration of urban drainage models is typ-
ically performed based on a limited number of observed
rainfall-runoff events, which may be selected from a larger
dataset in different ways. In this study, 14 single- and two-
stage strategies for selecting the calibration events were
tested in calibration of a high- and low-resolution Storm Wa-
ter Management Model (SWMM) of a predominantly green
urban area. The two-stage strategies used events with runoff
only from impervious areas to calibrate the associated pa-
rameters, prior to using larger events to calibrate the param-
eters relating to green areas. Even though all 14 strategies
resulted in successful model calibration (Nash—Sutcliffe ef-
ficiency; NSE > 0.5), the difference between the best and
worst strategies reached 0.2 in the NSE, and the calibrated
parameter values notably varied. The various calibration
strategies satisfactorily predicted 7 to 13 out of 19 valida-
tion events. The two-stage strategies reproduced more vali-
dation events poorly (NSE < 0) than the single-stage strate-
gies, but they also reproduced more events well (NSE > 0.5)
and performed better than the single-stage strategies in terms
of total runoff volume and peak flow rates, particularly when
using a low spatial model resolution. The results show that
various strategies for selecting calibration events may lead
in some cases to different results in the validation phase and
that calibrating impervious and green-area parameters in two
separate steps in two-stage strategies may increase the effec-
tiveness of model calibration and validation by reducing the
computational demand in the calibration phase and improv-
ing model performance in the validation phase.

1 Introduction

The calibration of generic urban drainage model codes is
usually required to obtain a model representing an actual site
with sufficient accuracy. In the calibration process, the in-
formation contained in records of relevant variables, such as
rainfall and flow rates at the catchment outlet, is used for
estimating model parameter values that produce results con-
sistent with the data (Mancipe-Munoz et al., 2014). It can be
expected that the best parameter estimates will be obtained
when they are inferred from the largest amount of informa-
tion, i.e. by using all data from a long series of measure-
ments. However, the availability of calibration data may be
limited, and the nature of the calibration process, by trial and
error, requires model iterations for many different parameter
sets, which means that the runtime of the model has to be
kept short and the length of the simulated periods should be
limited. Therefore, calibration may have to be performed on
a limited number of rainfall events from a longer record. As
each of the available events will differ from the others, it can
be expected that the choice of a specific event (or an event
set) will influence the results of calibration (Tscheikner-Gratl
etal., 2016).

Tscheikner-Gratl et al. (2016) studied such influence by
calibrating water level in the outflow pipe of a catchment us-
ing 10 different rain events individually. They found that two
of them could not be reproduced in calibration and the others,
while successful in calibration, could only predict up to six
of the remaining events. When applying the calibrated mod-
els with design storms, they found that the calibrated mod-
els predicted different flooding volumes. In calibration of
combined sewer overflow (CSO) volumes, Kleidorfer et al.
(2009b) compared calibration results obtained for (1) the five
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longest duration events and (2) the five highest peak flow
events, finding that using the longest duration events reduced
the number of measurement sites required for successful cal-
ibration. Schiitze et al. (2002) demonstrated that calibration
based on discrete events saved time compared to calibrating
for a complete time series but also that this introduced addi-
tional uncertainty. Mourad et al. (2005) showed that calibra-
tion of a stormwater quality model was sensitive to (1) which
randomly selected events were used and (2) how many events
were used.

While the above papers helped elucidate some aspects of
the sensitivity of urban drainage model calibration to the cal-
ibration events used, such findings possess some limitations.
Firstly, only a limited number of generally available options
for selecting calibration events has been considered. Sec-
ondly, the modelling focused on traditional urban drainage
systems, in which the generation of runoff is dominated by
impervious surfaces, but the current trend towards green ur-
ban drainage infrastructure creates the need to pay more at-
tention to runoff processes on green areas (Elliott and Trows-
dale, 2007; Fletcher et al., 2013). Thirdly, the possibility of
using different (sets of) events to calibrate different (subsets
of) parameters has not been investigated. One particular ap-
proach that might be useful in urban catchments is that small
rainfall events will generate runoff only from impervious ar-
eas in the catchment and could thus be used to calibrate only
parameters concerning those areas, and events with more
runoff where green areas also contribute could then be used
to calibrate parameters concerning green areas. This two-
stage calibration has not been investigated for urban drainage
models (preliminary findings were published in Broekhuizen
et al., 2019), although split-stage calibration where different
parameters affect different points or properties of the hydro-
graph has been investigated for natural catchments (see e.g.
Fenicia et al., 2007; Gelleszun et al., 2017).

Considering the above findings, the primary objective of
this paper is to advance the knowledge of calibration pro-
cesses for green urban areas by examining different strate-
gies for selecting calibration events and assessing the effects
of such selections on the performance of a calibrated hydro-
dynamic model of a predominantly green urban catchment.
Included in this is a proposal for a practical two-stage cali-
bration strategy where parameters related to impervious and
green areas are calibrated in two separate steps using differ-
ent sets of events.

2 Materials and methods
2.1 Study site and data

The study site is a 10.2 ha catchment in the city of Lulea,
Sweden (see Fig. 1). The catchment area comprises 63 % of
green areas, 12 % of impervious areas connected directly to
the storm sewer system and 25 % of impervious areas drain-
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ing onto adjacent green areas. The green areas include a num-
ber of vegetated swales that are connected to the storm sewer
system at their lowest point.

Precipitation was measured at 1 min intervals with a
Geonor T200B weighing-bucket precipitation gauge located
outside of the study catchment, about 500 and 1000 m from
the nearest and furthest borders of the catchment respectively
(see circles in Fig. 1). The gauge was tested in the field
and confirmed to work well twice a year in 2016 and 2017,
and before 2016 such tests were also performed occasion-
ally. Laboratory and field tests (by others) found this design
of precipitation sensor to be a reliable instrument (Duchon,
2002; Lanza et al., 2010). Records were available for indi-
vidual rain events in 2013-2015 and continuously for 2016
and 2017.

Flow rates in the storm sewer draining the catchment were
measured at 1 min intervals by means of an ISCO 2150 AV
(area velocity) sensor (a combination of an acoustic Doppler
velocimeter and a pressure transducer) installed in the catch-
ment outlet formed by a 400 mm diameter concrete sewer
pipe. This type of sensor was assessed in the laboratory by
Aguilar (2016) and found to have a combined uncertainty
(consisting of bias, precision and benchmark uncertainty)
of £19.0mm for the water depth measurements (the test
range was 10-150mm) and 4-0.0985ms~! for the veloc-
ity measurement (test range 0.1-0.6 ms~!). These tests were
carried out in a 0.46 m wide square channel, so the stage—
discharge relationship was different from the study site de-
scribed herein. It was also reported that the field performance
of this type of sensors can suffer from the presence of too
few (Teledyne ISCO, 2010) or too many particles suspended
in the water (Nord et al., 2014).

While the difficulties in estimating all the uncertainties at
the actual field site prevented a precise determination of the
uncertainties’ magnitude, the general lab tests of the sensors
used confirmed the acceptability of their records for the study
purpose. Finally, it was also confirmed by Dotto et al. (2014)
that errors in the calibration data can be compensated for in
the calibration process.

The available precipitation record was divided into rainfall
events with a minimum inter-event time of no precipitation
of 6h. Events deemed suitable for use in calibration were
selected using the following criteria:

1. a minimum total precipitation of 2mm (Hernebring,
2006);

2. no or small gaps in rain and flow data, i.e. both have to
be available for > 90 % of the event duration;

3. sufficient in-pipe water depths for the flow sensor to
work reliably: > 10mm during at least 50 % of the
event and > 25mm at least once in the event, based
on recommendations from the manufacturer (Teledyne
ISCO, 2010);
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Figure 1. Map of the studied catchment showing elements of the high-resolution rainfall-runoff model (see Sect. 2.2) and the distance of
the catchment to the rain gauge (RG). The diameters of the pipes range from 400 mm for the main trunk where the flow sensor is located to

200 mm for the smaller branches.

4. peak flow > 2L s~1, since relative measurement uncer-
tainties are high below this point;

5. no snowfall or -melt, since these would introduce ad-
ditional processes in the hydrological behaviour and
model of the catchment.

Calibration and validation periods were separated by using
the 19 observed events from 2016 for the validation period
and the 32 events from 2013-2015 and 2017 for the cali-
bration period. In this way, all the calibration strategies (see
Sect. 2.3) were tested (validated) against the same dataset,
and no calibration strategies could benefit from including cal-
ibration events that also appeared in the validation set. The
year 2016 was selected as the validation period for two rea-
sons: it was the year with total precipitation closest to the an-
nual mean, and the measured data records were continuous.
Table 1 contains an overview of all events that were used in
at least one calibration strategy as well as an initial estimate
of the runoff from green areas.

2.2 Runoff model and calibration approach

The US Environmental Protection Agency (EPA) Storm Wa-
ter Management Model (SWMM) was selected, since it is
a commonly used semi-distributed urban drainage model
that allows to route runoff from one subcatchment to an-
other. This routing feature was needed, since it allows for
a high-resolution (HR) model setup in which each subcatch-
ment (146 were used in total) features a single land cover.
The high-resolution input data needed for this approach was
available in the form of GIS data, aerial photographs and
observations from site visits. The advantage of these sin-
gle land-cover subcatchments is that their parameter val-
ues maintain their physical meaning and can be calibrated
(or appropriate values found in the literature) for each land
use or cover. Some spatial characteristics, such as the slope
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and the width of subcatchments, can be estimated more eas-
ily for smaller, uniform subcatchments. This approach has
been used successfully by e.g. Krebs et al. (2014, 2016),
Petrucci and Bonhomme (2014), and Sun et al. (2014).
Within SWMM the Green-Ampt infiltration method was se-
lected, since it can be calibrated with just two parameters
(Rossman, 2016).

Whenever feasible, parameters for different subcatch-
ments were set directly from the available GIS data and site
visits, i.e. the sizes and slopes of all subcatchments and sewer
pipes, as well as the catchment widths of small and discon-
nected roofs. For other subcatchments the catchment width
was calibrated together with the other model parameters. To
reduce the scope of the calibration problem, parameters were
grouped based on land cover, yielding a total of 13 calibra-
tion parameters for the hydrodynamic model. Parameter val-
ues were limited based on values reported in the literature
(see Table 2). To test whether the different calibration strate-
gies showed different sensitivity to the model discretization,
a low-resolution model (LR) setup was also used. Here each
subcatchment was created by aggregating multiple smaller
subcatchments from the high-resolution model. The area and
percentage imperviousness of each aggregated subcatchment
were calculated from its constituent smaller catchments. The
calibration parameters were modified accordingly, as shown
in Table 3, with the total number of calibration parameters
being the same.

The precipitation gauge was situated a few hundred metres
outside of the actual catchment and may have provided a bi-
ased estimate of the catchment rainfall. Therefore, a rainfall
multiplier for each individual rainfall event was included in
the calibration. This approach has been used with satisfactory
results e.g. by Datta and Bolisetti (2016), Fuentes-Andino
et al. (2017), and Vrugt et al. (2008), although it is limited
by assuming a simple multiplicative difference between the
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gauge and catchment-average rainfall, which is not necessar-
ily the case (Del Giudice et al., 2016). Furthermore, rainfall
multipliers do not address the spatial variability of the rain-
fall, but in the absence of multiple rain gauges or other in-
formation about the spatial variability of rainfall in the study
catchment, there were no feasible alternatives in this case.
The rainfall multipliers create a way of adjusting the rainfall
volume in the calibration so that the simulated runoff vol-
ume can better match the observed runoff volume. However,
the multipliers do not allow distinguishing between (1) de-
viations between rainfall at the gauge and the catchment-
averaged rainfall, (2) errors in the rainfall measurement, and
(3) errors in the runoff measurement. A more traditional ap-
proach would be to calibrate the percentage of impervious
areas, but in view of the availability of high-resolution land-
cover information, it was preferred to apply rainfall multipli-
ers instead.

Green surfaces like those in the study area have a long hy-
drological memory for antecedent rainfall, and this had to
be accounted for in the simulations. Neglecting this memory
would increase the risk of green areas allowing unrealisti-
cally high infiltration in some rainfall events. Since SWMM
does not allow for setting the initial values of state variables
directly, such adjustments can be done by choosing an appro-
priate warm-up period for modelling runs. When sufficiently
long warm-up periods are used, this approach offers an ad-
vantage consisting of treating the first rainfall-runoff peak
of an event the same way as any following peaks, i.e. with
initial conditions corresponding to a continuous simulation.
The required length of this warm-up period was estimated
by finding the last time before each rainfall event when the
study area was dry. This was calculated for all rainfall events
using the actual precipitation data and various values of the
maximum depression storage and infiltration rate. The last
antecedent time when the study area was dry was then used
as the starting point of the warm-up period. This lookup pro-
cedure was applied to every event for each iteration in the
calibration process so that all events were treated the same
way as in a continuous simulation.

In the calibration process, the Shuffled Complex
Evolution-University of Arizona algorithm (SCE-UA; Duan
et al., 1994) was used to estimate the optimal values of the
parameters. The algorithm was selected because it is com-
monly used in hydrological studies and allows for parallel
computing. The Python library SPOTPY (Statistical Parame-
ter Optimization Tool) (Houska et al., 2015), which includes
this algorithm, was used to carry out the entire calibration
process.

2.3 Event selection
This paper investigates single- and two-stage calibration
strategies (CS), with each CS using six rainfall events. The

single-stage CSs used the six events with the highest val-
ues for a given event characteristic and calibrated all param-

www.hydrol-earth-syst-sci.net/24/869/2020/
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Table 2. Calibration parameters and their ranges.

873

Parameter Abbreviation ~ Groups Range Reference
Subcatchment width (m) width Asphalt parking lot (AP) 20-200  Physical dimensions of subcatchments
Grass area (GR) 1-200
Swale (SW) 0-5
Subcatchment length (m) Itw Asphalt road (AR)? 0.5-5 Physical dimensions of subcatchments
Manning’s number (-) n Impervious surface (IMP)  0.005-0.015  Krebs et al. (2016); Rossman (2016)
Grass area 0.1-0.5
Swale 0.1-0.5
Pipe 0.010-0.015
Depression storage (mm) s Impervious surface 0-2.5 Krebs et al. (2016); Rossman (2016)
Grass area 0-20
Swale® 0-150 Rujner et al. (2018)¢

Saturated hydraulic conductivity (mmh™ 1y ksat

Grass area®

1-200 Rawls et al. (1983)

Initial moisture deficit (-) imd

Grass area®

0.10-0.35 Rawls et al. (1983)

4 In SWMM, the subcatchment width is an input, but in this group of subcatchments, the length (in the flow direction) showed more similarity among the subcatchments, so it was calibrated
instead of the width. ® Includes vegetation and trees as well. © The maximum value was intentionally set high, since the swales’ outlets are not always located exactly at the lowest points and the
swales can be observed with larger ponds after heavy rain events. d Field experiments on similar swales in the same city. ¢ Used for both grass areas and swales.

Table 3. Calibration parameters and their ranges for the low-resolution model.

Parameter Abbreviation  Groups Range Reference
Subcatchment width (m) width Five individual subcatchments 20-200  Physical dimensions of
subcatchments
Manning’s coefficient (-) n Impervious surface 0.005-0.015  Krebs et al. (2016)
Pervious surface 0.1-0.5 Rossman (2016)
Pipe 0.010-0.015
Depression storage s Impervious surface 0-2.5 Krebsetal. (2016);
Rossman (2016)
Pervious surface 0-20 Kirebs et al. (2016);
Rossman (2016)
Percentage runoff routed from impervious See footnote 2 1-99
to pervious (%)
Saturated hydraulic conductivity (mm h_l) ksat Grass area 1-200  Rawls et al. (1983)
Initial moisture deficit (-) imd Grass area 0.10-0.35 Rawls et al. (1983)

 For two subcatchments the percentage routed was estimated at 0 % and 100 % respectively. A single percentage was calibrated and shared by the three remaining subcatchments.

eters simultaneously. Two-stage calibration strategies cali-
brated first the parameters related to impervious areas, us-
ing a set of three rainfall events, followed by the pervious-
area parameters using another set of three rainfall events.
Since only 12 % of the total catchment surface is impervi-
ous and connected directly to storm sewers, it was assumed
that the events, for which runoff volume was less than 12 %
of rainfall volume, produced runoff only from impervious
areas. Therefore, these events were suitable for calibration
of impervious-area parameters in the first stage of the cal-
ibration process. It is conceivable that there is some con-
tribution of green areas when the percentage runoff is less
than 12 %. In that case the threshold should be set at a lower

www.hydrol-earth-syst-sci.net/24/869/2020/

value, but since the amount of green-area runoff and the ap-
propriate value of the threshold would be highly dependent
on antecedent conditions, this was not included here. Fol-
lowing this step, events with more than 12 % runoff were as-
sumed to also include runoff from green areas and were used
to estimate pervious-area parameters in the second stage of
the calibration. When calibrating the green-area parameters,
the parameters related to impervious areas were kept fixed
at their values from the first stage. This procedure splits the
optimization problem into two smaller problems that have
fewer parameters and shorter run times. The smaller number
of parameters (reduced dimensionality) can ease the search
for optimal parameter sets, while the shorter run time per

Hydrol. Earth Syst. Sci., 24, 869-885, 2020
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iteration allows for a shortening of the total time needed,
increasing the number of iterations used or including more
events in the calibration.

Characteristics related to the rainfall, flow depths and
flow rates were calculated for each event. For the single-
stage calibration strategies, the six highest ranking events
for each characteristic were selected. For the two-stage cali-
bration strategies, the three highest ranking events with less
than 12 % runoff were selected for the first stage and the
three highest ranking events with more than 12 % runoff
were selected for the second stage. Applying the calibrated
rainfall multipliers in the calibration (Sect. 2.2) means that
event properties relating to rainfall and percentage runoff
will change, and the percentage of runoff can change from
< 12% to > 12 % and vice versa. Adjusting which calibra-
tion stage the events are available for in the calibration pro-
cedure (in a manner that is consistent for all events) would
require (1) re-calculating which events should be available in
each stage, (2) estimating in some way rainfall multipliers for
all events, including those not initially selected by any cali-
bration strategy, (3) re-calculating which events are used in
each CS and (4) repeating the calibration for any CS that has
had any of its events changed. Although this might improve
the overall results of the proposed calibration procedure, it
would also increase the complexity and raise several new is-
sues, such as how to obtain a calibrated rainfall multiplier for
the 10 events that were not used in any CS. We considered
this to be beyond the paper’s original scope of examining dif-
ferent strategies for calibration event selection and proposing
a practically useable two-stage calibration procedure.

To avoid making the comparison too large in scope, a lim-
ited number of calibration strategies (eight single-stage and
six two-stage) was selected for use in this study. This selec-
tion was made so that it included a range of different charac-
teristics and avoided multiple CSs with the exact same setup
of events. The names of the CSs (see Table 4) consist of two
or three elements:

— T6 (top 6) for single-stage or T32S (top 3-2 stages) for
two-stage scenarios.

— The relevant event characteristic: precipitation (P), pre-
cipitation intensity (PI), runoff flow rate (Q), flow vol-
ume (QV), flow volume as percentage of rain QV_ppP
or precipitation duration D_prec.

— The duration over which the characteristics were cal-
culated: sum, mean and max refer to the whole event.
Referring to the time interval used to calculate an av-
erage rainfall intensity or flow rate are the values 30
and 60 min (i.e. the highest value found within the event
for a 30 or 60 min moving average). Calculating rainfall
intensities and average flow rates over these windows
rather than the entire event suppresses the effects of e.g.
dry periods within events on such calculations.

Hydrol. Earth Syst. Sci., 24, 869-885, 2020
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Table 4. Calibration results. Bold font indicates the best value in
each column.

High-resolution model ‘ Low-resolution model

NSE VE PFR ‘ NSE VE PFR
N_T6 0.80 —0.07 093 | 0.84 0.03  0.85
T6_P_sum 075 -0.11 096 | 0.75 —-0.07 0.90
T6_PI_mean 0.77 —0.04 090 | 0.77 0.02 0.86
T6_PI_30m 074 —-0.09 095 | 074 —-0.05 095
T6_Q_max 085 —0.03 0.89 | 0.86 0.04 0.86
T6_Q_60m 079 —-0.09 091 | 0.81 0.01 090
T6_QV_ppP 0.68 —0.11 0.89 | 0.65 -0.09  0.94
T6_D_prec 074 —0.10 092 | 081 —0.02 0.86

T32S_P_sum 0.83 0.03 090 | 0.68 0.08 0.74
T32S_PI_mean  0.83 0.03 096 | 0.78 0.05 0.84
T32S_Q_max 0.82 0.06 0.86 | 0.80 0.07 0.78
T32S_Q_60m 0.79 0.04 098 | 0.73 0.02 0.93
T32S_QV_ppP  0.70 0.06 0.85 | 0.67 0.11  0.75
T32S_D_prec 0.76 002 097 | 0.84 0.03 0.85

The calibration strategy N_T6 consists of the six events
that were selected most often in other calibration strategies
with the goal of obtaining a set of events that score highly on
a variety of characteristics.

2.4 Objective functions

The objective function used for the calibrations was the
Nash-Sutcliffe efficiency (NSE):

IS (S — 0)?

NSE=1— 4= —,
n 121(01'_0)2

(1

where O denotes observed values and S denotes simulated
values. The NSE measures the variance of the model errors
(the numerator) as a fraction of the variance of the observa-
tions (the denominator). This fraction is then scaled so that it
extends from negative infinity (i.e. the worst possible fit) via
zero (the score that would be achieved by using the average
of observations) to positive one for a perfect fit. The NSE
is dimensionless, so it allows for comparing runoff events
of different magnitudes. However, when the variance of the
observations is small (e.g. for small runoff events), it can be-
come quite sensitive to small changes in the simulated hy-
drograph. The NSE was calculated for each individual event
and the mean over all events used as the calibration objec-
tive. For a further assessment of the modelled hydrographs,
two metrics related to the peak flow and the hydrograph vol-
ume were used. The peak flow ratio (PFR) was defined as the
ratio of the highest simulated to the highest observed flow
rates, regardless of the times when they occurred.
max.S;

PFR = , 2
maxO;

where values > 1 indicate overestimated simulated peak
flows and values < 1 indicate underestimated simulated peak
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flows. Finally, the relative volume error (VE) considers total
flow volumes throughout the event.

Yo (Si—00)
IS

It is positive when the simulated total flow volume exceeds
the observed one and vice versa. Note that the above formula
is only valid if the observation interval is constant. The peak
flow ratio and volume error were used here since peak flow
rates and storage volumes are often the targets that drainage
systems are designed for.

The quick response of the studied catchment means that
low-flow rates may cover a significant part of the event. Mea-
surements in this range have relatively high uncertainties and
may be considered less relevant than periods with higher
flows. Therefore, it should be avoided that low flows domi-
nate the analysis, which was achieved by including only time
steps with observed flow rates > 1 Ls™! in calculating these
metrics.

VE = A3)

3 Results and discussion
3.1 Calibration performance

The high-resolution model was successfully calibrated for
all calibration strategies, with an event mean NSE for all
events ranging from 0.68 to 0.85 (see Table 4). The low-
est event mean NSE corresponded to the two CSs based
on the percentage runoff (T6_QV_ppP and T32S_QV_ppP).
This result can be attributed to one event (see Fig. 2b), for
which both CSs resulted in simulated hydrographs with a
low NSE, in spite of a visually good fit of the observed
data. In this case, a low NSE resulted from a small timing
error and from low-flow rates in the event, which led to a
low variance of the observations and, therefore, an NSE that
is more sensitive to small simulation errors. For the two-
stage calibration strategies, the individual stages also pro-
duced successful calibrations (stage 1 event mean NSE of
0.70-0.87; stage 2 event mean NSE of 0.78-0.87), except for
the second stage in T32S_QV_ppP for the reasons explained
above. The NSE values for the individual calibration events
in the different calibration strategies are similar to those re-
ported by Krebs et al. (2013). Using the HR model, there
were four event characteristics (P_sum, PI_mean, QV_ppP
and D_prec) for which the two-stage calibration performed
better (up to 0.08 event mean NSE) than the single-stage
calibration, while for Q_max the single-stage calibration
performed better (0.03 event mean NSE). However, when
using the low-resolution model, three event characteristics
(P_sum, Q_max and Q_60m) had better performance with
the single-stage than with the two-stage approach. Overall,
N_T6, T6_Q_max and T32S_Q_max performed best (being
the only CSs with an event mean NSE > 0.8 in both the HR
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and LR models), while the two scenarios based on percent-
age runoff performed worst.

Considering the errors in total runoff volume, the two-
stage CSs performed better for the HR model. However, for
the LR model (where runoff volumes were higher in general,
as also reported by Tscheikner-Gratl et al., 2016), the single-
stage calibrations had smaller volume errors. The changes in
volume errors between the HR and LR model were similar
to earlier findings by Krebs et al. (2016). Although the CSs
based on peak flow rates (Q_max) performed well in terms
of the event mean NSE, they are actually among the worst
performers in terms of peak flow ratio in both the HR and
LR model. This may be attributed to the possibility for mod-
els to obtain high NSE values despite underestimating high
peak flows (see Fig. 2a). In general the LR model resulted
in lower peak flow ratios (as also shown by Tscheikner-Gratl
et al., 2016), and this effect was stronger for the two-stage
CSs.

For the two-stage calibrations the assumption that no
runoff occurred from green areas during the first stage of the
calibration was checked. During the actual first-stage cali-
bration (i.e. with green-area parameters set to default val-
ues) there was no runoff from green areas for any of the
calibration events in any of the calibration strategies, so the
first-stage calibration attributed all runoff to impervious ar-
eas as assumed beforehand. However, some runoff occurred
from green areas for first-stage events when the calibrated
parameter values from the second stage were applied. This
runoff was caused by impervious areas draining to green
areas. The runoff from green areas was < 5 % of the total
simulated runoff volume for four model runs, < 10 % for
an additional three runs, and 11.6 %, 11.7 %, 21.7 %, 22.9 %
and 25.7 % respectively for five additional runs. Note that
with six CSs with three first-stage events each, there were
18 model runs in total. The last mentioned five runs con-
cerned three different events with a percentage runoff (calcu-
lated before applying rainfall multipliers) between 11 % and
12 %. Such events may be expected to include some green-
area runoff, and it could be considered to exclude these from
the first-stage calibration (not done here to limit the com-
plexity of the procedure as discussed in Sect. 2.3). In addi-
tion, all three events were also included in other first-stage
calibrations where they did not result in any significant simu-
lated green-area runoff. Removing these events from the first
stage of calibration based on initial calibration results would
therefore result in the same event being included in different
stages for different calibration strategies, which was consid-
ered undesirable. Overall we believe that, although the as-
sumption that all runoff is from directly connected impervi-
ous areas when QV_ppP < 12 % is violated in some cases,
the assumption that these events are suitable for calibrating
impervious-area parameters does hold to a sufficient degree,
as also evidenced by the good first-stage calibration perfor-
mance (see first paragraph of this subsection). In addition,
checking for green-area runoff as done here is only possi-
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Figure 2. Examples of hydrographs for events with high (a) and low (b) objective function (NSE) values; var,,; denotes the variance of the

observations.

ble after calibration, and considering it when selecting events
would thus create a more complex, iterative calibration pro-
cedure, which would limit the practical applicability of this
approach. We considered this to be beyond the paper’s orig-
inal scope of examining different strategies for calibration
event selection.

3.2 Calibrated parameter values
3.2.1 Hydrologic model parameters

Figure 3 shows the calibrated parameter values (for the HR
model), normalized with respect to their calibration ranges
(see Table 2). There is considerable variation among the
calibrated values obtained in different calibration strategies,
demonstrating that even for parameters with a clear physi-
cal interpretation, identification of the best (ideal) value is
not straightforward. Gupta et al. (1998) also found consider-
able variation in the parameter values obtained when using
different years as calibration periods for a natural catchment
model. Nonetheless, the span of parameter values is consid-
erably reduced compared to the range imposed during cali-
bration, showing that the boundaries were not set too tightly
and that the calibration procedure does offer benefits over es-
timating parameter values directly. The variation among the
two-stage CSs was larger than that among the single-stage
CSs for most parameters, which may be caused by the dataset
used to estimate each parameter being smaller (three events
instead of six). The depression storage in green areas and
swales might be compensating for each other in the two-stage
CSs. The depression storage for impervious areas shows lit-
tle variation (0—0.3 mm) between the different CSs, with only
T6_Q_60m resulting in a slightly higher value (0.5 mm).
Calibrated parameter values are always uncertain esti-
mates. This uncertainty has been investigated for urban
drainage models and shown to be dependent on parame-
ter type, study catchments, model structures, catchment dis-
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cretization and measurement errors (Dotto et al., 2009, 2011,
2014; Kleidorfer et al., 2009a; Sun et al., 2014). The variation
found here among the optimum parameter values obtained
in different calibration strategies suggests that the selection
of calibration events could also affect the uncertainty of pa-
rameter estimates, and this influence should be investigated
further.

3.2.2 Rainfall multipliers

The values of rainfall multipliers found in the calibration pro-
cess ranged from 0.48 to 2.92, indicating a mismatch be-
tween the observed rainfall and the rainfall that allows for
the best fit of the simulated runoff to observed runoff. Sev-
eral factors may contribute to this. First, an underestimation
of rainfall or underestimation of runoff by the respective sen-
sors may lead to higher rainfall multipliers and vice versa. Er-
rors in the size of (sub-)catchments may also influence this.
Second, the gauge rainfall may not match the catchment-
averaged rainfall due to the spatial variability of the rain-
fall. Thirdly, some deficiencies in the model may be compen-
sated for, to some extent, by adjusting the rainfall multiplier.
Without further investigations it is not possible to distinguish
between different factors influencing the values of rainfall
multipliers. Two arguments support that the rainfall multi-
pliers do indeed fulfil the role of compensating for this mis-
match. Firstly, for rainfall events that were included in multi-
ple calibration strategies, the calibrated multipliers from dif-
ferent scenarios were close to each other (see Table 5), un-
like for the hydrological model parameters (see Sect. 3.2.1).
Secondly, decreasing or increasing all flow rates by 40 %
prior to calibration changed the average rainfall multipliers
by —37 % and 433 % respectively. The average value of the
rainfall multipliers across all events was 1.2, which suggests
that there was some structural disagreement between the ob-
served rainfall and flows. The close agreement between the
different CSs shows that, unlike the hydrological model pa-
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Figure 3. Normalized calibrated parameter values for the high-resolution model using different calibration strategies. The highest and lowest

values found for each parameter are indicated.

rameters, the rainfall multipliers are not sensitive to differ-
ences between the CSs.

3.3 Validation performance
3.3.1 Individual events

The validation performance for individual events is visual-
ized in Fig. 4 for the peak flow ratio, volume error and NSE.
The events that most often caused failure in validation were
four events with peak flow rates of 10 Ls~! or less (i.e. events
1-4 in the figure), and therefore, such failures may be at-
tributed to (1) relatively high measurement uncertainties and
(2) low variance of the observations leading to high sensitiv-
ity of the NSE to even small differences between observed
and predicted hydrographs (see Sect. 2.4 and Fig. 2). How-
ever, it should be noted that the two smallest events (both
with a peak flow rate of 4.6Ls™") were predicted with an
NSE > 0.5 by T6_P_sum and T32S_QV_ppP. For the other
CSs, examination of the hydrographs showed that they pre-
dicted well the peak flow and the total runoff volume of the
events, but they produced wrong timing compared to the ob-
served hydrograph. Another event that failed in validation for
all CSs was that with the highest peak flow rate (S3Ls™!;

www.hydrol-earth-syst-sci.net/24/869/2020/

event 19 in Fig. 4, see Appendix A), which was overesti-
mated by a factor of up to three. This event was dominated by
an intense, single-peak burst of rainfall (the highest 30 min
average rainfall intensity was 11.1 mmh~"), so it could have
suffered from high spatial variation of the rainfall.

The peak flow ratios obtained for the 19 validation events
using the calibrated high-resolution models are shown in the
upper panel of Fig. 4. The under- or overestimation of peak
flows and runoff volumes by the model could lead to an
under- or over-dimensioned system design, and it is there-
fore relevant to consider these aspects alongside the NSE.
The underestimation of peak flows was most frequent, but
the largest errors occurred when the flow was overestimated.
The variation among CSs was generally larger when the pre-
diction error was larger. The corresponding figure for volume
errors is shown in the middle panel of Fig. 4. Again, underes-
timation was more common, but overestimation did occur for
a limited number of events. For both peak flows and total vol-
umes, the variation among events was generally larger than
the variation among different calibration strategies, showing
that selecting a limited number of validation events may also
influence the results of the model evaluation. T32S_D_prec
stood out by predicting higher runoff volumes and peaks, and
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Figure 4. Error statistics for individual validation events for all calibration strategies in the HR model.

therefore better performance, for the events labelled 13—18 in
Fig. 4. Across all CSs, two-stage versions had similar or bet-
ter performance in terms of total runoff volume. Peak flow
was underestimated for most events, but for the events that
generally did poorly in validation (see above) peak flows (as
well as flow volumes) were overpredicted instead. The re-
sults for both total volumes and peak flows indicate that for
most events flows were underestimated, which may be (at
least partially) attributed to the need to multiply the observed
rainfall by (on average) a factor of 1.2 to best match the ob-
served flow during the calibration phase (see Sect. 3.2.2);
such an adjustment was not applied in the validation phase.

When examining the NSE of the validation events (see the
bottom panel of Fig. 4), more variation among the different
CSs became visible, although the amount of variation was
still event-dependent: the difference (in NSE) between the
best and worst CS for the same events varied from 0.15 to
1.25. This shows that some events can have a much larger
impact on the overall validation results than others. Out of
the 19 events, six were predicted satisfactorily (NSE > 0.5)
by some CSs but not by others; five events failed for all
CSs; and eight were predicted satisfactorily by all CSs. For
several events (10, 16 and 18) the two-stage CSs (except
T32S_QV_ppP) showed better performance than the single-
stage CSs, but there were no events where all the single-stage
CSs performed better.
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3.3.2 Overall performance

The successful CSs predicted 8—13 out of the 19 validation
events satisfactorily (NSE > 0.5) (see Table 6). T6_PI_30m
(nine events) and T6_Q_60m (eight events) performed worst,
while T32S_PI_mean performed best. For the single-stage
CSs the low-resolution model predicted up to five fewer
events satisfactorily than the high-resolution model, while
from the two-stage CSs only T32S_D_prec satisfactorily pre-
dicted fewer events with the LR model than with the HR
model, and T32S_P_sum, T32S_Q_max and T32S_QV_ppP
actually predicted more events satisfactorily with the HR
model.

To assess the overall performance of different calibration
strategies for the validation period, several ways of combin-
ing the individual events were considered (see Table 6). The
simplest metric is obtained by using the NSE means, which
ranged from 0.13 (T6_PI_30m) to 0.42 (T32S_QV_ppP).
There are two conceptual problems with this metric. First,
since the NSE ranges from negative infinity to positive
one, one poorly fitting event can offset multiple well-fitting
events. Second, two simulated hydrographs of an equally
poor fit can have rather different (negative) NSE values, pro-
ducing different impacts on the overall results, which is not
justified by a visual comparison. Therefore, this mean met-
ric is not considered a reliable metric for comparisons when
poorly fitting events are present. The exclusion of low-flow
(<10Ls~! peak) events would avoid this issue, but it would
not reward calibration strategies that do manage to predict
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Table 5. Calibrated rainfall multipliers (HR model) for all rainfall events that were used in at least one CS.
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2 BEvent percentage runoff switches from < 12 % to > 12 % when applying the rainfall multiplier. b Vice versa.
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these events satisfactorily. Another option is to set all NSE
values < —1 to —1 before calculating the mean, which re-
sults in a mean NSE ranging from 0.29 (T6_PI_30m) to 0.47
(T6_QV_ppP). The two-stage CSs had worse performance
than the single-stage CSs (except for PI_mean). A more com-
monly used approach is to combine all the events into a single
time series prior to calculating the NSE on the joint time se-
ries. This procedure indicated satisfactory performance for
all CSs with the NSE ranging from 0.57 (T6_PI_30m) to
0.70 (T32S_PI_mean and T32S_D_prec). This last metric
also showed better performance for two-stage CSs than their
single-stage counterparts (except for QV_ppP), i.e. the op-
posite of what was found for the mean NSE. The downside
of this metric is that it can hide the fact that poorly fitting
events are present, e.g2. T32S_P_sum has the (shared) third-
highest joint NSE, despite having five events with a nega-
tive NSE. The discussion of various metrics shows that cau-
tion is needed when averaging performance over multiple
events, as metrics may not reflect the fact that a significant
number of events is poorly predicted in all CSs. It depended
on the chosen criterion as to which CSs performed best, but
T6_PI_mean, T6_PI_30m and T6_Q_60m were always near
the bottom in the NSE-based metrics and would therefore
not be recommended. Of the two-stage CSs, T32S_PI_mean
showed the best performance in the NSE-based metrics.

The considerations in the previous paragraph concern the
NSE and are not necessarily applicable to other statistics in
the same way. The volume error was included in this study
to yield some indication of the overall difference between the
modelled and observed runoff volumes over longer time peri-
ods. Therefore, this statistic was summarized over all events
using the joint-time-series approach. The volume errors were
similar for all high-resolution single-stage calibrated mod-
els and showed a general tendency to underestimate flow
volumes by 25 %. For the two-stage calibrated models, vol-
ume errors were smaller with an underestimation of around
15 % (except for T32S_QV_ppP), and T32S_D_prec showed
a volume error of only —2 %. The average peak flow ratio
over all events indicated better performance for the two-stage
CSs than for the single-stage CSs. The CSs based on rain-
fall intensity showed the best performance in terms of peak
flows. T6_Q_60m had the worst performance for total vol-
ume and peak flow (despite being calibrated to events that
score highly on both characteristics) and would therefore not
be recommended.

For most of the LR model, two-stage calibrations had a
higher event mean NSE than their single-stage counterparts
(except for Q_max and Q_60m; see Table 7), and a visual
comparison of the hydrographs showed that for most events
the HR model performed better. However, the two-stage cali-
brations performed significantly better than their single-stage
counterparts in terms of volume error and peak flow (see Ta-
ble 7), and the two-stage CSs that were based on observed
flow rates (T32S_Q_max and T32S_Q_60m) outperformed
the HR model in the visual comparison of hydrographs.

Hydrol. Earth Syst. Sci., 24, 869-885, 2020



880

I. Broekhuizen et al.: Event selection and two-stage approach

Table 6. Summarized validation performance (over 19 events) for the high-resolution model. Bold font indicates the best value in each

column.

Mean  Clip mean Joint  No. of negative ~ No. of good Joint Mean

NSE NSE?  NSEP NSEC values NSEY values ~ VE®  PFR

N_T6 0.33 0.45 0.65 2 12 -0.24 0.91
T6_P_sum 0.39 0.45 0.66 2 12 -0.23 0.91
T6_PI_mean 0.18 0.33 0.59 4 10 -0.24 0.96
T6_PI_30m 0.13 0.29 0.57 5 9 -—-0.24 0.98
T6_Q_max 0.34 0.44 0.65 2 12 -0.24 0.92
T6_Q_60m 0.37 0.37 0.60 3 8 —-0.29 0.81
T6_QV_ppP 0.36 0.47 0.67 2 12 -0.24 0.90
T6_D_prec 0.34 0.43 0.64 2 11 -0.25 0.91
T32S_P_sum 0.19 0.34 0.68 5 10 —-0.15 0.99
T32S_PI_mean 0.26 0.44 0.70 2 13  —-0.16 1.00
T32S_Q_max 0.31 0.34 0.67 4 11 -0.13 0.96
T32S_Q_60m 0.26 0.33 0.68 4 10 —-0.13 0.99
T32S_QV_ppP 0.42 0.46 0.65 2 11 —-0.26 0.87
T32S_D_prec 0.22 0.34 0.70 4 12 —0.02 1.01

a Calculated after setting individual event values < —1to —1. b Calculated after merging all event time series into a single series. ©
Number of events with an NSE < 0. 4 Number of events with an NSE > 0.5.

Table 7. Summarized validation performance (over 19 events) for the low-resolution model. Bold font indicates the best value in each
column. The columns marked with * are not discussed in the text, but they are shown here for completeness and comparability with Table 6.

Mean  Clip mean Joint  No. of negative No. of good Joint Mean LR visually better

NSE* NSE* NSE™*  NSECvalues* NSEYvalues* ~ VE®  PFR  than HR (no. of events)
N_Té6 0.12 0.21 0.52 5 7 —0.43 0.50 2
T6_P_sum 0.05 0.22 0.57 6 8 —0.38 0.60 3
T6_PI_mean 0.38 0.38 0.50 0 6 —0.43 0.59 4
T6_PI 30m 0.43 0.43 0.58 2 9 -0.34 0.74 5
T6_Q_max 0.49 0.49 0.59 0 10 -0.36 0.64 5
T6_Q_60m 0.29 0.29 0.49 4 6 —0.46 0.49 3
T6_QV_ppP 0.37 0.37 0.54 3 10 —-0.40 0.66 4
T6_D_prec 0.34 0.34 0.50 4 6 —0.44 0.51 4
T32S_P_sum 0.51 0.51 0.66 2 13 -0.27 0.60 4
T32S_PI_mean 0.44 0.46 0.69 2 13 —-0.22 0.80 5
T32S_Q_max 0.05 0.33 0.70 5 12 —-0.07 1.03 12
T32S_Q_60m 0.13 0.28 0.66 4 10 —0.04 1.02 11
T32S_QV_ppP 0.44 0.46 0.72 2 12 —-0.18 0.79 7
T32S_D_prec 0.29 0.38 0.76 4 10 —-0.05 0.86 4

4 Calculated after setting individual event values < —1 to —1. b Calculated after merging all event time series into a single series. © Number of events with an NSE < 0. d

Number of events with an NSE > 0.5.

3.4 Degradation of performance from calibration to
validation

In calibration, the event mean NSE for the different calibra-
tion strategies ranged (for the HR model) from 0.68 to 0.85,
while in validation this was lowered to 0.29 to 0.47 (NSE
values < —1 were set to —1 prior to taking the mean; see
Sect. 3.3.2). For the LR model the variation between dif-
ferent CSs was slightly larger, ranging from 0.65 to 0.86
in calibration and from 0.21 to 0.51 in validation. The CSs
that did better in calibration lost more performance (mea-
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sured by event mean NSE) when switching to the validation
phase (see Fig. 5). In particular, the CSs based on percent-
age runoff (QV_ppP) had the worst calibration performance
(in both HR and LR models) but lost the least when switch-
ing to the validation phase. For the high-resolution model all
but one of the two-stage calibrations lost more performance
when switching to the validation phase than their single-stage
counterparts. By contrast, for the low-resolution model all
but one of the two stage calibrations had a smaller perfor-
mance loss. Previous studies found that high-resolution mod-
els led to more transferable parameter estimates (e.g. less
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Figure 5. Loss of performance (NSE) when switching from calibration to validation.

loss of performance when switching to validation; Sun et al.,
2014; Krebs et al., 2014), but in the current study this seems
dependent on the calibration dataset used.

3.5 Single-stage vs. two-stage calibrations

For those selection criteria, for which both single- and two-
stage calibrations were performed, the results of the two op-
tions can be compared directly (see Fig. 6). For the high-
resolution model, calibration performance of the two-stage
CSs was somewhat better than for the single-stage CSs. By
contrast, in the validation phase the event mean NSE was bet-
ter for the single-stage CSs. However, the volume error and
peak flow ratio were better for the two-stage calibrations. For
the low-resolution model performance was similar or worse
for the two-stage calibrations, but in the validation phase the
two-stage calibrations most often had a higher event mean
NSE. In addition, the two-stage calibrations resulted in much
better performance in terms of volume error and peak flows
than their single-stage counterparts.

4 Conclusions

The primary objective of this study was to compare different
strategies for the selection of calibration events for a com-
bined hydrologic—hydrodynamic model of a predominantly
green urban area. Calibration strategies consisted of single-
and two-stage calibrations and considered a number of dif-
ferent metrics based on observed precipitation and catch-
ment outflow by which calibration events can be selected
from a larger group of candidate events. The single-stage
calibrations used six events to calibrate all model param-
eters simultaneously, while the two-stage calibrations used
three events (with less runoff than the percentage of directly
connected impervious area in the catchment) to calibrate
impervious-area parameters, followed by using three events
(with more runoff) to calibrate green-area parameters. The
results of different calibration strategies for high- and low-
spatial-resolution models are summarized below. It should
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be noted that the precise performance values presented in this
paper may vary for different catchments and datasets.

For the high-resolution model, all calibration strategies
produced successful calibrations (i.e. NSE > 0.5), albeit with
varying performance: event mean NSE values ranged from
0.68 to 0.85. For the two-stage calibrations, both stages gave
satisfactory results (event mean NSE of 0.70-0.87). The two-
stage calibrations generally performed better in the calibra-
tion phase than their single-stage counterparts in terms of
event mean NSE and runoff volume error. The two-stage cali-
brations also were faster, since they reduced the dimensional-
ity (number of simultaneously calibrated parameters) of the
calibration problem and the number of model runs at each
iteration. The CSs N_T6, T6_Q_max and T32S_Q_max per-
formed best in calibration, while CSs based on percentage
runoff performed worst. Although the obtained values of the
SWMM model parameters varied between the different CSs
(and this variation was greater for two-stage CSs), they found
highly similar values for the rainfall multipliers included in
the calibration.

For the model validation phase an independent set of 19
validation events was used. All calibrated scenarios pre-
dicted 8 to 13 of these events satisfactorily (NSE > 0.5). Al-
though the question of which CS performed best depended
on the performance metric considered, it can be said that
T6_PI_mean and T6_PI_30m performed poorly in NSE-
based metrics, and T6_Q_60m performed poorly according
to all metrics. Variation among the different CSs was larger
for the LR model than for the HR model. For the HR model
the two-stage CSs had more events with a negative NSE but
a higher NSE when the events were combined into a single
time series. For the LR model the two-stage CSs had both
more events with a negative NSE and with an NSE > 0.5, re-
sulting in a better event mean NSE for the two-stage CSs.
For volume error and peak flow error the two-stage CSs per-
formed better, especially with the LR model, which bears sig-
nificance for engineering design. The two-stage CSs based
on flow rates (Q_max and Q_60m) were the only two CSs

Hydrol. Earth Syst. Sci., 24, 869-885, 2020
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Figure 6. Comparison of single-stage and two-stage calibration strategies.

where the LR version outperformed the HR version when vi-
sually comparing the hydrographs.

To summarize, there was clearly variation between the dif-
ferent CSs in both the calibration and the validation phase,
and although it is difficult to say which CS performs best
(since this depends on the performance metric used), some
CSs perform poorly throughout. Although the two-stage CS
had more problematic validation events with the HR model,
they also had more satisfactorily predicted validation events.
Finally, the two-stage CSs clearly performed better in terms
of total runoff volume and peak flow in the validation phase,
and this effect was particularly strong for the LR model.
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