Supplement of Hydrol. Earth Syst. Sci., 24, 581–594, 2020 https://doi.org/10.5194/hess-24-581-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Model representation of the coupling between evapotranspiration and soil water content at different depths

Jianxiu Qiu et al.

Correspondence to: Jianxiu Qiu (qiujianxiu@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1 Complete NOAHMP configuration

Physical Process	Available Noah-MP Options	Option Used Here
Vegetation	Prescribed LAI and shade fraction LAI and shade fraction from dynamic carbon uptake and partitioning Shade fraction calculated from prescribed LAI Prescribed LAI and constant shade fraction	Prescribed LAI and shade fraction
Stomatal resistance	· Ball-Berry (Ball et al., 1987) · Jarvis (Chen et al., 1996)	Ball-Berry
Soil moisture factor for stomatal resistance	· Noah-type (based on soil moisture) · CLM-type (based on stomatal resistance) (Oleson et al., 2010) · SSiB-type (based on stomatal resistance) (Xue et al., 1991)	Noah-type
Runoff & groundwater	• TOPMODEL with groundwater (Niu et al., 2007) • TOPMODEL with equilibrium water table (Niu et al., 2005) • Infiltration-excess surface runoff and free drainage (Schaake et al., 1996) • BATS runoff and free drainage (Yang and Dickinson, 1996)	TOPMODEL with groundwater
Surface layer drag coefficient	· Monin-Obukhov · Noah-type (Chen et al., 1997)	Monin-Obukhov
Super-cooled liquid water	· No iteration (Niu and Yang, 2006) · With iteration (Koren et al., 1999)	No iteration
Frozen soil permeability	· Linear: Hydraulic Properties from total soil moisture (Niu and Yang, 2006) · Nonlinear: Hydraulic properties from liquid water only (Koren et al., 1999)	Linear: Total soil moisture
Radiation transfer	• Two-stream w/ 3D structure • Two-stream (Niu and Yang, 2004) • Two-stream with canopy gap equal to 1-(shade fraction)	Two-stream w/ 3D structure
Snow albedo	·BATS (snow age, grain size growth, impurity) (Yang et al., 1997) ·CLASS (only snow age) (Verseghy, 1991)	CLASS
Frozen/liquid partitioning	$ \begin{array}{l} \cdot \text{Jordan (1991)} \\ \cdot \text{Offset threshold: } T_{air} < T_{frz} + 2.2K \\ \cdot \text{Standard threshold: } T_{air} < T_{frz} \end{array} $	Jordan (1991)
Bottom soil temperature	· Zero heat flux · Prescribed (8m) bottom temp	Prescribed (8m) bottom temp
Soil temperature solution	· Semi-implicit · Full implicit	Semi-implicit