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Abstract. Improved skill of long-range weather forecasts has
motivated an increasing effort towards developing seasonal
hydrological forecasting systems across Europe. Among
other purposes, such forecasting systems are expected to sup-
port better water management decisions. In this paper we
evaluate the potential use of a real-time optimization sys-
tem (RTOS) informed by seasonal forecasts in a water sup-
ply system in the UK. For this purpose, we simulate the per-
formances of the RTOS fed by ECMWF seasonal forecast-
ing systems (SEAS5) over the past 10 years, and we com-
pare them to a benchmark operation that mimics the com-
mon practices for reservoir operation in the UK. We also at-
tempt to link the improvement of system performances, i.e.
the forecast value, to the forecast skill (measured by the mean
error and the continuous ranked probability skill score) as
well as to the bias correction of the meteorological forcing,
the decision maker priorities, the hydrological conditions and
the forecast ensemble size. We find that in particular the deci-
sion maker priorities and the hydrological conditions exert a
strong influence on the forecast skill–value relationship. For
the (realistic) scenario where the decision maker prioritizes
the water resource availability over energy cost reductions,
we identify clear operational benefits from using seasonal
forecasts, provided that forecast uncertainty is explicitly con-
sidered by optimizing against an ensemble of 25 equiproba-
ble forecasts. These operational benefits are also observed
when the ensemble size is reduced up to a certain limit. How-
ever, when comparing the use of ECMWF-SEAS5 products
to ensemble streamflow prediction (ESP), which is more eas-

ily derived from historical weather data, we find that ESP re-
mains a hard-to-beat reference, not only in terms of skill but
also in terms of value.

1 Introduction

In a water-stressed world, where water demand and climate
variability (IPCC, 2013) are increasing, it is essential to im-
prove the efficiency of existing water infrastructure along
with, or possibly in place of, developing new assets (Gle-
ick, 2003). In the current information age there is a great
opportunity to do this by improving the ways in which we
use hydrological data and simulation models (the “informa-
tion infrastructure”) to inform operational decisions (Gleick
et al., 2013; Boucher et al., 2012).

Hydrometeorological forecasting systems are a prominent
example of information infrastructure that could be used to
improve the efficiency of water infrastructure operation. The
usefulness of hydrological forecasts has been demonstrated
in several applications, particularly to enhance reservoir op-
erations for flood management (Voisin et al., 2011; Wang
et al., 2012; Ficchì et al., 2016) and hydropower production
(Faber and Stedinger, 2001; Maurer and Lettenmaier, 2004;
Alemu et al., 2010; Fan et al., 2016). In these types of sys-
tems, we usually find a strong relationship between the fore-
cast skill (i.e. the forecast ability to anticipate future hydro-
logical conditions) and the forecast value (i.e. the improve-
ment in system performance obtained by using forecasts to
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inform operational decisions). However, this relationship be-
comes weaker for water supply systems, in which the storage
buffering effect of surface and groundwater reservoirs may
reduce the importance of the forecast skill (Anghileri et al.,
2016; Turner et al., 2017), particularly when the reservoir
capacity is large (Maurer and Lettenmaier, 2004; Turner et
al., 2017). Moreover, in water supply systems, decisions are
made by considering the hydrological conditions over lead
time of several weeks or even months. Forecast products with
such lead times, i.e. “seasonal” forecasts, are typically less
skilful compared to the short-range forecasts used for flood
control or hydropower production applications.

When using seasonal hydrological scenarios or forecasts
to assist water system operations, three main approaches
are available: worst case scenario, ensemble streamflow pre-
diction (ESP) and dynamical streamflow prediction (DSP).
In the worst-case scenario approach, operational decisions
are made by simulating their effects against a repeat of the
worst hydrological droughts on records. Worst-case forecasts
clearly have no particular skill, but their use has the advan-
tage of providing a lower bound of system performance, and
they reflect the risk-adverse attitude of most water manage-
ment practice. This approach is commonly applied by wa-
ter companies in the UK, and it is reflected in the water re-
source management planning guidelines of the UK Environ-
ment Agency (Environment Agency, 2017).

In the ensemble streamflow prediction (ESP) approach,
a hydrological forecasts’ ensemble is produced by forcing
a hydrological model using the current initial hydrological
conditions and historical weather data over the period of
interest (Day, 1985). Operational decisions are then evalu-
ated against the ensemble. The skill of the ESP ensemble is
mainly due to the updating of the initial conditions. Since
ESP forecasts are based on the range of past observations,
they can have limited skill under non-stationary climate and
where initial conditions do not dominate the seasonal hydro-
logical response (Arnal et al., 2018). Nevertheless, the ESP
approach is popular among operational agencies thanks to
its simplicity, low cost, efficiency and its intuitively appeal-
ing nature (Bazile et al., 2017). Some previous studies as-
sessed the potential of seasonal ESP to improve the opera-
tion of supply–hydropower systems. For example, Alemu et
al. (2010) reported achieving an average economic benefit of
7 % with respect to the benchmark operation policy, whereas
Anghileri et al. (2016) reported no significant improvements
(possibly because they only used the ESP mean, instead of
the full ensemble).

Last, the dynamical streamflow prediction (DSP) approach
uses numerical weather forecasts produced by a dynamic cli-
mate model to feed the hydrological model (instead of histor-
ical weather data). The output is also an ensemble of hydro-
logical forecasts, whose skill comes from both the updated
initial condition and the predictive ability of the numerical
weather forecasts. The latter is due to global climate telecon-
nections such as the El Niño–Southern Oscillation (ENSO)

and the North Atlantic Oscillation (NAO). Therefore, DSP
forecasts are generally more skilful in areas where climate
teleconnections exert a strong influence, such as tropical ar-
eas, and particularly in the first month ahead (Block and
Rajagopalan, 2007). In areas where climate teleconnections
have a weaker influence, DSP can have lower skill than ESP,
particularly beyond the first lead month (Arnal et al., 2018;
Greuell et al., 2019). Nevertheless, recent advances in the
prediction of climate teleconnections in Europe, such as the
NAO (Wang et al., 2017; Scaife et al., 2014; Svensson et al.,
2015), means that seasonal forecasts’ skill is likely to con-
tinue increasing in the coming years. Post-processing tech-
niques such as bias correction can also potentially improve
seasonal streamflow forecast skill (Crochemore et al., 2016).
Studies assessing the benefits of bias correction for seasonal
hydrological forecasting are still rare in the literature. While
bias correction is often recommended or even required for
impact assessments to improve forecast skills (Zalachori et
al., 2012; Schepen et al., 2014; Ratri et al., 2019; Jabbari
and Bae, 2020), studies on long-term hydrological projec-
tions (Ehret et al., 2012; Hagemann et al., 2011) highlighted
a lack of clarity on whether bias correction should be ap-
plied or not. In recent years, meteorological centres such as
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the UK Met Office have made important ef-
forts to provide skilful seasonal forecasts, both meteorologi-
cal (Hemri et al., 2014; MacLachlan et al., 2015) and hydro-
logical (Bell et al., 2017; Arnal et al., 2018), in the UK and
Europe and encouraged their application for water resource
management. To the best of our knowledge, however, pilot
applications demonstrating the value of such seasonal fore-
cast products to improve operational decisions are mainly
lacking and have only very recently started to appear (Giu-
liani et al., 2020).

While the skill of DSP is likely to keep increasing in the
next years, it may still remain low at lead times relevant for
the operation of water supply systems. Nevertheless, a num-
ber of studies have demonstrated that other factors, which
are not necessarily captured by forecast skill scores, may
also be important to improve the forecast value. These in-
clude accounting explicitly for the forecast uncertainty in the
system operation optimization (Yao and Georgakakos, 2001;
Boucher et al., 2012; Fan et al., 2016), using less rigid oper-
ation approaches (Yao and Georgakakos, 2001; Brown et al.,
2015; Georgakakos and Graham, 2008) and making optimal
operational decisions during severe droughts (Turner et al.,
2017; Giuliani et al., 2020). Additionally, the forecast skill
itself can be defined in different ways, and it is likely that dif-
ferent characteristics of forecast errors (sign, amount, timing,
etc.) affect the forecast value in different ways. Widely used
skill scores for hydrological forecast ensembles are the rank
histogram (Anderson, 1996), the relative operating charac-
teristic (Mason, 1982) and the ranked probability score (Ep-
stein, 1969). The ranked probability score is widely used by
meteorological agencies since it provides a measure of both
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the bias and the spread of the ensemble in a single factor,
while it can also be decomposed into different sub-factors in
order to look at the different attributes of the ensemble fore-
cast (Pappenberger et al., 2015; Arnal et al., 2018). How-
ever, whether these skill score definitions are relevant for the
specific purpose of water resource management, or whether
other definitions would be better proxy of the forecast value,
remains an open question.

In this paper, we aim at contributing to the ongoing dis-
cussion on the value of seasonal weather forecasts in deci-
sion making (Bruno Soares et al., 2018) and at assessing the
value of DSP for improving water system operation by appli-
cation to a real-world reservoir system, and in doing so we
build on the growing effort to improve seasonal hydromete-
orological forecasting systems and make them suitable for
operational use in the UK (Bell et al., 2017; Prudhomme et
al., 2017). Through this application we aim to answer the
three following questions: (1) can the efficiency of a UK real-
world reservoir supply system be improved by using DSP
forecasts? (2) Does accounting explicitly for forecast uncer-
tainty improve forecast value (for the same skill)? (3) What
other factors influence the forecast skill–value relationship?

For this purpose, we will simulate a real-time optimiza-
tion system informed by seasonal weather forecasts over a
historical period for which both observational and forecast
datasets are available, and we will compare it to a worst-case
scenario approach that mimics current system operation. As
for the seasonal forecast products, we will assess both ESP
and DSP derived from the ECMWF seasonal forecast prod-
ucts (Stockdale et al., 2018). We will also compare the fore-
cast skill and value before and after applying bias correction
and for different ensemble sizes. System performances will
be measured in terms of water availability and energy costs,
and we will investigate five different scenarios for prioritiz-
ing these two objectives depending on the decision maker
preferences. Finally, we will discuss the opportunities and
barriers of bringing such an approach into practice.

Our results are meant to provide water managers with an
evaluation of the potential of using seasonal forecasts in the
UK and to give forecast providers indications on directions
for future developments that may make their products more
valuable for water management.

2 Methodology

2.1 Real-time optimization system

An overview of the real-time optimization system (RTOS)
informed by seasonal weather forecasts is given in Fig. 1
(left part). It consists of three main stages that are repeated
each time an operational decision must be made. These three
stages are as follows:

1.a Forecast generation. We use a hydrological model
forced by seasonal weather forecasts to generate the seasonal

hydrological forecasts. The initial conditions are determined
by forcing the same model by (recent) historical weather
data for a warm-up period. Another model determines the
future water demand during the forecast horizon. Although
not tested in this study, in principle such a demand model
could also be forced by seasonal weather forecasts.

1.b Optimization. This stage uses (i) a reservoir system
model to simulate the reservoir storages in response to given
inflows and operational decisions; (ii) a set of operation ob-
jective functions to evaluate the performance of the system,
for instance, to maximize the resource availability or to mini-
mize the operation costs; and (iii) a multi-objective optimizer
to determine the optimal operational decisions. When a prob-
lem has multiple objectives, optimization does not provide a
single optimal solution (i.e. a single sequence of operational
decisions over the forecast horizon), but rather it provides a
set of (Pareto) optimal solutions, each realizing a different
trade-off between the conflicting objectives (for a definition
of Pareto optimality, see, for example, Deb et al., 2002).

1.c Selection of one trade-off solution. In this stage, we
represent the performance of the optimal trade-off solutions
in what we call a “pre-evaluation Pareto front”. The term
“pre-evaluation” highlights that these are the anticipated per-
formances according to our hydrometeorological forecasts,
not the actual performances achieved when the decisions are
implemented (which are unknown at this stage). By inspect-
ing the pre-evaluation Pareto front, the operator will select
one Pareto-optimal solution according to their priorities, i.e.
the relative importance they give to each operation objec-
tive. In a simulation experiment, we can mimic the operator
choice by setting some rule to choose one point on the Pareto
front (and apply it consistently at each decision time step of
the simulation period).

2.2 Evaluation

When the RTOS is implemented in practice, the selected op-
erational decision is applied to the real system and the RTOS
used again, with updated system conditions, when a new de-
cision needs to be made or new weather forecasts become
available. If however we want to evaluate the performance of
the RTOS in a simulation experiment (for instance to demon-
strate the value of using a RTOS to reservoir operators) we
need to combine it with the evaluation system depicted in
the right part of Fig. 1. Here, the selected operational deci-
sion coming out of the RTOS is applied to the reservoir sys-
tem model, instead of the real system. The reservoir model
is now forced by hydrological inputs observed in the (his-
torical) simulation period, instead of the seasonal forecasts,
which enables us to estimate the actual flows and next-step
storage that would have occurred if the RTOS had been used
at the time. This simulated next-step storage can then be used
as the initial storage volume for running the RTOS at the fol-
lowing time step. Once the process has been repeated for the
entire period of study, we can provide an overall evaluation
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Figure 1. Diagram of the methodology used in this study to generate operational decisions using a real-time optimization system (RTOS)
(left) and to evaluate its performances (right). In the evaluation step, the RTOS is nested into a closed-loop simulation, where at every time
step historical data (weather, inflows and demand), along with the operational decisions suggested by the RTOS, are used to move to the next
step by updating the initial hydrological conditions and reservoir storage.

of the hydrological forecast skill and the performance of the
RTOS, i.e. the forecast value. This evaluation (Fig. 1) con-
sists of two stages:

2.a Forecast skill evaluation. The forecast skill is evalu-
ated based on the differences between hydrological forecasts
and observed reservoir inflows over the simulation period.
For this purpose, we can calculate the absolute differences
between the observed and the forecasted inflows, or we can
use forecast skill scores such as the continuous ranked prob-
ability skill score (CRPSS).

2.b Forecast value evaluation. The forecast value is pre-
sented as the improvement of the system performance ob-
tained by using the RTOS over the simulation period, with
respect to the performance under a simulated benchmark op-
eration. Notice that, because the RTOS deals with multi-
objectives and hence provides a set of Pareto-optimal solu-
tions, in principle we could run a different simulation experi-
ment for each point of the pre-evaluation Pareto front, i.e. for
each possible definition of the operational priorities. How-
ever, for the sake of simplicity, we will simulate a smaller
number of relevant and well differentiated operational priori-
ties. The simulated performances of these solutions are visu-
alized in a “post-evaluation” Pareto front. In this Pareto front
diagram, the origin of the coordinates represents the perfor-
mance of the benchmark operation, and the performances of
any other solution are rescaled with respect to the benchmark
performance. Therefore, a positive value along one axis rep-

resents an improvement in that operation objective with re-
spect to the benchmark, whereas a negative value represents
a deterioration. When values are positive on both axes, the
simulated RTOS solution dominates (in a Pareto sense) the
benchmark; the further away from the origin, the more the
forecast has proven valuable for decision-making. If instead
one value is positive and the other is negative, then we would
conclude that the forecast value is neither positive or nega-
tive because the improvement of one objective was achieved
at the expense of the other.

2.3 Case study

2.3.1 Description of the reservoir system

The reservoir system used in this case study is a two-reservoir
system in the south-west of the UK (schematized in Fig. 2).
The two reservoirs are moderately sized, with storage ca-
pacities in the order of 20 000 000 m3 (S1) and 5 000 000 m3

(S2) (the average of UK reservoirs is 1 377 000 m3; Envi-
ronment Agency, 2017). The gravity releases from reservoir
S1 (uS1,R) feed into river R and thus contribute to support
downstream abstraction during low-flow periods. Pumped re-
leases from S1 (uS1,D) and gravity releases from reservoir S2
(uS2,D) are used to supply the demand node D. A key opera-
tional aspect of the system is the possibility of pumping water
back from river R into reservoir S1. Pumped inflows (uR,S1)
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may be operated in the winter months (from 1 November till
1 April) to supplement natural inflows, provided sufficient
discharge is available in the river (R). This facility provides
additional drought resilience by allowing the operator to in-
crease reservoir storage in winter to help ensure that the de-
mand in the following summer can be met. As the pump en-
ergy consumption is costly, there is an important trade-off
between the operating cost of pump storage and drought re-
silience.

The pumped storage operation is constrained by a rule
curve and has operated for 11 years since 1995. The rule
curve defines the storage level at which pumps are triggered.
Each point on the curve is derived based on the amount of
pumping that would be required to fill the reservoir by the
end of the pump storage period (1 April), under the worst
historical inflows’ scenario. The pumping trigger is there-
fore risk-averse, which means there is a reasonable chance of
pumping too early on during the refill period and increasing
the likelihood of reservoir spills if spring rainfall is abundant.
This may result in unnecessary expenditure on pumping. In-
forming pump operation by using seasonal forecasts of fu-
ture natural inflows (IS1 and IS2) may thus help to reduce the
volume of water pumped whilst achieving the same reservoir
storage at the end of the refilling period.

2.3.2 Forecast generation

In this study we generated dynamical streamflow predic-
tion (DSP) by forcing a lumped hydrological model, the
HBV model (Bergström, 1995), with the seasonal ECMWF
SEAS5 weather hindcasts (Stockdale et al., 2018; Johnson
et al., 2019). The ECMWF SEAS5 hindcast dataset consists
of an ensemble of 25 members starting on the first day of
every month and providing daily temperature and precipita-
tion with a lead time of 7 months. The spatial resolution is
36 km, which compared to the catchment sizes (28.8 km2 for
S1 and 18.2 km2 for S2) makes it necessary to downscale
the ECMWF hindcasts. Given the lack of clarity in the po-
tential benefits of bias correction (Ehret et al., 2012), we
will provide results of using both non-corrected and bias-
corrected forecasts. The dataset of weather hindcast is avail-
able from 1981, whereas reservoir data are available for the
period 2005–2016. Hence, we used the period 2005–2016 for
the RTOS evaluation and the earlier data from 1981 for bias
correction of the meteorological forcing. While limited, this
period captures a variety of hydrological conditions, includ-
ing dry winters in 2005–2006, 2010–2011 and 2011–2012,
which are close to the driest period on records (1975–1976)
(see more details in Fig. S1 of the Supplement). This is im-
portant because, under drier conditions, the system perfor-
mance is more likely to depend on the forecast skill, and the
benefits of RTOS may become more apparent (Turner et al.,
2017). Daily inflows were converted to weekly inflows for
consistency with the weekly time step applied in the reser-
voir system model.

A linear scaling approach (or “monthly mean correction”)
was applied for bias correction of precipitation and temper-
ature forecasts. This approach is simple and often provides
similar results in terms of bias removal to more sophisti-
cated approaches such as quantile or distribution mapping
(Crochemore et al., 2016). A correction factor is calculated
as the ratio (for precipitation) or the difference (for tempera-
ture) between the average daily observed value and the fore-
casted value (ensemble mean), for a given month and year.
The correction factor is then applied as a multiplicative factor
(precipitation) or as an additive factor (temperature) to cor-
rect the raw daily forecasts. A different factor is calculated
and applied for each month and each year of the evaluation
period (2005–2016). For example, for November 2005 we
obtain the precipitation correction factor as the ratio between
the mean observed rainfall in November from 1981 to 2004
(i.e. the average of 24 values) and the mean forecasted rain-
fall for those months (i.e. the average of 24× 25 values, as
we have 25 ensemble members). For November 2006, we re-
calculate the correction factor by also including the observa-
tions and forecasts of November 2005, hence taking averages
over 25 values, and so forth. The rationale of this approach
is to best mimic what would happen in real time, when the
operator would likely access all the available past data and
hindcasts for the bias correction.

As anticipated in the Introduction, the ESP is an ensem-
ble of equiprobable weekly streamflow forecasts generated
by the hydrological model (HBV in our case) forced by me-
teorological inputs (precipitation and temperature) observed
in the past. For consistency with the bias correction approach
used for the ECMWF SEAS5 hindcasts, we produce the ESP
using meteorological observations from 1981 until the year
before the simulated decision time step. This leads to produc-
ing an ensemble of increasing size (from 24 to 35 members)
but roughly similar to the ECMWF ensemble size (25 mem-
bers).

2.3.3 Optimization: reservoir system model, objective
functions and optimizer

The reservoir system dynamics is simulated by a mass bal-
ance model implemented in Python. The simulation model is
linked to an optimizer to determine the optimal scheduling of
pumping (uR,S1) and release (uS1,D and uS2,D) decisions. For
the optimizer we use the NSGA-II multi-objective evolution-
ary algorithm (Deb et al., 2002) implemented in the open-
source Python package Platypus (Hadka, 2015). We set two
operation objectives for the optimizer: to minimize the over-
all pumping energy cost and to maximize the water resource
availability at the end of the pump storage period. The pump-
ing cost is calculated as the sum of the weekly energy costs
associated with pumped inflows and pumped releases (uR,S1
and uS1,D) over the optimization period. The resource avail-
ability is the mean storage volume in S1 and in S2 at the end
of the optimization period (1 April). When optimization is
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Figure 2. A schematic of the reservoir system investigated in this study to test the real-time optimization systems. Reservoir inflows from
natural catchments are denoted by I, S1 and S2 are the two reservoir nodes, u denotes controlled inflows/releases, R is the river from/to which
reservoir S1 can abstract and release, and D is a demand node.

run against a forecast ensemble, the two objective functions
are evaluated against each ensemble member, and the aver-
age is taken as the final objective function value. The grav-
ity releases from S1 (uS1,R) are not considered to be deci-
sion variables, and they are set to the observed values during
the period of study. This choice is unlikely to have impor-
tant implications on the optimization results because uS1,R
on average represents only 15 % of the total releases from S1
(uS1,D+ uS1,R). Also, we assume that future water demands
are perfectly known in advance and set them to the sum of
the observed releases from S1 (uS1,D) and S2 (uS2,D) for the
period of study. This simplification is reasonable for our case
study as the water demand is fairly stable and predictable in
winter, and it enables us to focus on the relationship between
skill and value of the seasonal hydrological forecasts while
assuming no error in demand forecasts. More details about
the reservoir simulation model and the optimization problem
are given in the Supplement.

2.3.4 Selection of the trade-off solution

We use five different rules for the selection of the trade-off
solution from the pre-evaluation Pareto front (see Fig. 1) and
apply them consistently at each decision time step of the
simulation period. The five rules correspond to five differ-
ent scenarios of operational priorities. They are as follows:
(1) resource availability only (rao), which assumes that the
operator consistently selects the extreme solution that deliv-
ers the largest improvement in resource availability; (2) re-
source availability prioritized (rap), which selects the so-
lution delivering the 75 % percentile in resource availabil-
ity increase; (3) balanced (bal), which selects the solution
delivering the median improvement in resource availability;
(4) pumping savings prioritized (psp), which selects the solu-
tion delivering the 75 % percentile in energy cost reductions;

and (5) pumping savings only (pso), which selects the best
solution for energy saving.

2.3.5 Forecast skill evaluation

We use two metrics, a skill score and the mean error, to eval-
uate the quality of the hydrological forecasts over our simu-
lation period.

A skill score evaluates the performance of a given fore-
casting system with respect to the performance of a refer-
ence forecasting system. As a measure of performance, we
use the continuous ranked probability score (CRPS) (Brown,
1974; Hersbach, 2000). The CRPS is defined as the distance
between the cumulative distribution function of the proba-
bilistic forecast and the empirical distribution of the corre-
sponding observation. At each forecasting step, the CRPS is
thus calculated as

CRPS(p (x)IObs)=

∫
(p (x)−H

(
x < IObs

)
)2dx,

where p(x) represents the distribution of the forecast, IObs

is the observed inflow (m3) and H is the empirical distribu-
tion of the observation, i.e. the step function which equals 0
when x <IObs and 1 when x >IObs. The lower the CRPS, the
better the performance of the forecast. In this study weekly
forecast and observation data were used to compute individ-
ual CRPS values. The skill score is then defined as

CRPSS= 1−
CRPSSys

CRPSRef .

When the skill score is higher (lower) than zero, the forecast-
ing system is more (less) skilful than the reference. When it
is equal to zero, the system and the reference have equiv-
alent skill. Following the recommendation by Harrigan et
al. (2018), we used ensemble streamflow prediction (ESP)
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as a hard-to-beat reference, which is more likely to demon-
strate the “real skill” of the hydrological forecasting system
(Pappenberger et al., 2015) and the added performance of
dynamic weather forecasts.

The mean error measures the difference between the fore-
casted and the observed inflows (at monthly scale). The mean
error is negative when the forecasts tend to underestimate the
observations and positive when the forecasts overestimate the
observations. The mean error for a given forecasting step and
lead time T (months) is

meanerror=
1
M

M∑
m=1

(
1
T

T∑
t=1

(
I

Sys
t,m − IObs

t

))
,

where I is the inflow (m3), t is the time step (months) and M

the total number of members (m) of the ensemble.

2.3.6 Forecast value evaluation and definition of the
benchmark operation

To evaluate the value of the hydrological forecasts, we com-
pared the simulated performance of the RTOS informed by
these forecasts with the simulated performance of a bench-
mark operation. The benchmark mimics common practices
in reservoir operation in the UK, whereby operational de-
cisions are made against a worst-case scenario – a repeat of
the worst hydrological drought on records (1975–1976). This
comparison enables us to show the potential benefits of us-
ing seasonal forecast with respect to the current approach.
We simulate the benchmark operation using similar steps
as in the RTOS represented in Fig. 1 but with three main
variations. First, instead of seasonal weather forecasts, we
use the historical weather data recorded in November 1975–
April 1976 (the worst drought on records). Second, the opti-
mizer determines the optimal scheduling of reservoir releases
(uS1,D and uS2,D) but not that of pumped inflows (uR,S1). In-
stead, these are determined by the rule curve applied in the
current operation procedures. Specifically, if at the start of
the week the storage level in S1 is below the storage volume
defined by the rule curve for that calendar day, the operation
triggers the pumping system during that week (we assume
that the triggered pumped inflow is equal to the maximum
pipe capacity). Third, the optimizer only aims at minimizing
pumping costs, whereas the resource availability objective is
turned into a constraint; i.e. the mean storage volume of the
two reservoirs must be maximum by the end of the pump
storage period (1 April), and no trading off with pumping
costs’ reduction is allowed.

3 Results

3.1 Forecast skills

First, we analyse the skill of DSP hydrological forecasts.
Figure 3a shows the average CRPSS at different time steps

Figure 3. Skill of the hydrological forecast ensemble (inflow to
reservoir S1) during the pumping licence window (1 November–
1 April) measured by the CRPSS (a) and the mean error (b). For
each time step, the skill is averaged over all the forecasts available
from that moment to the end of the pumping window (1 April). Red
lines represent the skill without bias correction of the meteorolog-
ical forcing (ECMWF seasonal forecasts), and blue lines represent
the skill after bias correction. Solid lines represent the average skill
over the period 2005–2016, while circles, crosses and triangles rep-
resent the skill in three particularly dry winters (November–April).
CRPSS= 1 corresponds to a perfect forecast, and CRPSS= 0 corre-
sponds to a forecast that has no skill with respect to the benchmark
(ESP).

within the pump storage period (November to April) before
(red) and after (blue) bias correction of the meteorologi-
cal forecasts. We compute the average CRPSS for a given
time step by averaging the CRPSS of all the forecasts used
from that time step to the end of the pump storage window
(1 April). For instance, the average forecast skill on 1 January
is obtained by averaging the CRPSS values of the hydrolog-
ical forecasts for the periods 1 January–1 April (3 months’
lead time), 1 February–1 April (2 months) and 1 March–
1 April (1 month). This aims to represent the average skill
available to the reservoir operator for managing the system
until the end of the pump storage period.

Before bias correction, the average skill score is positive;
i.e. the forecast is more skilful than the benchmark (ESP),
only in February and March, when the forecast lead time is
1 or 2 months (solid red line). The CRPSS is higher than av-
erage in the three driest winters, i.e. 2005–2006, 2010–2011
and 2011–2012 (dashed lines). If we compare DSP to DSP-
corr (red and blue solid lines), we see that bias correction
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deteriorates the average skill scores in February and March
(lead times of 1 and 2 months), while it improves them in
the previous months (when lead times are longer: 3, 4 and
5 months). In all cases though, the CRPSS values are nega-
tive; i.e. after bias correction the forecast is less skilful than
the benchmark (ESP). The same happens in the driest years
(dashed lines), for which bias correction mostly deteriorates
the skill score.

Figure 3b shows the average mean error of the forecasts at
different time steps (similarly to the CRPSS). It shows that
DSP systematically underestimates the inflows (i.e. mean er-
rors are negative) but less so in the three driest winters. Af-
ter bias correction (DSP-corr), this systematic underestima-
tion turns into a systematic overestimation. Also, the average
mean error is lower for shorter lead times (i.e. in February
and March), though not as much in the driest years.

In summary, we can conclude that bias correction does not
seem to produce an improvement in the forecast skill for our
observation period. On the other hand, what we find in our
case study is a clear signal of bias correction turning nega-
tive mean errors (inflow underestimation) into positive errors
(overestimation). So, while the magnitude of errors stays rel-
atively similar, the sign of those errors changes. We will go
back to this point later on, when analysing the skill–value
relationship.

3.2 Forecast value

The forecast value is presented here as the simulated system
performance improvement, i.e. increase in resource availabil-
ity and in pumping cost savings, with respect to the bench-
mark operation.

3.2.1 Effect of operational priority scenario and
forecast product on the forecast value

We start by analysing the average forecast value over the sim-
ulation period 2005–2016 (Fig. 4) for the three seasonal fore-
cast products (DSP, DSP-corr and ESP) and the perfect fore-
cast, under five operational policy scenarios (rao: resource
availability only; rap: resource availability prioritized; bal:
balanced; psp: pumping savings prioritized; and pso: pump-
ing savings only).

Firstly, we notice in Fig. 4 that the monthly pumping en-
ergy cost savings vary widely with the operational priority.
The range of variation depends on the forecast type, going
from GBP 20 000 to GBP 48 000 for the perfect forecast and
from GBP−77 000 to GBP 48 000 for DSP, DSP-corr and
ESP. For all forecast products, the improvement in resource
availability shows lower variability, with an improvement of
less than +2 % (of the mean storage volume in S1 and in S2
at the end of the optimization period) for rao and a deterio-
ration of −2 % for pso. While this seems to suggest a lower
sensitivity of the resource availability objective, variations of

Figure 4. Post-evaluation Pareto fronts representing the average
system performance improvement (over period 2005–2016) of the
real-time optimization system during the pumping licence window
(1 November–1 April) with respect to the benchmark (black dia-
mond), using four forecast products: non-corrected forecast ensem-
ble (DSP), bias-corrected forecast ensemble (DSP-corr), ensemble
streamflow prediction (ESP) and perfect forecast. For each of the
four forecast products, five scenarios of operational priorities are
represented: resource availability only (rao; in blue), resource avail-
ability prioritized (rap; in green), balanced (bal; in grey), pumping
savings prioritized (psp; in green) and pumping savings only (pso;
in red). For visualization purposes, the coloured circles group points
under the same operational priority scenario, and the dashed lines
link points using the same forecast product. The pumping energy
cost is calculated as the sum of the energy costs associated with
pumped inflows and pumped releases and the resource availability
as the mean storage volume in both reservoirs (S1 and S2) at the
end of the optimization period. Both objective values are rescaled
with respect to the performances of the benchmark operation.

a few percent points in storage volume may still be important
in critically dry years.

As for the forecast value, we find that the perfect forecast
brings value (i.e. a simultaneous improvement of both objec-
tives) in the two scenarios that prioritize the increase in re-
source availability (rao and rap), DSP brings no value in any
scenarios, DSP-corr has a positive value in the rap and bal
scenario and ESP in the bal only. In other words, real-time
optimization based on seasonal forecasts can outperform the
benchmark operation, but whether this happens depends on
both the forecast product being used and the operational pri-
ority.

An interesting observation in Fig. 4 is that the distance in
performance between using perfect forecasts and real fore-
casts (DSP, DSP-corr, ESP) is very small under scenarios that
prioritize energy savings (bottom-right quadrant) and much
larger under scenarios prioritizing resource availability (top
quadrants). This indicates a stronger skill–value relationship
under the latter scenarios; i.e. improvements in the forecast
skill are more likely to produce improvements in the forecast
value if resource availability is the priority.

Last, if we compare DSP with DSP-corr we see that the
effect of bias-correcting the meteorological forcing is mainly
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Figure 5. Post-evaluation Pareto fronts representing the average
system performance (over period 2005–2016) of the real-time opti-
mization system during the pumping licence window (1 November–
1 April) with respect to the benchmark (black diamond), using the
bias-corrected forecast ensemble (DSP-corr) with different ensem-
ble size and the mean of the forecast ensemble (DSP-corr determin-
istic). For practical purposes, only the resource availability priori-
tized scenario (rap) is represented for the DSP-corr. The annotation
numbers refer to the ensemble size.

a systematic shift to the right along the horizontal axis, i.e.
an improvement in energy cost savings at almost equivalent
resource availability. Thanks to this shift, in the scenario that
prioritizes resource availability (rap), DSP-corr outperforms
ESP. In fact, using DSP-corr is a win–win situation with re-
spect to the benchmark (i.e. the rap performance falls in the
top-right quadrant in Fig. 4), while using ESP is not, as it
improves the resource availability at the expense of pumping
energy savings (i.e. producing negative savings).

3.2.2 Effect of the forecast ensemble size on the
forecast value

We now analyse the effect that different characterizations of
the forecast uncertainty have on the DSP-corr forecast value.
We start with the extreme case when uncertainty is not con-
sidered at all in the real-time optimization, i.e. when we take
the mean value of the DSP-corr forecast ensemble and use it
to drive a deterministic optimization. The results are reported
in Fig. 5, which shows that the solution space shrinks to the
bottom-right quadrant, and, no matter the decision maker pri-
ority, the deterministic forecast only produces energy sav-
ings at the expense of reducing the resource availability. No-
tice that while this may still be acceptable in the scenarios
that prioritize energy savings (pso and psp), in the scenarios
where resource availability is optimized individually (rao) or
prioritized (rap), the fact that this objective is worse than in
the benchmark means that using the deterministic forecast
has effectively no value.

We also consider intermediate cases where optimization
explicitly considers the forecast uncertainty (i.e. it is based
on the average value of the objective functions across a fore-

cast ensemble), but the size of the ensemble varies between
5 and 25 members (the original ensemble size). For clarity of
illustration, we focus on the resource availability prioritized
(rap) scenario only. We choose this scenario because it seems
to best reflect the current preferences of the system managers,
whose priority is to maintain the resource availability while
reducing pumping costs as a secondary objective. Moreover,
the previous analysis (Fig. 4) has shown that the optimized
rap has a larger window of opportunity for improving perfor-
mance with respect to the benchmark and could potentially
improve both operation objectives if the forecast skill was
perfect.

For each chosen ensemble size, we randomly choose 10
replicates of that same size from the original ensemble, then
we run a simulation experiment using each of these repli-
cates and finally average their performance. Results are again
shown in Fig. 5. For a range of 10 to 20 ensemble mem-
bers, the forecast value remains relatively close to the value
obtained by considering the whole ensemble (25 members).
However, if only five members are considered, the resource
availability is definitely lower and cost savings higher, so that
the trade-off that is actually achieved is different from the
one that was pursued (i.e. to prioritize resource availability).
Notice that the extreme case of using one member, i.e. the
deterministic forecast case (green cross in Fig. 5), further ex-
acerbates this effect of “achieving the wrong trade-off” as
resource availability is even lower than in the benchmark.

3.2.3 Year-by-year analysis of the forecast value

Last, we investigate the temporal distribution of the forecast
skill and value (i.e. increased resource availability and energy
cost savings) along the simulation period and compare it to
the hydrological conditions observed in each year (Fig. 6).
The hydrological conditions are the sum of the initial stor-
age value and the total inflows during the optimization pe-
riod, hence enabling us to distinguish dry and wet years.
Again, for the sake of simplicity we focus on the simula-
tion results in the most relevant priority scenario of resource
availability priority (rap). First, we observe that 2 specific
years play the most important role in improving the system
performance with respect to the benchmark: 2010–2011 for
pumping cost savings (Fig. 6e) and 2011–2012 for resource
availability (Fig. 6d). These years correspond to the driest
conditions in the period of study (see Fig. 6a and the Sup-
plement for further analysis of the inflow data) but not to the
highest forecast skills either quantified with the CRPSS or
mean error (Fig. 6b and c). In general, the temporal distribu-
tion of the average yearly forecast skill does not show any
correspondence with the yearly forecast value. When com-
paring DSP-corr with DSP (blue and grey bars), we observe
that they perform similarly in terms of resource availability,
but DSP-corr performs better for energy savings. This differ-
ence was observed already when looking at average perfor-
mances over the simulation period (Fig. 4) and can be related
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Figure 6. Year-by-year (a) hydrological conditions (total observed inflows+ initial storage) and forecast skills of the meteorological forcing:
(b) CRPSS and (c) mean error. (d) Increase of resource availability and (e) pumping energy cost savings of the real operation system informed
by the dynamical streamflow prediction (DSP), the bias-corrected dynamical streamflow prediction (DSP-corr) and the ensemble streamflow
prediction (ESP) for the resource availability prioritized (rap) scenario. Please note that ESP is not shown in (b) as it is the CRPSS benchmark.

to the change in sign of forecasting errors induced by the bias
correction of the meteorological forcing (Fig. 3b). In fact,
without bias correction, reservoir inflows tend to be under-
estimated, which leads the RTOS to pump more frequently
and often unnecessarily (e.g. in 2005–2006, 2006–2007 and
2007–2008). With bias correction, instead, inflows tend to be
overestimated, and the RTOS uses pumping less frequently.
Interestingly, the reduction in pumping still does not prevent
the resource availability from being improved with respect
to the benchmark. This is achieved by the RTOS through a
better allocation of pump and release volumes over the opti-
mization period. When comparing DSP-corr with ESP, we
find that the largest improvements are gained in the same
years by both products, i.e. in the driest ones. As already
emerged from the analysis of average performances (Fig. 4),
we see that ESP achieves slightly better resource availabil-
ity than DSP-corr but with less pumping cost savings. ESP
in particular seems to produce “unnecessary” pumping costs
in 2006–2007, 2011–2012 and 2013–2014, where DSP-corr
achieves a similar resource availability (Fig. 6d) at almost no
cost (Fig. 6e). It must be noted that for the ESP approach,

these 3 specific years, 2006–2007, 2011–2012 and 2013–
2014, play the most important role in decreasing the pumping
energy cost savings with respect to the benchmark.

4 Discussion

Our study provides some insights into the complex relation-
ship between forecast skill and its value for decision-making.
Although these findings may be dependent on the case study
and time period that was available for the analysis, they still
enable us to draw some more general lessons that could be
useful also beyond the specific case investigated here.

First, we found that evaluating the usefulness of bias cor-
rection, and in particular linear scaling of the meteorological
forcing, is less straightforward than possibly expected. Our
results show that, on average, bias correction does not im-
prove the DSP forecast skill (as measured by the CRPSS and
mean error) and can even deteriorate it in dry years (Fig. 3).
This is because in our system DSP forecasts systematically
underestimate inflows (before bias correction), which means
their skill is relatively higher in exceptionally dry years and is
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deteriorated by bias correction. To the best of our knowledge,
no previous study has reported such difference in skill for
the ECMWF SEAS5 forecasts in dry years in the UK; hence
we are not able to say whether our result applies to other
systems in the region. However, the result points at a possi-
ble intrinsic contradiction in the very idea of bias-correcting
based on climatology. In fact, by pushing forecasts to be
more like climatology, bias correction may reduce the “good
signal” that may be present in the original forecast in years
that will indeed be significantly drier (or wetter) than clima-
tology. As exceptional conditions are likely the ones when
water managers can extract more value from forecasts, the
argument that bias correction ensures average performance
at least equivalent to climatology or ESP (e.g. Crochemore
et al., 2016) may not be very relevant here. We would con-
clude that more studies are needed to investigate the benefits
of bias correction when seasonal hydrological forecasts are
specifically used to inform water resource management.

While we could not find an obvious and significant im-
provement of forecast skill after bias correction, we found
a clear increase in forecast value (Fig. 4). The RTOS based
on bias-corrected DSP considerably reduces pumping costs
with respect to the original DSP while ensuring similar re-
source availability. A consequence of this is that decision
maker priorities rap (resource availability prioritized) and bal
(balanced) dominate (in a Pareto sense) the benchmark. We
explained this reduction in pumping costs by the fact that bias
correction changed the sign of the forecasting errors – from a
systematic underestimation of inflows to a systematic overes-
timation. While this change is again case-specific, a general
implication is that not all forecast errors have the same im-
pact on the forecast value, and thus not all skill scores may
be equally useful and relevant for water resource managers.
For example, in our case a score that is able to differentiate
between overestimation and underestimation errors, such as
the mean error, seems more adequate than a score such as
the CRPSS, which is insensitive to the error sign. This said,
our results overall suggest that inferring the forecast value
from its skill may be misleading, given the weak relationship
between the two (at least as long as we use skill scores that
are not specifically tailored to water resource management).
Running simulation experiments of the system operation, as
done in this study, can shed more light on the value of differ-
ent forecast products.

While we found a weak relationship between forecast skill
and value, we found that forecast value is more strongly
linked to hydrological conditions (Fig. 6). As expected, a
forecast-based RTOS system is particularly useful in dry
years, where we find most of the gains with respect to the
benchmark operation (Fig. 6). This is consistent with previ-
ous studies for water supply system, e.g. Turner et al. (2017).
In our case study,the RTOS not only improves resource avail-
ability but also reduces pumping costs because, in the drier
years, storage levels are more likely to cross the rule curve
and trigger pumping in the benchmark operation.

In light of the pre-processing costs of seasonal weather
forecasts, it is interesting to discuss whether their use is jus-
tified with respect to a possibly simpler-to-use product such
as ESP. While weather forecast centres are increasingly re-
ducing the pre-processing costs by facilitating access to their
seasonal weather forecast datasets, preparation of the fore-
casts, including bias correction, still needs a considerable
level of expertise. This is not only because tools for bias cor-
rection are not readily available but also because deciding
whether to apply bias correction in the first place may be not
obvious, as shown in this case study, and expertise is needed
to select and apply an adequate bias correction method. In
this study, we found ESP to be a hard-to-beat reference, not
only in terms of skill (as previously found by others, e.g. Har-
rigan et al., 2018) but also in terms of forecast value (Fig. 4).
In fact, while using DSP-corr delivers higher energy savings
with respect to ESP at least in the most relevant operating
priority scenario (the rap scenario; see Fig. 6), it is difficult
to argue whether these cost savings are large enough to jus-
tify the use of DSP-corr or whether water managers may fall
back on using simpler ESP.

One aspect for which our results instead point to a univocal
and clear conclusion is in the importance of explicitly consid-
ering forecast uncertainty (Fig. 5). In fact, the RTOS outper-
forms the current operation when using ensemble forecasts,
but it does not if uncertainty is removed and the system is op-
timized against the ensemble mean. In this case, in fact, DSP-
corr improves energy savings, but it decreases the resource
availability under all operational priority scenarios, including
those where resources availability should be prioritized. This
is in line with previous results obtained using short-term fore-
casts for flood control (Ficchì et al., 2016), which found that
consideration of forecast uncertainty could largely compen-
sate the loss in value caused by forecast errors, hydropower
generation (Boucher et al., 2012) and multi-purpose systems
(Yao and Georgakakos, 2001). It is also consistent with pre-
vious results by Anghileri et al. (2016), who did not find sig-
nificant value in seasonal forecasts while using a determin-
istic optimization approach (they did not explore the use of
ensembles though).

Finally, we tried to investigate whether we could evaluate
the effect of the ensemble size on the value of the uncertain
forecasts. We found that in our case study we could reduce
the number of forecast members down to about 10 (from the
original size of 25) with limited impact on the forecast value
(Fig. 5). This is important for practice because by reducing
the number of forecast members one can reduce the computa-
tion time of the RTOS. While we cannot say if such an “opti-
mal” ensemble size would apply to other systems, we would
suggest that future studies could look at how the quality of
the uncertainty characterization impacts the forecast value
and whether a “minimum representation of uncertainty” ex-
ists that ensures the most effective use of forecasts for water
resource management.
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From the UK water industry perspective, we hope our
results will motivate a move away from the deterministic
(worst-case scenario) approach that often prevails when us-
ing models to support short-term decisions and a shift to-
wards more explicit consideration of model uncertainties.
Such a move would also align with the advocated use of
“risk-based” approaches for long-term planning (Hall et al.,
2012; Turner et al., 2016; UKWIR, 2016a, b), which have
indeed been adopted by water companies in the preparation
of their Water Resource Management Plans (Southern Wa-
ter, 2018; United Utilities, 2019). The results presented here,
and in the above cited studies, suggest that greater consider-
ation of uncertainty and trade-offs would also be beneficial
in short-term production planning.

4.1 Limitations and perspective for future research
and implementation

Our study is subject to a range of limitations that should be
kept in mind when evaluating our results. First, the current
(and future) skill of seasonal meteorological forecasts varies
spatially across the UK depending on the influence of cli-
mate teleconnections and particularly the NAO. Given that
our case study is located in the south-west of the UK, where
the NAO influence has been found to be stronger than in the
east (Svensson et al., 2015), our simulated benefits of using
DSP seasonal forecasts may be particularly optimistic. Sec-
ond, the general validity of the results is limited by the rela-
tively short period (2005–2016) that was available for histor-
ical simulations and which may be insufficient to fully char-
acterize the variability of hydrological conditions and hence
accurately estimate the system’s performances (see, for ex-
ample, the discussion in Dobson et al., 2019). Hence, we aim
at continuing the evaluation of the RTOS over time as new
seasonal forecasts and observations become available. An-
other limitation is that we used the observed water demand,
hence implicitly assuming that operators know in advance
the demand values for the entire season with full certainty.

Future studies should extend the testing of the RTOS over
a longer time horizon and evaluate the influence of errors in
forecasting water demand. To improve our understanding of
the forecast skill–value relationship and the benefits of bias
correction, it would also be interesting to test the sensitivity
of our results to the use of different skill scores and bias cor-
rection methods. The higher skill of DSP forecast for 1- and
2-month lead times suggests that combining DSP and ESP
forecasts (for instance using the former for the first 2 months
and the latter for the rest of the forecast horizon) may also
be a promising approach to explore in future studies. Finally,
another direction for future improvement is the refinement of
the optimization approach, given that here we used a simpler
but sub-optimal method (see further discussion in the Sup-
plement).

The Python code developed for this study has been imple-
mented in a set of interactive Jupyter Notebooks, which we

have now transferred to the water company in charge of the
pumped storage decisions. A generic version of this code for
applying our methodology to other reservoir systems is avail-
able as part of the open-source toolkit iRONS (https://github.
com/AndresPenuela/iRONS, last access: 10 December 2020)
(Peñuela and Pianosi, 2020a). This toolkit aims at helping to
overcome some of the current barriers to the implementation
of forecast-informed reservoir operation systems, by provid-
ing better “packaging” of model results and their uncertain-
ties, enabling the interactive involvement of decision makers
and creating a standard and formal methodology to support
model-informed decisions (Goulter, 1992). Besides support-
ing the specific decision-making problem faced by the water
company involved in this study, through this collaboration we
aim at evaluating more broadly how effective our toolkit is to
promote knowledge transfer from the research to the profes-
sional community and gain a better understanding of how
decision makers view forecast uncertainty, the institutional
constraints limiting the use of this information (Rayner et al.,
2005) and the most effective ways in which forecast uncer-
tainty and simulated system robustness can be represented.

5 Conclusions

This work assessed the potential of using a real-time opti-
mization system informed by seasonal forecasts to improve
reservoir operation in a UK water supply system. While the
specific results are only valid for the studied system, they
enable us to draw some more general conclusions. First, we
found that the use of seasonal forecasts can improve the ef-
ficiency of reservoir operation but only if the forecast uncer-
tainty is explicitly considered. Uncertainty is characterized
here by a forecast ensemble, and we found that the perfor-
mance improvement is maintained also when the forecast en-
semble size is reduced up to a certain limit. Second, while dy-
namical streamflow prediction (DSP) generated by numerical
weather predictions provided the highest value in our case
study (under a scenario that prioritizes water availability over
pumping costs), still ensemble streamflow prediction (ESP),
which is more easily derived from observed meteorological
conditions in previous years, remains a hard-to-beat refer-
ence in terms of both skill and value. Third, the relationship
between the forecast skill and its value for decision-making
is complex and strongly affected by the decision maker prior-
ities and the hydrological conditions in each specific year. It
must be noted that in practice the decision-making priorities
are not solely related to the selection of a specific Pareto-
optimal solution but in the first place to the methodology,
i.e. the “risk” taken in using something other than the worst-
case scenario approach and in applying bias correction of the
meteorological forcing or not. We also hope that the study
will stimulate further research towards better understanding
the skill–value relationship and finding ways to extract value
from forecasts in support of water resource management.
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