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Abstract. Soil water content (θ ) influences the climate sys-
tem by controlling the fraction of incoming solar and long-
wave energy that is converted into evapotranspiration (ET).
Therefore, investigating the coupling strength between θ and
ET is important for the study of land surface–atmosphere in-
teractions. Physical models are commonly tasked with repre-
senting the coupling between θ and ET; however, few stud-
ies have evaluated the accuracy of model-based estimates of
θ /ET coupling (especially at multiple soil depths). To ad-
dress this issue, we use in situ AmeriFlux observations to
evaluate θ /ET coupling strength estimates acquired from
multiple land surface models (LSMs) and an ET retrieval al-
gorithm – the Global Land Evaporation Amsterdam Model
(GLEAM). For maximum robustness, coupling strength is
represented using the sampled normalized mutual informa-
tion (NMI) between θ estimates acquired at various verti-
cal depths and surface evaporation flux expressed as a frac-
tion of potential evapotranspiration (fPET, the ratio of ET
to potential ET). Results indicate that LSMs and GLEAM
are generally in agreement with AmeriFlux measurements
in that surface soil water content (θs) contains slightly more
NMI with fPET than vertically integrated soil water content
(θv). Overall, LSMs and GLEAM adequately capture varia-
tions in NMI between fPET and θ estimates acquired at var-
ious vertical depths. However, GLEAM significantly overes-
timates the NMI between θ and ET, and the relative contri-
bution of θs to total ET. This bias appears attributable to dif-
ferences in GLEAM’s ET estimation scheme relative to the
other two LSMs considered here (i.e., the Noah model with

multi-parameterization options and the Catchment Land Sur-
face Model, CLSM). These results provide insight into im-
proved LSM model structure and parameter optimization for
land surface–atmosphere coupling analyses.

1 Introduction

Soil water content (θ ) modulates water and energy feedbacks
between the land surface and the lower atmosphere by de-
termining the fraction of incoming solar energy that is con-
verted into evapotranspiration (ET; Seneviratne et al., 2010,
2013). In water-limited regimes, θ exhibits a dominant con-
trol on ET, and therefore exerts significant terrestrial control
on the Earth’s water and energy cycles. Accurately represent-
ing θ /ET coupling in land surface models (LSMs) is there-
fore expected to improve our ability to project the future fre-
quency of extreme climates (Seneviratne et al., 2013).

A key question is how the constraint of θ on ET and sen-
sible heat (H ) varies as θ is vertically integrated over deeper
vertical soil depths. Given the tendency for the timescales of
θ dynamics to vary strongly with depth, the degree to which
the ET is coupled with vertical variations in θ determines
the temporal scale at which θ variations are propagated into
the lower atmosphere. Therefore, in order to represent θ /ET
coupling, and thus land–atmosphere interactions in general,
LSMs must accurately capture the relationship between ver-
tically varying θ values and ET. Unfortunately, their ability
to do so remains an open question.
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Recently, land surface–atmosphere coupling strength has
been investigated by sampling mutual information proxies
(e.g., correlation coefficient or other coupling indices) be-
tween time series of θ and ET observations (or air tempera-
ture proxies for ET). Results suggest that, even when con-
fined to very limited vertical support (e.g., within the top
5 cm of the soil column), surface θ estimates retain signif-
icant information for describing overall θ control on local
climate (Ford and Quiring, 2014; Qiu et al., 2014; Dong and
Crow, 2018, 2019). These findings are in contrast with the
common perception that ET is constrained only by θ val-
ues within deeper soil layers (Hirschi et al., 2014). Hence,
it is necessary to examine whether LSMs can realistically re-
flect observed variations of θ /ET coupling strength within
the vertical soil profile.

Previous studies examining the θ /ET relationship have
generally been based on Pearson product–moment correla-
tion (Basara and Crawford, 2002; Ford et al., 2014), which
captures only the strength of a linear relationship between
two variables. However, the coupling between θ and ET is
generally nonlinear. Therefore, non-parametric mutual infor-
mation measures are generally more appropriate. Nearing et
al. (2018) used information theory metrics (transfer entropy,
in particular) to measure the strength of direct couplings be-
tween different surface variables, including soil water con-
tent, and surface energy fluxes at short timescales in sev-
eral LSMs. They found that the LSMs are generally biased
as compared with the strengths of couplings in observation
data, and that these biases differ across different study sites.
However, they did not look specifically at the effect of verti-
cal water content profiles or of subsurface soil water content
on partitioning surface energy fluxes.

Here we apply the information theory-based methodology
of Qiu et al. (2016) to examine the relationship between the
vertical support of θ estimates and their mutual information
(MI) with respect to ET. Our approach is based on analyzing
the MI content between ET and θ time series acquired from
both LSMs, and ET retrieval algorithm – the Global Land
Evaporation Amsterdam Model (GLEAM) – and AmeriFlux
in situ observations. MI values are then normalized by en-
tropy in the corresponding ET time series to remove the ef-
fect of inter-site variations to generate estimates of normal-
ized mutual information (NMI) between θ and ET. Both sur-
face (roughly 0–10 cm) soil water content (θs) and vertically
integrated (0–40 cm) soil water content (θv) are considered
to capture the impact of depth on NMI results. AmeriFlux-
based NMI results are then compared with analogous NMI
results obtained from LSM-based and GLEAM-based θ and
ET time series.

2 Data and methods

The AmeriFlux network provides temporally continuous
measurements of θ , surface energy fluxes and related envi-

ronmental variables for sites located in a variety of North
American ecosystem types, e.g., forests, grasslands, crop-
lands, shrublands and savannas (Boden et al., 2013). To min-
imize sampling errors, AmeriFlux sites lacking a complete
3-year summer months (June, July and August) daily time
series between the years of 2003 and 2015 (i.e., 3×92= 276
daily observations in total) of θs, θv and latent heat flux
(LE) are excluded here, resulting in the 34 remaining eli-
gible AmeriFlux sites listed in Table 1. These sites cover a
variety of climate zones within the contiguous United States
(CONUS). Table 1 gives background information on these 34
sites including local land-cover information. Hydro-climatic
conditions in each site are characterized using the aridity
index (AI), calculated using CRU (Climate Research Unit,
v4.02) monthly precipitation and potential evaporation (PET)
datasets.

As described above, θ /ET coupling assessments made us-
ing AmeriFlux observations are compared with those using
state-of-the-art LSMs including the Noah model with multi-
parameterization options (NOAHMP) and Catchment Land
Surface Model (CLSM). In addition, θ and ET retrievals pro-
vided by the Global Land Evaporation Amsterdam Model
(GLEAM) are also considered. See below for details on all
three approaches. To avoid any spurious correlations between
θ and ET due to seasonality, all NMI analyses are performed
on θ and ET time series anomalies acquired during the period
2003–2015. The θ and ET anomalies are calculated by re-
moving the seasonal cycle – defined as 31 d window averages
centered on each day of the year sampled across all years of
the 2003–2015 historical data record – from the raw θ and
ET time series data. The analysis is limited to the CONUS
during summer months (June, July and August) when θ /ET
coupling is expected to be maximized.

2.1 Ground-based AmeriFlux measurements

The Level 2 (L2) AmeriFlux LE and H flux observations
are based on high-frequency (typically > 10 Hz) eddy covari-
ance measurements processed into half-hourly averages by
individual AmeriFlux investigators. LE and θ observations
at a half-hour time step and without gap-filling procedures
are collected from the AmeriFlux Site and Data Exploration
System (see http://ameriflux.ornl.gov/, last access: Novem-
ber 2018). The LE and θ observations are further aggregated
into daily (00:00 to 24:00 UTC) values, and daily LE is con-
verted into daily ET using the latent heat of vaporization.
Daily ET values based on less than 30 % half-hourly cover-
age (i.e., < 15 half-hourly observations per day) are consid-
ered not representative at a daily timescale and are therefore
excluded.

Soil water content measurements are generally available
at two discrete depths that vary between the AmeriFlux sites
(Table 1). Here, the top (i.e., closest to the surface) soil water
content observation is always used to represent surface soil
water content (θs). Since the depth of this top-layer measure-
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Table 1. Attributes of selected AmeriFlux sites.

AmeriFlux sites Land cover Elevation Top-layer Bottom-layer
(m) depth (cm) depth (cm)

ARM SGP Main Cropland 314 10a 20b

ARM USDA UNL OSU Woodward Switchgrass 1 Grassland 611 10 30
Audubon Research Ranch Grassland 1469 10 20
Bondville Cropland 219 10c 20
Brookings Grassland 510 10 20
Chimney Park Evergreen needleleaf forest 2750 0–15 15–45
Duke Forest Hardwoods Deciduous broadleaf forest 168 10 25
Duke Forest Open Field Grassland 168 10 25
Fermi Agricultural Cropland 225 2.5 10
Fermi Prairie Grassland 226 2.5 10
Flagstaff Managed Forest Evergreen needleleaf forest 2160 2 10
Flagstaff Unmanaged Forest Woody savannas 2180 2 10
Flagstaff Wildfire Grassland 2270 2 10
Fort Peck Grassland 634 10 20
Freeman Ranch Woodland Woody savannas 232 10 20
Glacier Lakes Ecosystem Experiments Site Evergreen needleleaf forest 3190 5 10
Howland Forest Main Mixed forest 60 NA NA
Lucky Hills Shrubland Open shrubland 1372 5 15
Marys River Fir Site Evergreen needleleaf forest 263 10 20
Metolius Intermediate Pine Evergreen needleleaf forest 1253 0–30 NA
Missouri Ozark Deciduous broadleaf forest 219 10 100
Nebraska SandHills Dry Valley Grassland 1081 10 25
Quebec Boreal Cutover Site Evergreen needleleaf forest 400 5 20
Quebec Mature Boreal Forest Site Evergreen needleleaf forest 400 5 10
Santa Rita Creosote Open shrubland 991 2.5 12.5
Santa Rita Mesquite Woody savannas 1116 2.5–5 5–10
Sherman Island Grassland −5 10 20
Sylvania Wilderness Mixed forest 540 5 10
Tonzi Ranch Woody savannas 169 0 20
University of Michigan Biological Station Deciduous broadleaf forest 234 0–30 NA
Vaira Ranch Grassland 129 0 10
Walker Branch Deciduous broadleaf forest 343 5 10
Willow Creek Deciduous broadleaf forest 515 5 10
Wind River Field Station Evergreen needleleaf forest 371 30d 50e

a Was 5 cm prior to 13 April 2005. b Was 25 cm prior to 13 April 2005. c Was 5 cm prior to 1 January 2006. d Was 0–30 cm prior to 2007. e Unavailable prior to
2007. NA= not available.

ment varies between 0 and 15 cm (see Table 1), we consider
the surface-layer measurement θs to be roughly representa-
tive of 0–10 cm (vertically integrated) θ . For more details on
AmeriFlux sites utilized here, see Raz-Yaseef et al. (2015).

Given variations in the depth of the lower AmeriFlux θ ob-
servations (see Table 1), we applied a variety of approaches
for estimating vertically integrated soil water content (θv).
Our first approach, hereinafter referred to as Case I, is based
on the application of an exponential filter (Wagner et al.,
1999; Albergel et al., 2008) to extrapolate θs to a consistent
40 cm bottom-layer depth. Therefore, only θs is used to de-
rive θv and the bottom-layer (or second-layer) AmeriFlux θ
measurement is neglected in this case. The application of the
exponential filter requires a single timescale parameter T .
Since θ measurements from the United States Department

of Agriculture’s Soil Climate Analysis Network (SCAN) are
taken at fixed soil depth, we utilized this dataset to deter-
mine the most appropriate parameter T at AmeriFlux sites.
Following Qiu et al. (2014), first, we estimated the optimal
parameter T (Topt) for the extrapolation of θ measurements
from 10 to 40 cm depth and established a global relation-
ship between T opt and site-based NDVI (MOD13Q1 v006,
250 m, 16 d; Topt = 2.098×exp(−1.895× (NDVI+0.6271))
+2.766). Then, this global relationship (goodness of fit R2:
0.85) is applied to AmeriFlux sites to extrapolate 0–10 cm θs
time series into 0–40 cm θv.

Previous research has suggested that such a filtering
approach does not significantly squander ET information
present in actual measurements of θv (Qiu et al., 2014, 2016).
Nevertheless, since the quality of θv estimates is important in
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our analysis, we also calculated two additional cases where
0–40 cm θv is estimated using (1) the bottom-layer soil wa-
ter content measurement acquired at each AmeriFlux site
(hereinafter, Case II) and (2) linear interpolation of θs, and
the bottom-layer AmeriFlux soil water content measurement
(hereinafter, Case III). The sensitivity of key results to these
various cases is discussed below.

2.2 LSM- and GLEAM-based simulations

Simulations are acquired from the NOAHMP (Niu et al.,
2011) and CLSM (Koster et al., 2000) LSMs embedded
within the NASA Land Information System (LIS, Kumar
et al., 2006) and the GLEAM ET retrieval algorithm (Mi-
ralles et al., 2011). Both NOAHMP and CLSM are set up to
simulate 0.125◦ θ profiles at a 15 min time step using North
America Land Data Assimilation System, Phase 2 (NLDAS-
2) forcing data. A 10-year model spin-up period (1992 to
2002) is applied for NOAHMP and CLSM.

NOAHMP numerically solves the one-dimensional
Richards equation within four soil layers of thicknesses of
0–10, 11–30, 31–60 and 61–100 cm. Major parameterization
options relevant to θ simulation include options for canopy
stomatal resistance parameterization and schemes control-
ling the effect of θ on the vegetation stress factor β. Here we
employed the Ball–Berry-type stomatal resistance scheme
and Noah-type soil water content factor controlling the β
factor. The specific expressions are as follows:

β =
∑Nroot

i=1

1Zi

Zroot
min

(
1.0,

θi − θwilt

θref− θwilt
,

)
(1)

where θwilt and θref are, respectively, soil water content at
the wilting point (m3 m−3) and reference soil water content
(m3 m−3), which is set as field capacity during parameteri-
zation. θi and 1zi are soil water content (m3 m−3) and soil
depth (cm) at ith layer, Nroot and zroot are total number of
soil layers with roots and total depth (cm) of root zone, re-
spectively.

Following the Ball–Berry stomatal resistance scheme, the
θ -controlled β factor and other multiplicative factors includ-
ing temperature and foliage nitrogen simultaneously deter-
mine the maximum carboxylation rate Vmax as follows:

Vmax = Vmax25α
Tv−25

10
vmax f (N)f (Tv)β, (2)

where Vmax25 is maximum carboxylation rate at 25 ◦C
(µmol CO2 m−2 s−1), αvmax is a parameter sensitive to vege-
tation canopy surface temperature Tv, f (N) is a factor repre-
senting foliage nitrogen and f (Tv) is a function that mimics
thermal breakdown of metabolic processes. Based on Vmax,
photosynthesis rates per unit leaf area index (LAI) including
carboxylase-limited (Rubisco limited, denoted by AC) type
and export-limited (for C3 plants, denoted by AS) type are
calculated, respectively. The minimum of AC, AS and the
light-limited photosynthesis rate determines stomatal resis-
tance rs, and consequently affects ET over vegetated areas.

For the complete NOAHMP configuration, please see Ta-
ble S1 in the Supplement.

CLSM simulates the 0–2 and 0–100 cm soil water content
and evaporative stress as a function of simulated θ and envi-
ronmental variables. ET is then estimated based on the esti-
mated evaporative stress and land–atmosphere humidity gra-
dients. Energy and water flux estimates are iterated with soil
state estimates (e.g., θ and soil temperature) to ensure closure
of surface energy and water balances. For a detailed explana-
tion of CLSM physics, please refer to Koster et al. (2000).

GLEAM is a set of algorithms dedicated to the estimation
of terrestrial ET and root-zone θ from satellite data. In this
study, the latest version of this model (v3.2a) is employed. In
GLEAM, the configuration of soil layers varies as a function
of the land-cover type. Soil stratification is based on three soil
layers for tall vegetation (0–10, 10–100 and 100–250 cm),
two layers for low vegetation (0–10 and 10–100 cm) and only
one layer for bare soil (0–10 cm; Martens et al., 2017).

The cover-dependent PET (mm d−1) of GLEAM is calcu-
lated using the Priestley and Taylor (1972) equation based
on observed air temperature and net radiation. Following
this, estimates of PET are converted into actual transpiration
or bare soil evaporation (depending on the land-cover type,
ET (mm d−1)), using a cover-dependent, multiplicative stress
factor S (–), which is calculated as a function of microwave
vegetation optical depth (VOD) and root-zone θ (Miralles et
al., 2011). The related expressions are as follows:

ET= PET× S+Ei, (3)

S =

√
VOD

VODmax

(
1−

(
θc− θω

θc− θwilt

)2
)
, (4)

where Ei is rainfall interception (mm), S essentially rep-
resents the fPET (see Sect. 2.3) estimated by GLEAM, θc
(m3 m−3) is the critical soil water content and θω (m3 m−3)
is the soil water content of the wettest layer, assuming that
plants withdraw water from the layer that is most accessi-
ble. Based on Eq. (4), GLEAM S (or fPET) tends to become
more sensitive to θ in areas of low VOD seasonality (i.e.,
low differences between VOD and VODmax). As for bare soil
conditions, S is linearly related to surface soil water content
(θ1):

S = 1−
θc− θ1

θc− θwilt
. (5)

To resolve variations in the vertical discretization of θ ap-
plied by each model, we linearly interpolated NOAHMP,
CLSM and GLEAM outputs into daily 0–10 and 0–40 cm
soil water content values using depth-weighted averaging.

2.3 Variable indicating soil water content and surface
flux coupling

Soil water content–ET coupling can be diagnosed using a va-
riety of different variables derived from ET, e.g., the fraction
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of PET (fPET, the ratio of ET and PET) or the evaporative
fraction (EF, the ratio of LE and the sum of LE and sensible
heat). Since ET is strongly tied to net radiation (Rn; Koster
et al., 2009), both fPET and EF are advantageous in that they
normalize ET by removing the impact of non-soil water con-
tent influences on ET (e.g., net radiation, wind speed and soil
heat flux (G)). However, since sensible heat flux is not pro-
vided in the GLEAM dataset, we are restricted here to using
fPET.

It should be noted that the applied meteorological forcing
data for NOAHMP and CLSM are somewhat different from
those used for GLEAM. Therefore, to minimize the impact
of this difference, NOAHMP and CLSM fPET are computed
from North American Regional Reanalysis (NARR) using
the modified Penman scheme of Mahrt and Ek (1984), while
GLEAM fPET is calculated using its own internal PET esti-
mates. To examine the impact of the PET source on the re-
sults, AmeriFlux fPET calculations are duplicated using both
GLEAM- and NARR-based PET values.

2.4 Information measures

Mutual information (MI; Cover and Thomas, 1991) is a non-
parametric measure of correlation between two random vari-
ables. MI and the related Shannon-type entropy (SE; Shan-
non, 1948) are calculated as follows. Entropy about a ran-
dom variable ζ is a measure of uncertainty according to its
distribution pζ and is estimated as the expected amount of
information from pζ sample:

SE(pζ )= Eζ [− ln(pζ(ζ ))]. (6)

Likewise, MI between ζ and another variable ψ can be
thought of as the expected amount of information about vari-
able ζ contained in a realization of ψ and is measured by the
expected Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951) between the conditional and marginal distri-
butions over ζ :

MI(ζ ;ψ)= Eψ[D(pζ |Oψ ||pζ)]. (7)

In this context, the generic random variables ζ and ψ repre-
sent fPET and θ (soil water content), respectively. The ob-
servation space of the target random variable fPET is dis-
cretized using a fixed bin width. As bin width decreases,
entropy increases but mutual information asymptotes to a
constant value. On the other hand, increased bin width re-
quires a greater sample size, which cannot always be satis-
fied. The trick is choosing a bin width where the NMI values
stabilize with sample size. After a careful sensitivity analy-
sis, we choose a fixed bin width of 0.25 [–] for fPET and
make sure that each AmeriFlux site had enough samples to
accurately estimate the NMI, and change of this constant
bin width from 0.1 to 0.5 [–] will not significantly alter our
conclusions. Following Nearing et al. (2016), a bin width of
0.01 m3 m−3 (1 % volumetric water content) for θ is applied.

Integrations required for MI calculation in Eq. (7) are then
approximated as summations over the empirical probability
distribution function bins (Paninski, 2003).

By definition, the MI between two variables represents the
amount of entropy (uncertainty) in either of the two variables
that can be reduced by knowing the other. Therefore, the
MI normalized by the entropy of the AmeriFlux-based fPET
measurements represents the fraction of uncertainty in fPET
that is resolvable given knowledge of the soil water content
state (Nearing et al., 2013). Unlike Pearson’s correlation co-
efficient, MI is insensitive to the impact of nonlinear variable
transformations. Therefore, it is well suited to describe the
strength of the (potentially non-linear) relationship between
θ and fPET.

Here, we applied this approach to calculate the MI con-
tent between soil water content representing different ver-
tical depths (as reflected by θs and θv) and fPET at each
AmeriFlux site. All estimated site-specific MI are normal-
ized by the entropy of the corresponding AmeriFlux-based
fPET measurements to remove the effect of inter-site entropy
variations on the magnitude of NMI differences. The result-
ing normalized MI calculations between both θs and θv and
fPET are denoted as NMI(θs, fPET) and NMI(θv, fPET), re-
spectively.

The underestimation of observed θ /ET coupling via the
impact of mutually independent θ and ET errors in Ameri-
Flux observations (Crow et al., 2015) is minimized by focus-
ing on the ratio between NMI(θS, fPET) and NMI (θv, fPET).
Therefore, relative comparisons between NMI(θs, fPET) and
NMI(θv, fPET) are based on examining the size of their mu-
tual ratio NMI(θS, fPET) /NMI (θv, fPET). To quantify the
standard error of NMI differences between various soil water
content products, we applied a nonparametric, 500-member
bootstrapping approach and calculated the pooled average of
sampling errors across all sites assuming spatially indepen-
dent sampling error.

Finally, we also examined the impact of potential non-
linearity in the θ /ET relationship by comparing non-
parametric NMI results with comparable inferences based
on a conventional Pearson’s correlation calculation. The
correlation-based coupling strength between θs and fPET is
denoted as R(θs, fPET) and between θv and fPET as R(θv,
fPET).

3 Results

3.1 Comparison of NMI(θs, fPET) and NMI(θv, fPET)

Figure 1 contains boxplots of modeled and observed NMI(θs,
fPET) and NMI(θv, fPET), i.e., the relative magnitude of
fPET information contained in surface soil water content and
vertically integrated (0–40 cm) soil water content estimated
from Case I, sampled across all the AmeriFlux locations
listed in Table 1. According to the AmeriFlux ground mea-
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Figure 1. The θ /ET coupling strengths for summertime anomaly
time series acquired from various LSMs, GLEAM and AmeriFlux
measurements: (a) NMI(θs, fPET) and NMI(θv, fPET) individually
and (b) NMI(θs, fPET) normalized by NMI(θv, fPET).

surements, median values of NMI(θs, fPET) and NMI(θv,
fPET; across all sites) are near 0.3 [–]. This suggests that
approximately 30 % of the uncertainty (i.e., entropy at this
particular bin width of 0.25 [–]) in fPET can be eliminated
given knowledge of either surface or vertically integrated
soil water content state. This is consistent with earlier re-
sults in Qiu et al. (2016) who used similar metrics to evaluate
θ /EF (evaporative fraction) coupling strength. The sampled
medians of NMI(θs, fPET) and NMI(θv, fPET) estimated
by the NOAHMP and CLSM models are similar to these
(observation-based) AmeriFlux values. With the single ex-
ception that the CLSM predicts much larger site-to-site vari-
ation in NMI(θs, fPET).

In contrast, NMI(θs, fPET) and NMI(θv, fPET) values
sampled from GLEAM θ and fPET estimates show positive
biases (with median θ of about 0.5 and 0.4 [–] for NMI(θs,
fPET) and NMI(θv, fPET), respectively) with respect to all
other estimates.

Using the 34 AmeriFlux site-collocated samples pixels
for a paired t test, both LSMs and GLEAM overall exhibit
significantly (at the 0.05 level) higher NMI(θs, fPET) com-
pared to NMI(θv, fPET), implying the surface soil water
content observations contain more fPET information than
vertically integrated soil water content observations. How-
ever, the observed difference between NMI(θs, fPET) and

NMI(θv, fPET) is less discernible in AmeriFlux measure-
ments (Fig. 1a).

Here, AmeriFlux observations are used as a baseline for
LSM and GLEAM evaluation. However, it should be stressed
that random observation errors in θ and fPET will introduce
a low bias into AmeriFlux-based estimates of both NMI(θs,
fPET) and NMI(θv, fPET; Crow et al., 2015) and thus their
difference as well. To address this concern, Fig. 1b plots
the ratio of NMI(θs, fPET) and NMI(θv, fPET), which ef-
fectively normalizes (and therefore minimizes) the impact
of random observation errors. As discussed above, these ra-
tio results illustrate the general tendency for NMI(θs, fPET)
to exceed NMI(θv, fPET). They also highlight the tendency
for GLEAM to overvalue θs (relative to θv) when estimating
fPET. A second approach for reducing the random error of
θ and fPET measurement errors is the correction based on
triple collocation (TC) applied in Crow et al. (2015). How-
ever, this approach is currently restricted to linear correla-
tions and cannot be applied to estimate NMI. Future work
will examine extending the information-based TC approach
of Nearing et al. (2017) to the examination of NMI.

3.2 Sensitivity of AmeriFlux-based NMI(θs,
fPET) /NMI(θV, fPET)

As mentioned in Sect. 2.1, an important concern is the im-
pact of interpolation errors used to estimate 0–40 cm θv from
AmeriFlux θs observations acquired at non-uniform depths.
To ensure that different methods for calculating AmeriFlux
θv values do not affect the main conclusion of this study,
we configured three cases for θv calculation, and compared
their NMI(θS, fPET) /NMI(θv, fPET) results in Fig. 2. Case
I reflects the baseline use of the exponential filter described
in Sect. 2.1. However, slight changes to AmeriFlux results
are noted if alternative approaches are used. Specifically,
AmeriFlux-based NMI(θv, fPET) increases and closes the
gap with NMI(θs, fPET) if the bottom-layer soil water con-
tent measurements are instead directly used as θv (Case II)
or if 0–40 cm θv is based on the linear interpolation of the
two AmeriFlux θ observations (Case III); the impact of this
modest sensitivity on key results is discussed below.

In addition, switching from GLEAM- to NARR-based
PET when calculating fPET for AmeriFlux-based NMI(θs,
fPET) and NMI(θv, fPET) does not qualitatively change re-
sults and produces only a very slight (∼ 6 %) increase in the
median NMI(θs, fPET) /NMI(θv, fPET) ratio.

3.3 Spatial distribution of NMI(θs, fPET) and NMI(θv,
fPET)

Figure 3 plots the spatial distribution of NMI(θs, fPET) and
NMI(θv, fPET) results for each of the individual 34 Amer-
iFlux sites listed in Table 1. The climatic regime is repre-
sented by AI (aridity index) values plotted as the background
color in Fig. 3. It can be seen in Fig. 3 that NMI(θs, fPET)
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Figure 2. The θ /ET coupling strengths for summertime anomaly
time series from AmeriFlux measurements using three different θv
calculation methods: (a) NMI(θs, fPET) and NMI(θv, fPET) indi-
vidually and (b) NMI(θs, fPET) divided by NMI(θv, fPET) for mul-
tiple θv cases. Case I is based on the application of an exponen-
tial filter to extrapolate 0–10 cm θs to a consistent 0–40 cm bottom-
layer depth, while Cases II and III refer to the direct use of only
the bottom-layer measurement and a linear interpolation of both the
top and bottom layer, respectively, to calculate θv (see Sect. 2.1 for
details on each case).

estimates from LSMs and GLEAM are spatially related to
hydro-climatic conditions, as NOAHMP and CLSM predict
that θs is moderately coupled with fPET (i.e., NMI(θS, fPET)
of 0.3–0.5 [–]) in the arid southwestern USA (AI < 0.2)
and only loosely coupled with fPET in the relatively humid
eastern USA. A similar decreasing trend of NMI(θs, fPET)
from the southwestern to eastern USA is also captured by
GLEAM. However, as noted above, GLEAM generally over-
estimates NMI(θs, fPET) and NMI(θv, fPET) compared to
NOAHMP, CLSM and AmeriFlux. In contrast, a relatively
weaker spatial pattern emerges in AmeriFlux-based NMI(θs,
fPET) results. In addition, spatial patterns for NMI(θs, fPET)
are less defined than for NMI(θv, fPET) in all four datasets.

Scatterplots in Fig. 4 summarize the spatial relation-
ship between LSM- and GLEAM-based NMI(θs, fPET) and
NMI(θv, fPET) results versus AmeriFlux observations across
different land use types. While observed levels of correla-
tion in Fig. 4 are relatively modest, there is a significant level
(p<0.05) of spatial correspondence between modeled and
observed NMI results only over forest sites, motivating the
need to better understand processes responsible for spatial

variations in NMI results. In addition, stratifying NMI(θs,
fPET) /NMI(θv, fPET) ratio results according to vegetation
type (Fig. A1 in the Appendix) confirms that NMI(θs, fPET)
slightly exceeds NMI(θv, fPET) across all vegetation types
(and thus all rooting depths characterizing each vegetation
type). This suggests that our analysis is not severely affected
by variations in the depth of θ measurements. For further dis-
cussion on the impact of land cover on NMI results, please
see Appendix A.

3.4 Sensitivity of NMI(θs, fPET) /NMI(θv, fPET) ratio
to climatic conditions

Figure 5 further summarizes the NMI(θs, fPET) /NMI(θV,
fPET) ratio as a function of AI for all four products
(NOAHMP, CLSM, GLEAM and AmeriFlux). Error bars
represent the standard deviation of sampling errors calcu-
lated from a 500-member bootstrapping analysis. With in-
creasing AI, there is a significant decreasing trend in both
NMI(θS, fPET) and NMI(θv, fPET) for all three simulations,
with a goodness of fit above 0.5 (figure not shown). For all
cases, the NMI(θs, fPET) /NMI(θv, fPET) ratios are consis-
tently greater than unity under all climatic conditions. How-
ever, the estimated NMI(θs, fPET) /NMI(θv, fPET) ratios
from all three simulations (NOAHMP, CLSM and GLEAM)
exhibit quite different trends with respect to AI. The NMI(θs,
fPET) /NMI(θV, fPET) ratio for CLSM decreases with in-
creasing AI, with a moderate goodness-of-fit value of 0.28,
while GLEAM estimates of NMI(θs, fPET) /NMI(θv, fPET)
shows an opposite increasing trend with increasing AI. Con-
versely, there is relatively lower sensitivity of the NMI(θs,
fPET) /NMI(θv, fPET) ratio to AI captured in the AmeriFlux
measurements.

Connecting these findings to the spatial distribution of
NMI(θs, fPET) and NMI(θv, fPET; Fig. 3) confirms that the
relative magnitudes of NMI(θs, fPET) and NMI(θv, fPET)
for both LSMs and GLEAM are spatially related to hydro-
climatic regimes. In contrast, this link is weaker in the Amer-
iFlux measurements which, except for a small fraction of
very low AI sites, do not appear to vary as a function of AI.
These conclusions are not qualitatively impacted by looking
at NMI(θs, fPET) and NMI(θv, fPET) differences, as opposed
to their ratio as in Fig. 5, or by looking at R(θs, fPET) and
R(θv, fPET) instead of NMI.

4 Discussion and conclusion

Since transpiration dominates the global ET (Jasechko et al.,
2013), deep-layer soil water content (θv) is generally consid-
ered to contain more ET information than that of surface soil
water content (θs), given that plant transpiration is balanced
by root water uptake from deeper soils (Seneviratne et al.,
2010). However, this assumption is rarely tested using mod-
els and/or observations. Here, we apply normalized mutual
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Figure 3. NMI(θs, fPET) (left panels) and NMI(θv, fPET) (right panels) estimates at AmeriFlux sites for (a, e) NOAHMP, (b, f) CLSM,
(c, g) GLEAM and (d, h) AmeriFlux. Marker color reflects NMI magnitudes and symbol type reflects local land-cover type at each site.
Background color shading reflects aridity index (AI) values.
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Figure 4. Scatterplot of LSM- and GLEAM-based (a, c, g, e) NMI(θs, fPET) and (b, d, f, h) NMI(θv, fPET) results versus AmeriFlux
observations. Red symbols represent simulations from NOAHMP36; blue symbols represent simulations from CLSM2 and green symbols
represent GLEAM retrievals.
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Figure 5. For (a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θs, fPET) and NMI(θv, fPET) as a
function of AI across all AmeriFlux sites.

information (NMI) to examine how the vertical support of a
soil water content product affects its relationship with con-
current surface ET.

Specifically, using AmeriFlux ground observations, we
examine whether (NMI-based) estimates of LSMs and
GLEAM θs versus ET and θv versus ET coupling strength
accurately reflect observations acquired at a range of Ameri-
Flux sites. In general, compared to the baseline case of expo-
nential filter extrapolated 40 cm bottom-layer θv, LSMs and
GLEAM agree with AmeriFlux observations in that the over-
all fPET information contained in θs is slightly higher than
that of θv (Fig. 1). However, the sensitivity analysis showed
this difference between NMI(θs, fPET) and NMI(θv, fPET)
diminishes when using different methods for calculating θv
using AmeriFlux observations (Fig. 2). As a result, this re-
sult should be viewed with caution.

While NOAHMP- and CLSM-derived NMI(θs, fPET)
and NMI(θV, fPET) results are generally consistent
with the AmeriFlux observations, GLEAM overestimates
NMI(θs, fPET), NMI(θV, fPET) and the ratio NMI(θs,
fPET) /NMI(θV, fPET) relative to observations. Although
both LSMs and GLEAM are based on the same classical
two-section (soil water content-limited and energy-limited)
ET regimes framework (Sect. 2.2), they differ in two funda-
mental aspects. First, the evaporative stress factor S is rep-
resented as a more direct and strong function of soil water
content in GLEAM – see Eqs. (4) and (5) – which leads to

the overestimation of the θ /ET coupling strength. This is
consistent with our results that GLEAM generally overesti-
mates NMI(θs, fPET) and NMI(θv, fPET) consistently across
all land covers, compared to AmeriFlux-based estimates. On
the other hand, NOAHMP and CLSM approximate ET in
the manner of biophysical models, and expresses biophysi-
cal control on ET through the stomatal resistance rs, which
is a function of multiple limiting factors including θ . There-
fore, the more complex ET scheme employed by NOAHMP
and CLSM would seem to mitigate the overestimation of
NMI(θS, fPET) and NMI(θv, fPET), as other relevant fac-
tors besides θ (such as temperature, foliage nitrogen) are also
considered in determining maximum carboxylation rate Vmax
and stomatal resistance rs, and consequently more realistic
actual ET.

Second, the stress factor β in both LSMs considers the cu-
mulative effects of θconditions along different layers (Eq. 1),
while the corresponding factor S in GLEAM only uses
the wettest soil layer condition, which is top layer at most
sites. This likely explains the overestimation of the NMI(θs,
fPET) /NMI(θv, fPET) ratio by GLEAM.

Nevertheless, we would like to stress that all approaches
considered in our paper contain (at their core) a parameter-
ized relationship between θ and ET. While the implications
of mis-parameterizing this relationship are arguably more se-
vere for a land surface model, we argue that the issue remains
relevant for any approach (such as GLEAM) that utilizes
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Figure 6. Daily ET error in GLEAM as a function of GLEAM bias
in NMI(θS, fPET) /NMI(θv, fPET) ratio across 34 AmeriFlux sites.

a water balance (and/or data assimilation system) approach
to estimate θ and, in turn, uses θ to constrain ET. Regard-
less of the complexity that a given approach employs, fail-
ing to accurately describe the relationship between ET and
(large number of potential) environmental constraints should
eventually degrade the robustness of the model, whether it
is employed as a retrospective, diagnostic or predictive man-
ner. To examine this issue directly, Fig. 6 plots the relation-
ship between GLEAMS bias in NMI(θs, fPET) /NMI(θv,
fPET) ratio versus the RMSE of daily GLEAM ET simu-
lations for a range of AmeriFlux sites. There is a positive
correlation between the two quantities, which suggests that
GLEAM overestimation of θ /ET coupling during the sum-
mer may undermine the accuracy of its daily ET retrievals. It
should be noted that GLEAM simultaneously overestimates
both NMI(θs, fPET) and NMI(θv, fPET); however, the impact
of this mis-parameterization impact on GLEAM ET accu-
racy is most obvious when plotted against the ratio NMI(θs,
fPET) /NMI(θv, fPET).

Although the median values of NMI(θs, fPET) and
NMI(θV, fPET) predicted by NOAHMP and CLSM are
generally in line with AmeriFlux observations, they are
more spatially related to hydro-climatic conditions (as sum-
marized by AI) than their counter parts acquired from
AmeriFlux measurements. Seen from the plot of NMI(θs,
fPET) /NMI(θv, fPET) ratio as a function of AI (Fig. 5), the
modeled and observed median of NMI(θs, fPET) /NMI(θV,
fPET) ratio decreases with increasing AI, and the decreasing
trend is particularly clear when AI is lower than 1.0 [–]. In
contrast, there is relatively lower sensitivity to aridity exhib-
ited in the AmeriFlux measurements.

These results provide several key insights into future land–
atmosphere coupling analysis and LSMs, as well as ET al-
gorithm development. First, all the datasets – both model-
based and ground-observed – indicate that θs contains at least
as much ET information as θv. Hence, remote-sensing land
surface soil water content datasets are suitable, and should
be considered, for analyzing the general interaction between
land and atmosphere, e.g., soil water content–air temperature
coupling (Dong and Crow, 2019) and the interplay of soil wa-
ter content and precipitation (Yin et al., 2014). Additionally,
future generations of GLEAM may consider more sophis-
ticated evaporation stress functions, which may improve its
accuracy in representing the soil’s control on local ET. This
may, in turn, improve the accuracy of the GLEAM ET prod-
uct. Finally, our results demonstrate that modeled θ /ET is
more sensitive to hydro-climates than the observed relation-
ship. Modifying the model structures to reduce such sensi-
tivity might be necessary for accurately representing the in-
teraction of land surface and atmosphere across different cli-
mate zones. This may lead to more realistic projections of
future drought-induced heat waves, when coupled with gen-
eral circulation models.

www.hydrol-earth-syst-sci.net/24/581/2020/ Hydrol. Earth Syst. Sci., 24, 581–594, 2020



592 J. Qiu et al.: Model representation of the coupling

Appendix A

We performed an additional sensitivity analysis to explic-
itly demonstrate the effect of different vegetation land-cover
types and consequently different rooting depths (or θv mea-
surement depths) on the NMI(θS, fPET) /NMI(θv, fPET) ra-
tio, and plotted these results in Fig. A1. The figure confirms
that, consistent with AmeriFlux, both LSMs and GLEAM
predict that NMI(θs, fPET) is slightly higher than NMI(θv,
fPET) over most vegetation types, and GLEAM overesti-
mates NMI(θs, fPET) /NMI(θv, fPET) for most vegetation
types.

Figure A1. For (a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θs, fPET) and NMI(θv, fPET) as
a function of vegetation types across all AmeriFlux sites. “ENF”, “DBF”, “MF”, “OS” and “WS” represent evergreen needleleaf forests,
deciduous broadleaf forests, mixed forests, open shrubland, and woody savannas, respectively.
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