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S.1 The response of linear reservoirs to periodic forcing

The derivations in S.1.1-S.1.3 and the resulting equations are not novel. We think, however,
that presenting them altogether might be a useful overview for the interested reader. General
overviews on linear systems theory are given for example by Dooge (1973) for hydrology or by
Smith (2007) for signal processing. The response of linear reservoirs to periodic forcing was for
example described by Eriksson (1971) or Peters et al. (2003).

S.1.1 Single linear reservoir

The outflow @ from a linear reservoir is described by Equation (S.1):

Q=" (1)

Conservation of mass requires that the rate of change of storage S equals the inflow ();, minus

the outflow ) from the reservoir:

For simplicity, we consider a simple sinusmdal input signal with unit amplitude, with zero phase

(i.e. aligned with the cycle of interest) and with zero mean. We also replace the period T' by
2

the angular frequency w = 7.

Qi (t) = sin(wt) (S.3)
Combining Equations (S.1), (5.2), and (5.3) yields:

dQ @  sin(wt)
@ T 7

(S.4)

which is a first-order ordinary differential equation (ODE) that can be solved with the help of
an integrating factor exp (¢/7) and by using the product rule:

o (2) (24 2) o () 2

g o

[exp (t> QI) - exp < ) sin(wt)d (S.7)

exp (f_) Q(t) — Q(0) = 71_/0 exp (7_) sin(wt)dt (S.8)

Since we are interested in the steady-state periodic response of our system, we set Q(0) = 0.
We can solve the integral on the right hand side using an integration rule (see e.g. Spiegel,

1968):
exp <7t_> Qt) = lﬂ sin (wt + arccos (11)) (S.9)

T (%)2_,_“}2 T (%)2+w2

1 ) 1
Q(t) = m sin (wt + arccos (1—|—(w7-)2>) (S.10)
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1
(Equation (10) in the corresponding manuscript), we obtain:

If we rewrite A = (Equation (9) in the corresponding manuscript) and ¢ = arccos(A)

Q(t) = Asin(wt + ¢) (S.11)

Since the system is linear, other inflow amplitudes can be accounted for by scaling (multipli-
cation) and a non-zero mean by addition. We could also superimpose other inputs of different
periods. Note that we can obtain the same result using the transfer function approach in linear
systems theory, as for example described in Dooge (1973) or Smith (2007).

S.1.2 Linear reservoirs in series

Linear reservoirs in series can be conceptualised as follows. The outflow from the first reservoir
is the inflow to the second reservoir, the outflow from the second reservoir is the inflow to the
third reservoir, and so forth. Let’s denote the outflow from the first reservoir by ();:

Q1(t) = Ay sin(wt + ¢1) (S.12)
If we use Equation (S.12) as inflow to the second reservoir (which is also the total outflow), we
obtain: J A sin(wr
Q2 | Q@ _ Arsin(wt+ ) (S.13)
dt T2 T2
This can be solved in a similar fashion as before (Equation (S.4)) and we get:
QQ (t) = AlAQ sin(wt + ¢1 + ¢2) (814)
If we continue to do this for n reservoirs, we get:

Qn(t) = f[lAi sin (wt + En:lgb) (S.16)

The total amplitude ratio is thus obtained by multiplication of all individual amplitude ratios
and the total phase shift by addition of all individual phase shifts. If all the reservoirs have the
same time constant (7, = 75 = --+ = 7,), we obtain the so called Nash cascade (Nash, 1957).

S.1.3 Linear reservoirs in parallel

Linear reservoirs in parallel are the weighted sum of the outflow from each reservoir. The
resulting flow is hence a sum of sine waves of the same angular frequency, weighted by the
fraction p; going into each reservoir. For two reservoirs we can write:

Q12(t) = Q1 (1) + Qa(2) (5.17)

where Q12 is the combined outflow from the two reservoirs (J; and (2. We can use Equation
(S.11) to get the outflow from each of the two reservoirs:

Qu(t) = p1A1 Sin(wt + §b1) + pQAQ sin(wt + 9252) (818)
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The sum of two sine waves (Equation (S.18)) can be rewritten to obtain only one sine wave:

Q12(t) = p1A;y sin(wt + ¢1) + paAs sin(wt + ¢o) (S.19)
Qm(t) = A12 sin(wt -+ ¢12) (820)
where the total amplitude ratio Ajy (Equation (14) in the corresponding manuscript) and the

total phase shift ¢ (Equation (15) in the corresponding manuscript) are given by (see e.g.
Smith, 2007):

Ap = \/[p1A1 COS (1 -+ PaAg cos o]” + [p1 Ay sin ¢y + pyAg sin ] (S.21)

(S.22)

We could do the same for more (n) reservoirs by stepwise adding the resulting sine wave to the
next sine wave (e.g. Q12 + @3).

S.1.4 Non-linear reservoirs

In the following we investigate how non-linear reservoirs respond to periodic forcing. A non-
linear reservoir can be described by (Kirchner, 2009):

5= S”)n (S.23)

m

Q = Que

where Q.o is an arbitrary reference discharge, Sy is a reference storage, m is a scaling coefficient
(it has the units of storage), and n is a non-linearity parameter (n = 1 results in the linear
reservoir). For non-linear reservoirs, there are no general analytical solutions available. Non-
linear reservoirs cannot be characterised by an invariant time constant, as their outflow rate
depends on the storage, as it can be seen from Equation (S.23). Hence, we model the response
of a single non-linear reservoir numerically.

The outflow from a non-linear reservoir forced by a sinusoidal input is shown in Figure S.1. The
outflow is still periodic, but the "sine curve" is somewhat squeezed. The maxima and minima do
not have the same distance and hence there is no unique phase shift. For the example shown in
Figure S.1, the phase shift between the maxima of @)y, and Qo is 68 days, and the phase shift
between the minima is 70 days. The difference between the maximum amplitude and the mean
amplitude (= 0.49 mm) is 0.20 mm, and the difference between the minimum amplitude and the
mean amplitude is 0.18 mm. This asymmetry is partly due to numerical inaccuracies, however,
probably mostly due to the non-linearity of the reservoir. Because non-linear reservoirs with
n > 1 drain more slowly as they empty, their minima are closer to the mean and the minima
have a larger phase shift (and vice versa for n < 1).
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Figure S1: Numerical approximation of steady-state (sinusoidal) inflow to and outflow from a
non-linear reservoir (Q,f = 1 mm, Sy = 0 mm, m = 200 mm, n = 2). The starting time is
chosen arbitrarily.

We can plot amplitude ratios and phase shifts for non-linear reservoirs with different parameter
values. We therefore do not need to specify a characteristic time constant. This is shown in
Figure S.2. Even though the outflow is not exactly a sine wave, it is possible to define a mean
phase shift and amplitude ratio, and in practice this might be a reasonably good approximation
and hardly distinguishable from an actual sine wave. So, even if the reservoir is non-linear, its
steady state behaviour (or the response to seasonal inputs) might be reasonably well approxi-
mated by a linear reservoir with a time constant that reflects the outflow characteristics at a
characteristic storage level (e.g. mean storage).
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Figure S2: Amplitude ratio and phase shift for a single non-linear reservoir for varying pa-
rameter values. The phase shifts of the maxima, the minima, and the mean phase shifts are
indicated by coloured dots. The non-linearity parameter n ranges from 0.5 to 10.



S.2 Additional analyses

S.2.1 Extracting seasonal components from time series
We have tested two methods to extract seasonal components from time series. The first method

is a multiple linear regression. The second method makes use of the cross-covariance of two
time series, both are described below.

S.2.1.1 Multiple linear regression
A basic sine wave is given by:

() = 5mxsm<2ﬁ; o)+ (B.24)
We can rewrite Equation (B.24) as follows (see e.g. Kirchner, 2016):

x(t) = (XCOS(??T;) + Bsin(QW;) +z (B.25)

We can rewrite Equation (B.25) in vector form:

005(27?%) sin(ZW%) 1 N x(tq)
cos(2m?) sin(2r2) 1 x(t
(‘ T) ( T) |1l = (2) (B.26)
: ; : 7 :
cos(2r%) sin(2r%) 1 z(ty)

We can solve for «, f and = in Equation (B.26) by means of multiple linear regression (e.g. by
using Matlab’s mldivide function). We can then solve for ¢, and ¢, via the identities:

5,@ = \/a? + 32 (B.27)

¢, = arctan <5> (B.28)

«

Note that the atan2 function is required to obtain an unambiguous phase shift.

S.2.1.2 Cross-covariance method

The unbiased estimate of the cross-covariance of two sine waves x and y is given by:

1 t
Vay(k) = 5(5:,;:1_5(51,,3] cos <(¢I — ¢y) — 27er;> (B.29)
where £ is the lag between the sine waves, 0,7 and d,y are their amplitudes, and ¢, and ¢,
are their phase shifts. If we define x to be the signal of interest (e.g. streamflow) and y to be
a dummy cycle of unit amplitude and zero initial phase shift (6, = 1 and ¢, = 0), Equation
(B.29) simplifies to:

Yoy (k) = ;53@ cos (@ — 271';/{) (B.30)
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We can calculate the empirical cross-correlation between the signal of interest and the dummy
cycle and fit a sine curve to it (via nonlinear least squares). The parameters of that sine curve
can then be used to find the parameters of our cycle of interest (J,z and ¢,) via Equation
(B.30).

The fitting methods (multiple linear regression and cross-covariance method) show an almost
perfect match (Figure S.3), which indicates that the extraction of the seasonal component is
not sensitive to the method. While this means that we can reliably extract the sinusoidal
component of the period of interest (1 year), i.e. the annual Fourier mode, it does not mean
that we perfectly extracted the "(annual) seasonal component' of the variable of interest. A
sine wave is just a parsimonious approximation of the seasonal behaviour and the choice of a
sine wave to model seasonality is also associated with uncertainty.

(a) (b)

157 150 1
c
'% 9] c
] 2 o°
— (%]
g 1t ® £ 100 | o
£ ° &
Q S
< b=
; 05t ﬁ 50
5 %
=l Pearson = 1.00 g Pearson = 1.00
£ Kendall = 0.98 o Kendall = 0.98
Spearman = 1.00 Spearman = 1.00
0 : : : 0 : : :
0 0.5 1 1.5 0 50 100 150
Amplitude ratio cross-cov. Phase shift cross-cov.
(c) (d)
157 2501
o
S c o®
@ .2 200 ¢ O
3 © 2 8@00
o = §O %
c “;: 100 f ®
Los5¢ b
2 @ o
=1 Pearson = 1.00 < 50+ Pearson = 1.00
g Kendall = 0.97 . Kendall = 0.97
Spearman = 1.00 Spearman = 1.00
0 : : 0 : : : : :
0.5 1 15 0 50 100 150 200 250

Amplitude ratio cross-cov.

Phase shift cross-cov.

Figure S3: Comparison of amplitude ratio and phase shift using the different sine fitting
methods for UK catchments from 1989 to 2009. Panel (a) and (b) show UK catchments.
Panel (c) and (d) show CAMELS catchments. Note that both axes are limited.

S.2.1.3 Robustness of seasonal signatures

To check whether the seasonal signatures are robust, we calculate the signatures for two different
time periods: from 1989 to 1999, and from 1999 to 2009.
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Figure S4: Comparison of amplitude ratio and phase shift using different time periods. Panel
(a) and (b) show UK catchments. Panel (c) and (d) show CAMELS catchments. Note that
both axes are limited.

Figure S.4 shows that the amplitude ratio and the phase shift show good agreement for the
different time periods analysed. This means that the period from 1989 to 1999 does not exhibit
a fundamentally different behaviour than the period from 1999 to 2009, i.e. the signatures are
robust. Some variability can be expected as the forcing varies from year to year, due to human
influences (UK), and because the signatures can be unreliable particularly in arid climates (US).

S.2.2 Fourier spectra of forcing and streamflow

To check whether the annual periodic component (annual Fourier mode) is the strongest peri-
odic component of our time series, we can calculate one-sided power spectra for all catchments.
For almost every catchment investigated here (> 99%) the strongest forcing Fourier mode is
the annual mode. For a few catchments in the US a 0.5 year mode is the strongest mode,
yet there is also an annual mode present. Some of the streamflow data have strongest modes
different from one year, yet again there is also an annual mode present. Figure S.5 shows one
sided power spectra for two catchments (the same catchments as shown in Figure 4 of the cor-
responding manuscript). We can see that in both catchments the annual mode is the strongest
mode. Figure S.5b also shows a strong multi-annual mode (of about 7 years, see also Rust



et al., 2019, for more information on multi-annual modes in the UK).
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Figure S5: One sided power spectra of climate input (P — E,; blue) and catchment output
(Q; orange) for two catchments in the UK, and their respective seasonal components. The
Ericht is a rather responsive catchment (BFI = 0.47), while the East Avon has a large baseflow
component (BFI = 0.89).

S.2.3 Catchments with precipitation falling as snow

Snow presents a different storage process that is not considered in the current approach. We
therefore remove snowy catchments, defined as catchments with a snow fraction f; (Knoben

et al., 2018) larger than 0.001, from the analysis. Figure S.6 shows the snowy catchments and
the corresponding snow fraction.
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Figure S6: Amplitude ratio against phase shift for CAMELS catchments. Colour indicates the
fraction of precipitation falling as snow. Note that both axes are limited.



S.2.4 On the use of potential evapotranspiration as input signal

As mentioned in the corresponding manuscript, we use precipitation P minus potential evap-
otranspiration E, as a proxy for the input signal to a catchment (the forcing F'). To test the
validity of the assumption that F, = E, in a rather straightforward manner, we adjust the
seasonal component of E, to obtain E, by means of the Budyko framework (Budyko, 1974).
We reduce the peak of the seasonal component of £, so that it equals the mean of E,, which
we estimate using the following equation (Budyko, 1974):

% = J b;ptanh <£> (1 — exp (—%)) (B.31)

We therefore obtain a new sine curve for the seasonal component of E,, which has a reduced
amplitude (g, E,) and a reduced mean (£,), but the same phase as the sine curve for the
seasonal component of E,. This will increase the amplitude ratio and might change the phase
shift whenever E, < Ep.
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Figure S7: Amplitude ratio against phase shift for (a) UK catchments and (¢) CAMELS
catchments using potential evapotranspiration in the forcing (F' = P — E,) and for (b) UK
catchments and (d) CAMELS catchments using estimated actual evapotranspiration in the
forcing (FF = P — E,). Grey solid line indicates a single linear reservoir, grey dashed line
indicates the outer envelope for two reservoirs in parallel. Colours indicate the moisture index.
Note that both axes are limited and that the y-axes differ in their range.



Figure S.7 shows the resulting amplitude ratios and phase shifts for the UK and the US together
with the ones using E, as input. Energy-limited catchments (high I,,), in particular the UK
catchments, show a similar pattern for £, and estimated £,. The amplitude ratios are slightly
higher, i.e. the whole point cloud is slightly shifted to the right. In water-limited catchments
in the US, where the annual water balance already implies that E, < E,, the amplitude ratios
are often higher and the phase shifts smaller. Many of the dark red dots that are close to
zero in Figure S.7b now plot much further to the right (Figure S.7d). Some of the large phase
shifts in these arid catchments might still be a consequence of a poorly estimated input signal.
The approach based on the Budyko framework (Equation (B.31)) only reduces the amplitude
of the evapotranspiration component, it does not change the timing of £, compared to E,.
In reality, however, it is possible (and likely) that F, also has a different phase compared to
E,. Especially in catchments where P and E, are out of phase, the soil moisture reservoir
will fill up during the wet months (peak rainfall) and dry out during the dry months (peak
evapotranspiration). If £, > P, the soil will likely dry out before we reach peak FE,, and hence
we reach peak E, before peak E,. The difference in the P peak and the E, peak (e.g. the
phase shift we observe in Figure S.7) would therefore be larger than the difference between the
P peak and the E, peak (i.e. the actual phase shift caused by the catchment). To overcome
that, we would either need modelled E,, e.g. from a (simple) hydrological model, or measured
E,. Modelling E, comes at the cost of introducing more modelling steps and therefore more
complexity. Measurements of E, are typically not available at a daily time scale. We therefore
leave this for future work.

S.3 Modelling experiment

We use two common rainfall-runoff models from the MARRMOoT rainfall-runoff modelling tool-
box (Knoben et al., 2019): IHACRES and GR4J. The parameter ranges are specified in Tables
1 and 2. The parameter ranges for IHACRES mostly follow the MARRMoT default values.
The fast flow routing delay 7, is set to range from 0.0001 to 10 days to represent fast flow
(the default range is from 1 to 700 days). The flow delay 7, (a pure delay function) is set
to 0 (inactive) which makes the model conceptually equal to the version used by Croke and
Jakeman (2004). The parameter ranges for GR4J are equal to the ranges used by Smith et al.
(2019).

We determine the initial storages by repeatedly simulating the first water year, using the
storages at the end of the year as new initial storages, until we reach an equilibrium (< 1%
change) or 20 iterations (in case of non-convergence).

Table 1: Parameter ranges for IHACRES. *This parameter is inactive.

Parameter Unit Description Min Max
Ip mm  Wilting point 0 2000
d mm  Threshold for flow generation 0 2000
D - Flow response non-linearity 0 10
o - Fast/slow flow division 0 1
Ty d Fast flow routing delay 0.0001 10
Ts d Slow flow routing delay 1 700
(14* d Flow delay 0 0)
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Table S2: Parameter ranges for GR4J.

Parameter Unit Description Min Max
X1 mm Maximum soil moisture storage 0.0001 3000
X mm d~!  Subsurface water exchange -20 20
x3 - Routing store depth 0.0001 2000
x4 mm Unit hydrograph time base 0.5 15

S.3.1 Subset of catchments for modelling experiment

The subset of catchments is chosen as follows. We only use benchmark catchments (Harrigan
et al., 2018) and remove the catchments with a low flow score of 0 and with any missing values
between 1989 and 2009. The remaining set of catchments is manually thinned out to evenly
occupy the signature space shown in Figure 5 in the corresponding manuscript. Figure S.8
shows amplitude ratios, phase shifts, and BFIs of the subset.
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Figure S8: Amplitude ratio against phase shift for the subset of UK catchments used in the
modelling experiment. Grey solid line indicates a single linear reservoir, grey dashed line
indicates the outer envelope for two reservoirs in parallel. Colours indicate the BFI.

S.3.2 Robustness of parameter sampling

To test whether the sample size used in the modelling experiment is large enough, we run the
models with 2000, 5000, 10000, and 20000 parameter sets, respectively, all generated using Latin
Hypercube sampling. The results from all 40 catchments (see Figure S.8) are summarised using
box plots. The results are shown in Figure S.9 for IHACRES, and in Figure S.10 for GR4J.

While small differences are visible, the overall pattern is stable. While sampling more parameter
sets is unlikely to change the results (except perhaps for some "outliers"), sampling with a
different sampling scheme might influence the shapes of the resulting probability distributions.
Furthermore, using different parameter ranges might affect the results.
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Figure S9: Box plots summarising model performances for different parameter sample sizes
for 40 UK catchments for IHACRES. Boxes indicate the median (middle), the 25th (bottom)
and 75th (top) percentiles, respectively. Whiskers show the range of data points not considered
outliers. Outliers are shown in red. The metrics used are (a) KGE, (b) BFI, (c) amplitude
ratio, and (d) phase shift. Note that the y-axes are limited.
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Figure S10: Box plots summarising model performances for different parameter sample sizes
for 40 UK catchments for GR4J. Boxes indicate the median (middle), the 25th (bottom) and
75th (top) percentiles, respectively. Whiskers show the range of data points not considered
outliers. Outliers are shown in red. The metrics used are (a) KGE, (b) BFI, (c) amplitude
ratio, and (d) phase shift. Note that the y-axes are limited.
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