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Abstract. Recent improvements in initialization procedures
and representation of large-scale hydrometeorological pro-
cesses have contributed to advancing the accuracy of hydro-
climatic forecasts, which are progressively more skillful over
seasonal and longer timescales. These forecasts are poten-
tially valuable for informing strategic multisector decisions,
including irrigated agriculture, for which they can improve
crop choices and irrigation scheduling. In this operational
context, the accuracy associated with the forecast system
setup does not necessarily yield proportional marginal ben-
efit, as this is also affected by how forecasts are employed
by end users. This paper aims at quantifying the value of hy-
droclimatic forecasts in terms of potential economic benefit
to the end users, which allows for the inference of a relation
between gains in forecast skill and gains in end user profit.
We also explore the sensitivity of this benefit to both forecast
system setup and end user behavioral factors. These analyses
are supported by an evaluation framework demonstrated on
the Lake Como system (Italy), a regulated lake operated for
flood protection and irrigation supply. Our framework relies
on an integrated modeling chain composed of three build-
ing blocks: bias-adjusted seasonal meteorological forecasts
are used as input to the continentally calibrated E-HYPE hy-
drological model; predicted lake inflows are used for condi-
tioning the daily lake operations; and the resulting lake re-
leases feed an agricultural model to estimate the net profit of
the farmers in a downstream irrigation district. Results sug-
gest that despite the gain in average conditions being negli-
gible, informing the operations of Lake Como based on sea-
sonal hydrological forecasts during intense drought episodes

allows about 15 % of the farmers’ profit to be gained with
respect to a baseline solution not informed by any forecast.
Moreover, our analysis suggests that behavioral factors cap-
turing different perceptions of risk and uncertainty signif-
icantly impact the quantification of the benefit to the end
users, whereby the estimated forecast value is potentially un-
dermined by different levels of end user risk aversion. Lastly,
our results show an intricate skill-to-value relation modu-
lated by the underlying hydrologic conditions, which is well
aligned over an exponential function in dry years, while the
gains in profit are almost insensitive to the improvements in
forecast skill in wet years.

1 Introduction

Recent advances in initialization procedures (e.g., Ceglar
et al., 2018) and representation of large-scale hydrometeo-
rological processes (e.g., Krysanova et al., 2017) have con-
tributed to greatly advancing the accuracy of hydroclimatic
services. State-of-the-art meteorological and hydrological
forecast products are increasingly skillful over seasonal and
longer timescales and thus are becoming valuable assets for
informing strategic decisions contributing to flood protection
(e.g., Coughlan de Perez et al., 2017; Neumann et al., 2018),
drought management (e.g., Crochemore et al., 2017; Turco
et al., 2017), or hydropower production (e.g., Block, 2011;
Boucher and Ramos, 2018). Irrigated agriculture is one of
the sectors expected to benefit the most from hydroclimatic
services to better inform crop choices and irrigation schedul-
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ing decisions (e.g., Li et al., 2017; Guimarães Nobre et al.,
2019), which strongly depend on the expected hydrometeo-
rological conditions.

In such operational contexts, it is key to communicate
forecast accuracy along with hydroclimatic services (Con-
treras et al., 2020). Accuracy depends on the forecast sys-
tem setup, which introduces uncertainties that depend on ini-
tial hydroclimatic conditions on the forecast date, scenarios
of predicted meteorological conditions (e.g., climate model
outputs), and sometimes the adopted impact model (Pech-
livanidis et al., 2020). At seasonal timescales, probabilistic
forecasts are often used to convey these uncertainties, po-
tentially adding value for decision-making (see Georgakakos
and Graham, 2008; Cloke and Pappenberger, 2009, and ref-
erences therein).

The idea of moving from forecast accuracy to value has
been explored in a few recent studies that quantify the value
generated by informing water system operations with perfect
or synthetic forecasts (e.g., Turner et al., 2017; Denaro et al.,
2017) or a prespecified real forecast product (e.g., Anghileri
et al., 2016; Nayak et al., 2018), in terms of increased sys-
tem reliability. Only a few studies (e.g., Li et al., 2017; De-
lorit and Block, 2019) assess the economic value of existing
hydroclimatic services in informing the solution of planning
problems, which require single decisions to be made (e.g.,
selection of crop to cultivate) without considering how they
influence analogous decisions in the future.

Building on these studies, in this paper we quantify the
value of hydroclimatic services by extending traditional fore-
cast quality assessment methods with estimates of the po-
tential economic benefit of the forecasts in informing opera-
tional decisions. The approach is demonstrated on the Lake
Como system (Italy), a regulated lake primarily operated for
flood control and irrigation supply. Here, we use an evalua-
tion framework to support the inference of a relation between
gains in forecast skill and in end user (farmers) profit over a
range of diverse hydroclimatic conditions, including extreme
drought episodes. The proposed framework relies on an in-
tegrated modeling chain composed of three building blocks:
(1) bias-adjusted seasonal meteorological forecasts are used
as input to a European-wide hydrological model; (2) pre-
dicted lake inflows are then used for conditioning the daily
lake operations; and (3) the resulting lake releases finally
feed a crop growth model to estimate the forecast value in
terms of gain in net profit for the farmers in the downstream
irrigation district. This combination of a state-of-the-art hy-
droclimatic service with a detailed model of the Lake Como
basin makes our findings particularly valuable for the se-
lected case study area, which is located in the region with the
highest share of irrigated areas in Europe (Eurostat, 2019).

In this context, we used our framework to isolate the com-
ponent of the hydrological modeling chain mostly contribut-
ing to the estimated forecast value, as well as to assess the
sensitivity of the results to different end user interpretations
of the probabilistic forecast information. Forecast value is fil-

tered by the way end users make use of the provided infor-
mation, and there is growing evidence that higher forecast
accuracy does not necessarily imply better decisions because
of the challenges associated with the human interpretation of
forecasts as well as with the communication of probabilistic
information (Ramos et al., 2010, 2013; Crochemore et al.,
2016). The personal interpretation of uncertainty is indeed
a subjective process affected by multiple factors, including
the way outcomes are framed, the severity of the event being
forecasted, and the personal behavioral attitude of the end
users (Gigerenzer et al., 2005; Joslyn et al., 2009). Individ-
ual behaviors and risk perceptions therefore play a key role in
influencing the end user assessment of probabilistic seasonal
forecast value (Kirchhoff et al., 2013). However, this point
has been so far investigated mostly via serious games, inter-
views, or direct interactions with decision makers, while our
work aims at providing a quantitative analysis of this chal-
lenge by simulating how different behavioral attitudes (mod-
eled by specific forecast quantiles capturing increasing lev-
els of drought risk aversion) influence the interpretation of
the forecast ensemble and ultimately impact operational de-
cisions and resulting performance.

The paper is organized as follows: in the next section we
introduce the Lake Como study site, while Sect. 3 describes
the adopted evaluation framework. Results and discussion
are reported in Sect. 4, while conclusions and final remarks
are presented in the last section.

2 Study site

Located in the Italian Alps, the Lake Como basin (Fig. 1) is a
highly controlled water system, including a large regulated
lake (active capacity 247 Mm3) serving a wide irrigation-
fed cultivated area (1320 km2), where maize is the most
widely grown and productive crop (52 % of the area and
1.5 Mt yr−1). The hydrometeorological regime is typical of
subalpine regions, characterized by dry periods in winter and
summer and peaks in late spring and autumn fed by snowmelt
and rainfall, respectively. Snowmelt during May–July is the
most important contribution to the accumulation of the sea-
sonal storage, which is then used for irrigation supply in the
summer during the peak demand period. The latter often ex-
ceeds the natural water availability and makes the role of the
lake operation paramount in the system.

The regulation of the lake has been actively studied since
the 1980s (e.g., Guariso et al., 1984, 1986) and is driven by
two primary competing objectives: water supply, mainly for
irrigation, and flood control in the city of Como, which sits
at the lowest elevation on the lake shoreline and hence is
exposed to flood risk. The agricultural districts downstream
prefer to store snowmelt in the lake to satisfy the peak sum-
mer water demands, when the natural inflow is insufficient
to meet irrigation requirements. Yet, storing such water in-
creases the lake level and, consequently, the flood risk. Ad-
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Figure 1. Map of the Lake Como basin. The map was generated via
Q-GIS using layers from the Geoportal of Regione Lombardia (http:
//www.geoportale.regione.lombardia.it/, last access: July 2016).

ditional interests are related to navigation, fishing, tourism,
and ecosystems, which further challenge the existing water
management strategies and motivate the search for more effi-
cient solutions relying on hydroclimatic services. On the ba-
sis of previous works (e.g., Castelletti et al., 2010; Giuliani
and Castelletti, 2016; Giuliani et al., 2016a; Denaro et al.,
2017), the two primary objectives (both to be minimized) can
be formulated as follows:

– Flood control (J F) is the average annual number of
flooding days in the simulation horizon, defined as days
when the lake level is higher than the flooding threshold
of 1.24 m.

– Water supply deficit (JD) is the daily average quadratic
water deficit between the lake release and the daily wa-
ter demand of the downstream system, subject to the
minimum environmental flow constraint to ensure ade-
quate environmental conditions in the Adda River. The
water demand is given by the sum of the water rights
of different users and does not vary across years. This
quadratic formulation (Hashimoto et al., 1982) gener-
ates hedging strategies that minimize large deficits that
would generate crop failures while accepting small, dis-
tributed deficits that can be tolerated by most cultivated
crops. Notably, the computation of the water supply
deficit includes a time-varying parameter that penalizes
the deficit experienced after germination to the begin-
ning of phenological maturity more, with these crop
stages determined by the agricultural district model.

Figure 2. Overview of the integrated modeling chain used in the
evaluation framework.

3 Evaluation framework

The overall workflow of our evaluation framework relies on
an integrated modeling chain composed of the three build-
ing blocks illustrated in Fig. 2: (i) the E-HYPE hydrologi-
cal model produces seasonal forecasts of the Lake Como in-
flows driven by ECMWF System 4; (ii) the Lake Como op-
erational model designs the optimal lake regulation includ-
ing the inflow forecasts as additional input in the operating
policy that determines the water released by the dam; and
(iii) the agricultural district model estimates the profit of the
farmers in the Muzza district, which is the largest among the
irrigation districts served solely by the Adda River (about
700 km2) as well as the one with the largest water conces-
sion (2370 Mm3 yr−1). A detailed description of each com-
ponent of the evaluation framework is provided in the next
subsections.

3.1 E-HYPE hydrological model

The European setup of the HYPE hydrological model (E-
HYPE; Hundecha et al., 2016) was used to generate dynami-
cal seasonal streamflow forecasts (Pechlivanidis et al., 2020).
E-HYPE is a process-based model that reproduces stream-
flow and water balance over the entire European continent.
Its parameters were calibrated based on a set of 115 catch-
ments representing the diversity of land-use and soil charac-
teristics, as well as human impacts, and over the 1980–1999
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period. The model was validated in about 550 catchments
for which streamflow observations are available (see details
in Hundecha et al., 2016). Here, precipitation and tempera-
ture data from the WFDEI (WATCH Forcing Data methodol-
ogy applied to ERA-Interim data) reanalysis (Weedon et al.,
2014) were used as reference, and streamflow simulations
were generated by forcing the E-HYPE model with WFDEI
meteorological inputs. In the Lake Como basin, E-HYPE ex-
hibits good overall performance in simulating yearly stream-
flow, though a distinct bias can be seen (Fig. 3a). E-HYPE
achieves an average yearly root mean squared error (RMSE)
of 748 Mm3 yr−1 in the Lake Como basin. This yearly per-
formance hides an underestimation of winter flows and an
overestimation of summer flows at the monthly time step
(Fig. 3b), which is potentially due to an inaccurate repre-
sentation of snowmelt dynamics in E-HYPE along with the
alterations of the natural hydrologic processes introduced by
the operations of the Alpine hydropower reservoirs in the up-
stream part of the basin. Despite these biases, Crochemore
et al. (2020) showed that E-HYPE seasonal forecasts can
yield skillful information as a local model when looking at
anomalies relative to model long-term means as done in this
work, whereby the Lake Como operations are optimized us-
ing E-HYPE seasonal forecast anomalies.

3.2 Operational model of the lake

As mentioned in the previous section, Lake Como is pri-
marily operated looking at two competing objectives, namely
water supply and flood control in the city of Como. The oper-
ational model of the lake is focused on reproducing the con-
trolled dynamics of the lake, which is described by a mass
balance equation assuming a modeling and decision-making
time step of 24 h; i.e.,

st+1 = st + qt+1− rt+1, (1)

where st is the lake storage (m3), and qt+1 and rt+1 are the
net inflow (i.e., inflow minus evaporation losses) and the out-
flow volumes in the time interval [t, t + 1), respectively. The
release volume rt+1 is determined by a nonlinear, stochastic
function that depends on the release decision ut (Soncini-
Sessa et al., 2007). This function allows the effect of the un-
certain inflows between the time t (at which the decision is
taken) and the time t + 1 (at which the release is completed)
to be represented. The actual release might not be equal to the
decision due to existing legal and physical constraints on the
reservoir level and release, including spills when the reser-
voir level exceeds the maximum capacity.

The lake operation is determined by a closed-loop oper-
ating policy p that computes the release decision ut at each
time step t as a function of the day of the year dt , the lake
level ht , and the inflow forecast q̂t+τ over the lead time
τ . The Pareto-optimal operating policies are computed by
solving a multi-objective optimal control problem (Castel-

letti et al., 2008), formulated as follows:

p∗ = argmin
p

J (p)= |J F,JD
|. (2)

Note that the resolution of this problem does not yield a
unique optimal solution but a set of optimal solutions ex-
ploring different trade-offs between flood control and irriga-
tion supply. A solution is defined as being Pareto-optimal (or
nondominated) if no other solution gives a better value for
one objective without degrading the performance in at least
one other objective. The image in the objective space of the
Pareto-optimal solutions is the Pareto front. To evaluate the
quality of the Pareto front we used the hypervolume indica-
tor (HV), which allows for set-to-set evaluations by measur-
ing both the convergence of the Pareto front under examina-
tion F to the optimal one F∗ and the representation of the
full extent of trade-offs in the objective space (Zitzler et al.,
2003). Specifically, this metric measures the volume of ob-
jective space dominated by the considered set of solutions as
the hypervolume ratio between F and F∗.

3.3 Agricultural district model

The agricultural district model simulates the dynamic pro-
cesses in the Muzza irrigation district. The model is com-
posed of three distinct modules devoted to specific tasks:
(i) a distributed-parameter water balance module that sim-
ulates water sources, conveyance, distribution, and soil–crop
water balance (Facchi et al., 2004); (ii) a heat unit module
that computes the sequence of growth stages as a function of
the temperature (Neitsch et al., 2011); and (iii) a crop yield
module that estimates the optimal and actual yields, account-
ing for the effects of stresses due to insufficient water supply
that may have occurred during the agricultural season (Ste-
duto et al., 2009). The water balance module partitions the
irrigation district with a regular mesh of cells with a side
length of 250 m, which allows for the representation of the
space variability of crops, soil types, meteorological inputs,
and irrigation distribution. Further details about the different
model components are provided in Giuliani et al. (2016c) and
Li et al. (2017). In this work we are however not exploring
any farmers’ decisions, and the agricultural district model is
therefore not informed by the seasonal forecasts, while the
value of weather and climate services in informing cropping
pattern decisions is investigated in Li et al. (2017).

3.4 Data and experimental settings

The assessment of the forecast operational value is per-
formed over the time period from 1 January 1996 to 31
December 2008. This period was selected because it shows
good variability in the local hydrological conditions, includ-
ing some intense droughts events that negatively impacted
the agricultural production of the system.

For the purpose of this study, we consider two ensem-
ble streamflow forecasts produced by E-HYPE. The first one
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Figure 3. Annual mean accumulated flow (a) and monthly mean accumulated flow from observations and E-HYPE simulations from 1996
to 2008 (b).

is named ESP (ensemble streamflow prediction; Day, 1985)
and is generated by forcing E-HYPE with WFDEI histor-
ical scenarios of precipitation and temperature that corre-
spond to the time period of the forecast. The second one is
named SYS4 and uses dynamical precipitation and tempera-
ture forecasts from the European Centre for Medium-Range
Weather Forecasts (Molteni et al., 2011) as input to the E-
HYPE model. These forecast inputs are bias-adjusted against
the WFDEI reference with the Distribution-Based Scaling
method (Yang et al., 2010) prior to running the hydrologi-
cal model. Both ESP and SYS4 forecasts are delivered once
a month in the form of a 15-member ensemble with a 7-
month lead time. The ensemble means of both ESP and SYS4
are then accumulated over a lead time of 51 d. This time
frame was demonstrated by Denaro et al. (2017) to be the
most valuable among different lead times from 1 week to 2
months for improving Lake Como operations. In addition to
considering the ensemble means, we investigate the sensitiv-
ity of the overall assessment framework with respect to end
user behavioral factors. Specifically, we replace the ensem-
ble mean with the 25th and 10th percentiles as well as with
the ensemble minimum, which capture increasing levels of
drought risk aversion. Lastly, the operational value of these
forecast systems is benchmarked against a set of baseline so-
lutions that rely on the local observed climatology and two
sets of upper bound solutions using perfect forecasts corre-
sponding to either E-HYPE simulations forced with meteo-
rological observations or the observed lake inflows.

The comparative analysis of results obtained using differ-
ent forecast products allows the sources of forecast value to
be isolated, as illustrated in Table 1. The sources of fore-
cast value include the initial hydrologic conditions, the hy-
drologic model, the predictions of precipitation and tempera-
ture, and the behavioral factors (i.e., the different percentiles
of the forecast ensemble considered). In this matrix, each cell
identifies the specific forecasting component that is respon-
sible for the differences in farmers’ profit using the forecast
system indicated in the columns with respect to the bench-
mark indicated in the rows.

To optimize the operating policy (see Eq. 2), we used the
evolutionary multi-objective direct policy search (EMODPS)

method (Giuliani et al., 2016b), a reinforcement learning
approach that combines direct policy search, nonlinear ap-
proximating networks, and multi-objective evolutionary al-
gorithms. The policies are defined as Gaussian radial basis
functions (Busoniu et al., 2011), and the policy parameters
are optimized using the self-adaptive Borg Multiobjective
Evolutionary Algorithm (Hadka and Reed, 2013), a combi-
nation that has been demonstrated to be effective in solv-
ing these types of multi-objective policy design problems
featuring the possibility of enlarging the information used
for conditioning operational decisions (Giuliani et al., 2015;
Zatarain-Salazar et al., 2016; Giuliani et al., 2018). Each op-
timization was run for 2 million function evaluations over the
simulation horizon 1996–2008. To improve solution diversity
and avoid dependence on randomness, the solution set from
each formulation is the result of 20 random optimization tri-
als. The final set of Pareto-optimal policies for each exper-
iment is defined as the set of nondominated solutions from
the results of all the optimization trials. In total, the analy-
sis comprises 320 million simulations that required approx-
imately 42 670 computing hours on an Intel Xeon E5-2660
2.20 GHz with 32 processing cores and 96 GB RAM. These
high computational requirements explain the use of the wa-
ter supply deficit as objective in the policy design rather than
the farmers’ profit, as the latter would require including the
simulation of the agricultural model within the EMODPS op-
timization, substantially increasing the overall computation
cost.

4 Results and discussion

4.1 Forecast value for irrigated agriculture

Following the proposed evaluation framework (Fig. 2), the
operational value of alternative forecast systems can firstly be
assessed in terms of improvement in the overall set of Pareto-
optimal solutions produced by the use of forecast information
using the hypervolume indicator. Then, the simulation of the
agricultural district model will provide a more tangible mea-
sure of the forecast operational value by converting the water
supply deficit JD into monetary values of farmers’ profit.
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Table 1. Benchmarking matrix to isolate the sources of forecast value: baseline is the observed climatology; ESP is the ensemble streamflow
prediction of E-HYPE; SYS4 is the prediction generated by using dynamical precipitation and temperature forecasts as input for E-HYPE;
and SYS4∗ replaces the ensemble mean used in SYS4, with different statistics capturing increasing levels of drought risk aversion.

ESP SYS4 SYS4∗

baseline hydrological model hydrological model + initial hydrological model + initial
+ initial conditions conditions + P,T forecast conditions + P,T forecast

ESP P,T forecast P,T forecast + behavioral factors

SYS4 behavioral factors

Table 2. Value of ESP, SYS4, and perfect forecasts in terms of hy-
pervolume indicator (HV).

Policies HV 1HV Relative
1HV

Baseline 0.32 – –
ESP 0.34 0.02 6 %
SYS4 0.37 0.05 16 %
Perfect forecast (EHYPE sim) 0.67 0.35 109 %
Perfect forecast (observations) 1.00 0.68 212 %

The performance of different sets of solutions obtained by
solving the problem in Eq. (2) is shown in Fig. 4a, where
each circle represents a different operating policy of Lake
Como. The two axes of the figure represent the two operat-
ing objectives (to be minimized), and the arrows indicate the
direction of increasing preference, with the best solution lo-
cated in the bottom-left corner of the figure. The comparison
of the different Pareto-optimal sets shows large differences
in performance that determine a clear ranking of the gener-
ated solutions. Not surprisingly, the use of perfect forecasts,
either in the form of local observations (black circles) or of
E-HYPE simulation (blue circles), allows for the design of
(ideal) policies that largely outperform the other solutions.
The policies using ESP and SYS4 forecasts are also supe-
rior to the baseline solutions, particularly in terms of water
supply deficit values. The 51 d lead time considered is in-
deed too long to provide valuable information to control the
fast flood dynamics, which is on the order of a few days and
would therefore require much shorter lead times. However,
the downward shift of the Pareto fronts indirectly influences
the performance in flood control as the new sets of operating
policies using forecast information allow better compromise
alternatives to be identified. The numerical quantification of
the improvements in terms of both objectives is provided
by the values of hypervolume indicator reported in Table 2,
which estimate the ESP and SYS4 forecast values to be equal
to 6 % and 16 % of the system performance, respectively.

To better understand the contribution of the different fore-
cast information to the Lake Como operations, we analyze
the dynamic behavior of the system under operating policies
that use distinct information. This analysis focuses on the so-
lutions located along the dashed green line in Fig. 4a, which
marks the performance of the historical lake regulation in
terms of flood control. The rationale of this choice is to look
at solutions that reduce the water supply deficit JD without
degrading the performance in J F. The historical regulation
cannot be used as a reference since it also includes additional
objectives not accounted for in our model (e.g., navigation,
fishing, tourism, ecosystem). All the simulated trajectories
of the Lake Como level under each considered policy show
a clear annual pattern, with the highest levels observed in
late spring due to the snowmelt contribution (Fig. 4b). In this
period, maximizing the storage while avoiding floods is cru-
cial to support the summer drawdown cycle driven by high
irrigation demands. The policies conditioned on perfect fore-
casts (black and blue lines) are able to maintain the highest
level and to delay the drawdown. Conversely, the baseline
solution (gray line), which has no information about future
inflows, reaches the highest level at the beginning of May,
and, subsequently, the level is maintained about 10 cm below
the perfect forecast trajectory to allow space for buffering po-
tential floods. A similar trajectory is followed by the policy
informed by ESP and SYS4 forecasts (orange and red lines,
respectively), which are on average almost overlapped until
the third week of June, while they look more separated dur-
ing the drawdown period with the SYS4 that is able to keep
a high level also in July. In addition to the average levels, it
is interesting to investigate the lake dynamics simulated un-
der different solutions during the extreme drought recorded
in 2005 (Fig. 4c). The low inflows experienced during this
drought event produced an early drawdown of the lake level
starting at the beginning of June, when the downstream water
demand is at its maximum, with the levels reaching the lower
limit of −0.50 m around middle August. This extreme event
confirms and emphasizes the differences observed in the av-
erage lake levels; the policies conditioned on perfect fore-
casts maintain the highest level from April to mid-August,
thus delaying the drawdown. ESP and SYS4 forecasts, al-
though less efficient than the perfect forecast solutions, are
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Figure 4. Performance obtained by different Lake Como operat-
ing policies (a) informed with ESP and SYS4 forecasts, along with
the upper bound of the system performance (perfect inflow fore-
casts from observations or E-HYPE simulation) and the baseline
operating policies based on observed climatology. The dashed green
line marks the performance of the historical lake regulation in terms
of flood control. Analysis of average Lake Como levels (measured
with respect to the Malgrate reference level at 197.37 m a.s.l.) un-
der different operating policies (b) and during the extreme drought
recorded in 2005 (c).

able to keep higher lake levels than the baseline solution from
mid-May to the beginning of July, thus reducing the water
supply deficit. ESP and SYS4 solutions then reach lower lev-
els than the baseline in the second half of the 2005 summer.
This strategy can be considered an extreme drought mitiga-
tion measure triggered by the extreme drought conditions
predicted for August in order to support a more reliable ir-
rigation supply than under the baseline operations by sacri-
ficing a few extra centimeters of lake level.

Figure 5. Comparison of gains in farmers’ profit with respect to the
baseline solution under different Lake Como operating policies in-
formed with ESP and SYS4 forecasts, along with the upper bound
of the system performance (perfect inflow forecasts from observa-
tions or the E-HYPE simulation).

This analysis can be translated into economic terms via
simulation of the agricultural district model, which esti-
mates the crop production and the associated net profit (i.e.,
gross revenue minus production costs, also accounting for the
EU Common Agricultural Policy subsidies; Gandolfi et al.,
2014) for the farmers in the Muzza irrigation district served
by the Lake Como releases under different operating poli-
cies. Figure 5 shows the same ranking of solutions obtained
in the space of the operating objective (Fig. 4a), with the
use of forecast information that allows, on average, from
1 % (ESP forecast) to 3.8 % (perfect forecasts from observa-
tions) of annual farmers’ profit (i.e., from EUR 300 000 yr−1

to EUR 900 000 yr−1) to be gained in comparison to the
EUR 24.07 million yr−1 attained by the baseline solution. In-
terestingly, these values are much larger when evaluated over
the 2005 drought, when the baseline annual profit is only
20 % of the 1996–2008 average value. In this case, the per-
fect forecasts generate a profit that is 134 % (observations)
and 92 % (E-HYPE simulation) higher than the baseline; the
value of ESP and SYS4 also grows, producing a 5 % and
16 % increase in farmers’ profit, respectively. These results
suggest the large potential for using E-HYPE forecasts in the
management of extreme droughts.

4.2 Impact of forecast system setup and behavioral
factors on forecast value

Following the benchmarking analysis in Table 1, we inves-
tigate the isolated sources of forecast value by assessing the
sensitivity of the farmers’ profit to both the forecast system
setup and end user behavioral factors. For the former aspect,
we compare our baseline solution against the operating poli-
cies informed by ESP and SYS4 forecasts (using the ensem-
ble means). For the latter, we explore increasing levels of risk
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aversion in the use of SYS4 forecasts by informing the oper-
ating policy with the 25th and 10th percentiles as well as the
minimum of the forecast ensemble.

The results are reported in the comparative matrix in Ta-
ble 3, which shows again the superiority of ESP and SYS4
over the baseline. Interestingly, the role of predicted precip-
itation and temperature in drought conditions differs from
the average conditions. The use of SYS4 instead of ESP in
2005 generates a 11 % gain in farmers’ profit, while this dif-
ference drops to 0.2 % in average conditions. Over the full
period, the most important components of the forecast sys-
tem are the hydrological model and the initial conditions,
which together produce more than a 1 % increase in farmers’
profit. Hydrological initial conditions provide the most sim-
ilar gains between the entire period and the 2005 dry condi-
tions, suggesting that this component is the least sensitive to
hydrological conditions. The analysis of the behavioral fac-
tors shows that the potential operational value of SYS4 de-
pends on the level of risk aversion used in interpreting the
information provided by the forecast ensemble. The average
1.2 % increase in farmers’ profit with respect to the baseline
using the ensemble average grows to 1.35 % when the pol-
icy is informed by the ensemble minimum, probably because
E-HYPE generally overestimates observed inflows (Fig. 3a),
and predictions of winter low flows are more interesting for
managing drought risk. However, results do not demonstrate
a linear relationship between forecast value and risk aversion,
with the average gain over the baseline being 1.16 % when
using the 10th percentile of the ensemble (which is equal to
the gain produced by the ensemble mean) and 0.9 % when
using the 25th percentile of the ensemble.

In addition, our results show that the average contribu-
tion to the forecast value of predicted precipitation and tem-
perature (+0.12 %) is comparable to the one of the isolated
behavioral factors. A solution that uses the ensemble min-
imum produces a profit 0.14 % higher than using the en-
semble mean (+0.31 % with respect to ESP), whereas the
25th percentile of the ensemble generates a 0.31 % reduction
(−0.14 % with respect to ESP). This means that the added
value of SYS4 meteorological forecasts can be potentially
undermined if end users are not able to properly extract the
most valuable information from the forecast ensemble. How-
ever, it should be noted that our results also show that there is
not a single best statistic that consistently provides the most
valuable information for improving the Lake Como opera-
tions. In average conditions, using the ensemble minimum
marginally improves the farmers’ profit with respect to all
the other solutions informed by SYS4 forecasts; conversely,
during the 2005 drought, using the 10th percentile is more
valuable than the minimum. The use of risk-averse statis-
tics in interpreting the forecast ensemble is therefore rec-
ommended for water supply operations exposed to drought
risk, but more extensive investigations over multiple extreme
events and, possibly, across different case studies are neces-
sary to provide general recommendations.

4.3 From forecast skills to end user value

Lastly, we aim to identify a relation between the increase in
forecast skill and the resulting gain in farmer profit from the
isolated forecast system components. Here, skill is computed
as 1−RMSES/RMSEB, where S is the considered forecast
system selected from the columns of Table 3, and B is the
benchmark used to isolate the sources of forecast skill/value
selected from the rows of the table. The general assumption
is that a gain in forecast skill should result in a gain in profits;
however, the scatterplots in Fig. 6 show that this relation is
more complex and is strongly dependent on the hydrologic
conditions (i.e., annual inflow) of the considered year. The
overall skill–profit relation in Fig. 6a suggests the existence
of an exponential function in dry years (brown circles), while
in wet years (green circles) the gain in profit does not seem
to be sensitive to the gain in skill. This dependence is con-
firmed by Fig. 6b, where the dry years follow an exponen-
tial relationship quite well (i.e., the fitted function attains a
R2
= 0.87), according to which a 10 % improvement in fore-

cast skill obtained by initializing the hydrological model is
associated with a 1 % gain in farmers’ profit. Conversely, the
blue circles are almost horizontally distributed, with the gain
in profit almost insensitive to the improvements in forecast
skill.

Interestingly, results significantly change when we com-
pare the SYS4 mean against ESP to isolate the gain from
dynamical precipitation and temperature forecasts (Fig. 6c).
The forecasts are characterized by small losses and gains
in both skill and profit that are not systematic and hardly
interpretable. Moreover, in dry years the gains in skill us-
ing SYS4 forecasts do not necessarily translate into a gain
in profit. Similar results appear in panels d, e, and f of the
figure, which explore the gain in skill and profit generated
by risk-averse behaviors against the SYS4 mean benchmark.
However, in these three scatterplots we can still notice an ex-
ponential skill–profit relation for the driest years (dark brown
circles). If we focus on the 2005 drought, which is the darkest
circle in the top-right corner of Fig. 6d, e, and f, we observe
an average 45 % increase in skill that is associated with an
average 14 % gain in farmer profit. In these cases, the skill to
profit relation becomes 3 to 1, confirming that improving the
skill of seasonal forecasts is expected to be particularly valu-
able to inform the management of extreme drought events.

4.4 Limitations and future research

A limitation in the presented results is the relatively small
number of points used to fit the forecast skill–value rela-
tionship. While it would certainly be interesting to repeat
the analysis across multiple drought events as well as across
different case studies characterized by diverse hydroclimatic
regimes, in the context of this work we preferred to perform
the analysis using highly detailed models whose associated
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Table 3. Results of benchmarking analysis to isolate the sources of forecast value. The matrix reports the percentage change in farmers’
profit for the forecast systems in the columns with respect to the benchmarks in the rows, estimated as average over the 1996–2008 period
and for the 2005 drought (in parenthesis).

ESP SYS4 – mean SYS4 – min SYS4 – p10 SYS4 – p25

Baseline 1.04 (4.65) 1.21 (16.13) 1.35 (36.26) 1.16 (40.80) 0.90 (22.32)
ESP 0.17 (10.97) 0.31 (30.20) 0.12 (34.54) −0.14 (16.88)
SYS4 – mean 0.14 (17.34) −0.05 (21.25) −0.31 (5.33)
SYS4 – min −0.19 (3.33) −0.45 (−10.23)
SYS4 – p10 −0.26 (−13.13)

Figure 6. Scatterplot between forecast skill and value. The color of
the circles represents the hydrologic conditions (i.e., annual inflow
to the lake) of the different years. Markers represent either an iso-
lated component of the forecast system or a behavioral factor for
each year over the 1996–2008 time period: all components (a), ESP
vs. baseline (b), SYS4 – mean vs. ESP (c), SYS4 – min vs. SYS4
– mean (d), SYS4 – p10 vs. SYS4 – mean (e), and SYS4 – p25 vs.
SYS4 – mean (f).

computational requirements limit the possibility of easily in-
creasing the sample size.

Moreover, it could be interesting to verify if the conclu-
sions drawn by Crochemore et al. (2020) hold for the Lake
Como basin by comparing the skill and value of E-HYPE
forecasts against the ones generated by a fine-tuned local hy-
drologic model. Extending the economic analysis to other
irrigated agricultural systems as well as other sectors (e.g.,
hydropower, flood protection) is also warranted. Finally, it
would be interesting to assess the value of hydroclimatic ser-
vices under a projected future climate characterized by more
frequent and intense extreme events, which could make fore-
cast information more valuable than under the historical cli-
mate.

5 Conclusions

In this paper, we quantify the value of hydroclimatic services
in terms of added economic benefit of the forecasts in in-
forming end user decisions. Moreover, we analyze the iso-
lated sources of forecast value in terms of both forecast sys-
tem setup and end user behavioral factors, and we also infer a
relation between gains in forecast skill and gains in end user
value. The evaluation framework is applied to the operations
of Lake Como in the Italian lake district.

Numerical results demonstrate the potential of the E-
HYPE hydrological forecast to inform the operations of Lake
Como, generating an average EUR 290 000 yr−1 gain in the
net profit of the farmers served by the lake releases (about
1 % of the average profit obtained by a baseline solution
without forecast information). This gain rises up to 16 % (i.e.,
EUR 800 000 against a baseline profit equal to EUR 4.9 mil-
lion) during the extreme drought experienced in 2005.

The analysis of the isolated sources of the estimated fore-
cast value attributes the largest share of value to the initial-
ization of the hydrological forecasts with conditions relevant
to the forecast issue date. For the extreme drought of 2005,
the forecast value is instead mostly attributable to the use of
precipitation and temperature predictions and to risk-averse
decisions focused on the lowest part of the forecast ensem-
ble. In addition, our results show the need of transitioning
from forecast skill assessment to integrated frameworks that
include decision models and account for end user behav-
ioral factors capturing different perceptions of risk and un-
certainty. Investing in advanced training for decision makers
and reservoir operators is expected to be crucial for maxi-
mizing the uptake of forecast information and its operational
value (Crochemore et al., 2016). Conversely, the added value
of hydroclimatic services might be undermined if end users
are not able to adequately interpret the uncertainty associ-
ated with the forecast ensemble. Lastly, our results suggest a
complex skill-to-value relation modulated by the underlying
hydrologic conditions. While the gains in profit are almost
insensitive to the improvements in forecast skill in wet years,
our results show an exponential skill-to-value relation in dry
conditions, where large gains in forecast skills are necessary
to generate moderate gains in end user profit. This ratio be-
comes less demanding during extreme drought events.
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Code and data availability. The seasonal forecasts obtained
through E-HYPE are publicly available on the HYPE
web portal (https://hypeweb.smhi.se/explore-water/forecasts/
seasonal-forecasts-europe/, SMHI, 2017). Local observations
of lake inflows along with the other meteorological vari-
ables used by the agricultural district model were provided
by Consorzio dell’Adda (http://www.addaconsorzio.it, Con-
sorzio dell’Adda, 2016) and by Agenzia Regionale per la
Protezione dell’Ambiente (https://www.arpalombardia.it/Pages/
Meteorologia/Osservazioni-e-Dati/Dati-in-tempo-reale.aspx,
ARPA Lombardia, 2015). The source code for the Lake Como
simulation and EMODPS implementation is available on GitHub
(https://github.com/mxgiuliani00/LakeComo, Giuliani and Envi-
ronmental Intellingence Lab, 2019).
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