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Abstract. Ensemble hydrograph separation has recently
been proposed as a technique for using passive tracers to esti-
mate catchment transit time distributions and new water frac-
tions, introducing a powerful new tool for quantifying catch-
ment behavior. However, the technical details of the neces-
sary calculations may not be straightforward for many users
to implement. We have therefore developed scripts that per-
form these calculations on two widely used platforms (MAT-
LAB and R), to make these methods more accessible to the
community. These scripts implement robust estimation tech-
niques by default, making their results highly resistant to out-
liers. Here we briefly describe how these scripts work and of-
fer advice on their use. We illustrate their potential and limi-
tations using synthetic benchmark data.

1 Introduction

What fraction of streamflow is composed of recent pre-
cipitation? Conversely, what fraction of precipitation be-
comes streamflow promptly? What is the age distribution of
streamwater? What is the “life expectancy” of precipitation
as it enters a catchment? And how do all of these quan-
tities vary with catchment wetness, precipitation intensity,
and landscape characteristics? Questions like these are fun-
damental to understanding the hydrological functioning of
landscapes and characterizing catchment behavior. Ensem-
ble hydrograph separation (EHS) has recently been proposed
as a new tool for quantifying catchment transit times, using
time series of passive tracers like stable water isotopes or
chloride. Benchmark tests using synthetic data have shown

that this method should yield quantitatively accurate answers
to the questions posed above (Kirchner, 2019), and initial ap-
plications to real-world data sets (e.g., Knapp et al., 2019)
have demonstrated the potential of this technique.

However, it has become clear over the past year that the
equations of Kirchner (2019, hereafter denoted K2019) may
be difficult for many users to implement in practically work-
able calculation procedures or computer codes. It has also be-
come clear that robust estimation methods would be a valu-
able addition to the ensemble hydrograph separation toolkit,
given the likelihood of outliers in typical environmental data
sets. The present contribution is intended to fill both of these
needs, by presenting user-friendly scripts that perform EHS
calculations in either MATLAB or R and that implement ro-
bust estimation by default.

Here we demonstrate these scripts using synthetic data
generated by the benchmark model of K2019, which in turn
was adapted from the benchmark model of Kirchner (2016).
We use these benchmark data instead of real-world obser-
vations, because age-tracking in the model tells us what the
correct answers are, so that we can verify how accurately
these EHS scripts infer water ages from the synthetic tracer
time series. The benchmark model consists of two nonlinear
boxes coupled in series, with a fraction of the discharge from
the upper box being routed directly to streamflow, and the
rest being routed to the lower box, which in turn discharges
to streamflow (for further details, see Kirchner, 2016, and
K2019). It should be emphasized that the benchmark model
and the ensemble hydrograph separation scripts are com-
pletely independent of one another. The benchmark model
is not based on the assumptions that underlie the ensemble
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hydrograph separation method. Likewise, the EHS scripts
do not know anything about the internal workings of the
benchmark model; they only know the input and output wa-
ter fluxes and their isotope signatures. Thus the analyses pre-
sented here are realistic analogues to the real-world problem
of trying to infer the internal functioning of catchments from
only their inputs and outputs of water and tracers.

Figure 1a and b show the simulated daily water fluxes and
isotope ratios used in most of the analyses below. The precip-
itation fluxes are averages over the previous day (to mimic
the effects of daily time-integrated precipitation sampling),
and the streamflow values are instantaneous values at the end
of each day (to mimic the effects of daily grab sampling). We
also aggregated these daily values to simulate weekly sam-
pling, using weekly volume-weighted average tracer concen-
trations in precipitation and weekly spot values in streamflow
(representing grab samples taken at the end of each week).
Five percent of the simulated tracer time series were ran-
domly deleted to mimic sampling and measurement failures,
and a small amount of random noise was added to mimic
measurement errors.

To illustrate the need for robust estimation techniques,
and to demonstrate the effectiveness of the robust estima-
tion methods employed in our scripts, we also randomly
corrupted the synthetic isotope data with outliers (Fig. 1c).
These outliers are intentionally large; for comparison, the en-
tire range of the outlier-free data shown in Fig. 1b lies be-
tween the two dashed lines in Fig. 1c. The outliers are also
strongly biased (they all deviate downward from the true val-
ues), making them harder to detect and eliminate. We make
no claim that the size of these outliers and their frequency
in the data set reflect outlier prevalence and magnitude in
the real world (which would be difficult to estimate in prac-
tice, without replicate sampling or other independent refer-
ence data). Instead, these outliers were simply chosen to be
large enough, and frequent enough, that they will substan-
tially distort the results of non-robust analyses. They thus
provide a useful test for the robust estimation methods de-
scribed below.

2 Estimating new water fractions using the function
EHS_Fnew

The simplest form of ensemble hydrograph separation seeks
to estimate the fraction of streamflow that is composed of re-
cent precipitation. Conventional hydrograph separation uses
end-member mixing to estimate the time-varying contribu-
tions of “event water” and “pre-event water” to streamflow.
By contrast, ensemble hydrograph separation seeks to esti-
mate the average fraction of new water in streamflow, aver-
aged over an ensemble of events (hence the name), based on
the regression slope between tracer fluctuations in precipita-
tion and discharge (see Fig. 2a),

CQj −CQj−1 =
QpFnew

(
CPj −CQj−1

)
+α+ εj , (1)

where QpFnew is the “event new water fraction” (the average
fraction of new water in streamflow during sampling inter-
vals with precipitation), CQj and CQj−1 are the tracer con-
centrations in streamflow at time steps j and j−1, CPj is the
volume-weighted average tracer concentration in precipita-
tion that falls between time j−1 and time j , and the intercept
α and the error term εj can be viewed as subsuming any bias
or random error introduced by measurement noise, evapoc-
oncentration effects, and so forth (see Sect. 2 of K2019 for
formulae and derivations).

Although ensemble hydrograph separation is rooted in as-
sumptions that are similar to end-member mixing, mathe-
matically speaking it is based on correlations between tracer
fluctuations rather than on tracer mass balances. As a re-
sult, it does not require that the end-member signatures are
constant over time or that all the end-members are sampled
or even known, and it is relatively unaffected by evapora-
tive isotopic fractionation or other biases in the underlying
data (see Sect. 3.6 of K2019). Even when new water frac-
tions are highly variable over time, one can show mathe-
matically (and confirm with benchmark tests) that ensemble
hydrograph separation will accurately estimate their average
(see Sect. 2 and Appendix A of K2019). As Fig. 2a shows,
higher discharges (indicating wetter catchment conditions)
may be associated with larger new water fractions and thus
stronger coupling between tracer fluctuations in precipitation
and streamflow. Nonetheless, the regression slope in Fig. 2a
averages over these variations, yielding an event new wa-
ter fraction (0.164± 0.006) that equals, within error, the true
event new water fraction (0.168± 0.005) determined by age
tracking in the benchmark model.

The lagged streamflow tracer concentration CQj−1 serves
as a reference level for measuring the fluctuations in the
tracer concentrations CPj and CQj in time step j . This has
the practical consequence that the sampling interval deter-
mines what “new water” means. For example, if CP and
CQ are sampled daily, “new water” means water that fell
within the previous day (and thus is expressed in units of
d−1), and if they are sampled weekly, “new water” means
water that fell within the previous week (and thus is ex-
pressed in units of week−1). Because the meanings and di-
mensions of new water fractions depend on the sampling in-
terval, so do the numerical values, as illustrated by Knapp et
al. (2019). In our example, the weekly event new water frac-
tion, calculated from weekly sampling of the daily values in
Fig. 1, is 0.443± 0.024, which agrees, within error, with the
true weekly event new water fraction (0.429± 0.017). As-
tute readers will notice that the weekly new water fraction
is not 7 times the daily one, implying that translating be-
tween weekly and daily event new water fractions is not just
a matter of converting the units. This is partly because weeks
rarely consist of seven consecutive daily hydrological events
(instead they typically include some days without rain). Thus
the relationship between daily and weekly new water frac-
tions will depend on the intermittency of precipitation events.
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Figure 1. Benchmark model daily water fluxes (a) and precipitation and streamflow isotope time series (light and dark blue symbols,
respectively), without outliers (b) and with 5 % outliers (c). The axis frame of the outlier-free data (b) corresponds to the dashed lines in
panel (c). Benchmark model parameters are Su,ref = 50 mm, Sl,ref = 2000 mm, bu = 10, bl = 3, and η = 0.8. The model is driven by a daily
precipitation time series from Plynlimon, Wales, and a hypothetical precipitation δ18O isotope record with a seasonal sinusoidal amplitude of
1.2 ‰, a normally distributed random standard deviation of 2.5 ‰, and a serial correlation of 0.5 between successive daily isotope values. A
random measurement error with a standard deviation of 0.1 ‰ was added to all simulated precipitation and streamflow isotope measurements.

Figure 2. Regression relationship (Eq. 1) used to estimate the event new water fraction QpFnew, using (a) the outlier-free benchmark data of
Fig. 1a, with different percentile ranges of discharge shown in contrasting colors, and (b) the outlier-corrupted benchmark data of Fig. 1b,
with outlier points shown in black. The axis frame of the outlier-free plot (a) corresponds to the small gray rectangle in panel (b). In
panel (a), five different percentile ranges of the discharge distribution are shown in contrasting colors. The stronger coupling between tracer
fluctuations in precipitation and streamflow at higher discharges, as seen in the differently colored points in panel (a), reflects a larger new
water contribution to streamflow. The event new water fraction QpFnew is the average fraction of streamflow that is composed of precipitation
that fell during the current sampling interval and is calculated from the regression slope between fluctuations in precipitation and streamflow
tracer concentrations (CPj and CQj ), each expressed relative to the previous streamflow sample’s tracer concentration (CQj−1). Because
this reference value appears on both axes of the regression plot, anomalous streamflow tracer values will appear as positively correlated
outliers. These points, as well as the xj outliers generated by anomalous precipitation tracer values, may have substantial leverage on the
fitted regression line, leading to distorted estimates of the regression slope QpFnew.

One must also keep in mind that the proportion of new water
in streamflow cannot exceed 1, so new water fractions, even
when evaluated from low-frequency data, cannot be arbitrar-
ily large.

As explained in Sect. 2 of K2019, there are three main
types of new water fractions. First, as noted above, the event
new water fraction QpFnew is the average fraction of new wa-
ter in streamflow during sampling intervals with precipita-
tion. Second, the new water fraction of discharge QFnew is the
average fraction of new water in streamflow during all sam-
pling intervals, with or without precipitation; this will obvi-
ously be less than the event new water fraction because peri-

ods without precipitation will not contribute any new water to
streamflow. Third, the “forward” new water fraction, or new
water fraction of precipitation PFnew, is the average fraction
of precipitation that will be discharged to streamflow within
the current sampling interval. Both QFnew and PFnew can be
derived by re-scaling QpFnew from Eq. (1) by the appropriate
denominators. All three of these new water fractions can also
be volume-weighted (to express, for example, the fraction of
new water in an average liter of streamflow, rather than on
an average day of streamflow), if the regression in Eq. (1) is
volume-weighted; these volume-weighted fractions are de-
noted using an asterisk, as QpF ∗new, QF ∗new, and PF ∗new.
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In our scripts, new water fractions are calculated by the
function EHS_Fnew. Users supply EHS_Fnew with vectors
of evenly spaced data for the water fluxes P and Q, and
tracer concentrations CP and CQ, in precipitation and dis-
charge. Users can also specify five options: (a) the thresh-
old precipitation rate p_threshold (in the same units as P ),
below which precipitation inputs will be ignored, under the
assumption that they will mostly have been lost to canopy
interception, (b) vol_wtd, a logical flag (default= false) in-
dicating whether the new water fractions should be volume-
weighted, (c) robust, a logical flag (default= true) indicating
whether the new water fractions should be calculated using
robust estimation methods as described in Sect. 2.1 below,
(d) ser_corr, a logical flag (default= true) indicating whether
the standard error estimates should account for serial corre-
lation in the residuals, and (e) ptfilter, a point filter vector of
logical flags indicating whether individual time steps should
be included in the analysis, thus facilitating easy analyses of
subsets of the original time series. The function EHS_Fnew
returns estimates of QpFnew, QFnew,and PFnew and their as-
sociated standard errors, with or without volume-weighting
depending on whether vol_wtd is set to true or false.

2.1 Robust estimation of new water fractions

The linear regression in Eq. (1), like any least-squares tech-
nique, is potentially vulnerable to outliers. Because poten-
tial outliers are often present in environmental data, practical
applications of ensemble hydrograph separation would ben-
efit from a robust method for estimating new water fractions.
Such a method should not only be insensitive to outliers; ide-
ally it should also be statistically efficient (i.e., it should yield
reasonable estimates from small samples), and it should be
asymptotically unbiased (i.e., it should converge to the con-
ventional regression results when outliers are absent, with a
bias near zero for large samples).

Figure 2 shows ensemble hydrograph separation plots of
the outlier-free benchmark data (Fig. 2a, estimated from
the time series shown in Fig. 1b) and the outlier-corrupted
benchmark data (Fig. 2b, estimated from the time series
shown in Fig. 1c). On these axes – precipitation and stream-
flow tracer fluctuations on the x and y axes, respectively,
each expressed relative to the streamflow tracer concentra-
tion in the previous time step – the regression slope estimates
the event new water fraction QpFnew. Here we are interested
in how outliers affect this regression slope. When outliers
are absent (Fig. 2a), the regression slope (0.164± 0.006, es-
timate± standard error) is consistent with the true event new
water fraction QpFnew = (0.168± 0.005) calculated from wa-
ter age tracking in the benchmark model.

By contrast, outliers substantially distort the ensemble hy-
drograph separation plot in Fig. 2b; they extend well beyond
the range of the outlier-free data indicated by the gray rect-
angle and inflate the estimate of QpFnew by nearly a factor
of 3. Outliers in precipitation tracer concentrations will be

displaced left or right from the corresponding true values (in
Fig. 2b, these outliers are displaced to the left because they
are all negative). Precipitation outliers will thus tend to flat-
ten the regression line. Outliers in streamflow concentrations
will appear in two different ways. First, they will be displaced
above or below the corresponding true values (in this case,
they are only displaced below, because they are all negative).
Secondly, they will also appear as strongly correlated devia-
tions on both the x and y axes because streamflow concen-
trations at time j − 1 are used as reference values for both
precipitation concentrations (on the x axis) and streamflow
concentrations (on the y axis) at time j . Unlike precipita-
tion outliers, these correlated points will tend to artificially
steepen the regression line. Thus, whether outliers steepen or
flatten the regression relationships underlying ensemble hy-
drograph separation will depend on the relative abundance
and size of the streamflow outliers and precipitation outliers
(relative to each other, and relative to the variability in the
true streamflow and precipitation tracer values). In the ex-
ample shown in Fig. 2b, the outliers have the net effect of
artificially steepening the fitted slope, yielding an apparent
QpFnew of 0.430± 0.018 that is more than 2.5 times the true
value of 0.168± 0.005 determined by age tracking in the
benchmark model.

Many robust estimation methods will not be effective
against outliers like those shown in Fig. 2b, which create
points that have great leverage on the slope of the fitted line.
This leverage can allow the outliers to pull the line close
enough to themselves that they will not be readily detected
as outliers. To address this problem, our robust estimation
procedure has two parts. The first step is to identify extreme
values of both precipitation and streamflow tracer concen-
trations at the outset and exclude them by setting them to
NA (thus treating them as missing values). This will effec-
tively prevent outliers from exerting strong leverage on the
solution. Because the exclusion criterion must itself be in-
sensitive to outliers, we define extreme values as those that
lie farther from the median than 6 times MAD, the median
absolute deviation from the median. The cutoff value of 6
times MAD was borrowed from the residual downweight-
ing function used in locally weighted scatterplot smoothing
(LOWESS: Cleveland, 1979). Any exclusion criterion may
also eliminate points that are not outliers but simply extreme
values. However, unless the underlying distribution has very
long tails, the 6 ·MAD criterion will exclude very few points
that are not outliers. If the underlying data follow a normal
distribution, for example, the chosen criterion will exclude
only the outermost 0.005 % of that distribution.

As a second step, we use iteratively reweighted least
squares (IRLS: Holland and Welsch, 1977) to estimate the re-
gression slope and thus the event new water fraction QpFnew.
IRLS iteratively fits Eq. (1) by linear regression, with point
weights that are updated after each iteration. Points with un-
usually large residuals are given smaller weight. In this way,
IRLS regressions follow the linear trend in the bulk of the

Hydrol. Earth Syst. Sci., 24, 5539–5558, 2020 https://doi.org/10.5194/hess-24-5539-2020



J. W. Kirchner and J. L. A. Knapp: Technical note: Calculation scripts for ensemble hydrograph separation 5543

data, giving less weight to points that deviate substantially
from that trend. This behavior, which allows IRLS to down-
weight outliers, can have undesirable effects in analyses of
outlier-free data exhibiting divergent trends. In Fig. 2a, for
example, higher flows have steeper trends, with the high-
est 20 % of flows (shown in red) exhibiting a much steeper
trend than the rest of the data. Because IRLS gives these
points relatively less weight, the robust estimate of QpFnew is
0.126± 0.004, 25 % less than the true value of 0.168± 0.005
determined from age tracking in the benchmark model. Thus,
in this case, the robust estimation procedure is somewhat less
accurate than ordinary least squares if the data are free of
outliers. Conversely, however, the outliers in Fig. 2b have lit-
tle effect on the robust estimation procedure, which returns a
QpFnew estimate of 0.115± 0.005, within 10 % of the outlier-
free value. This example demonstrates that like any robust
estimation procedure, ours is highly resistant to outliers but
at the cost of reduced accuracy when outliers are absent, par-
ticularly in cases, like Fig. 2a, that superimpose widely dif-
fering trends. Robust estimation is turned on by default, but
users can turn it off if they are confident that their data are
free of significant outliers.

3 Profiling catchment behavior using EHS_profile

Visual comparisons of the different discharge ranges shown
by different colors in Fig. 2a indicate that in these benchmark
data, higher discharges are associated with stronger coupling
between tracer concentrations in precipitation and stream-
flow, implying that streamflow contains a larger fraction of
recent precipitation. This observation implies that by esti-
mating QpFnew by regression for each discharge range sep-
arately, one can profile how new water fractions vary with
discharge (and thus with catchment wetness, at least in the
benchmark model system). As outlined in K2019, this can
be accomplished by splitting the original data set into sep-
arate ensembles and running EHS_Fnew on each ensemble
individually.

Although this can be achieved by applying a series of
point filter vectors to isolate each ensemble, here we provide
a function, EHS_profile, that automates this process. Users
supply EHS_profile with the same data vectors and logical
flags needed for EHS_Fnew as described in Sect. 2 above,
plus a criterion vector for sub-setting the data and two vec-
tors that define the percentile ranges of this criterion variable
to be included in each subset. Many different variables could
be chosen as the sub-setting criterion; examples include dis-
charge (or antecedent discharge), precipitation intensity (or
antecedent precipitation), day of year, soil moisture, ground-
water levels, fractional snow cover, and so forth.

Figures 3 and 4 show example profiles created by
EHS_profile from the benchmark model time series, with and
without outliers. The gray lines in Fig. 3 show how new water
fractions (the fractions of streamflow that entered the catch-

ment as precipitation during the same sampling interval, as
determined by age tracking in the benchmark model) vary as
a function of discharge rates. The gray lines in Fig. 4 show
the similar age tracking results for “forward” new water frac-
tions (the fractions of precipitation that leave as streamflow
during the same sampling interval), as a function of precipi-
tation rates. These age tracking results are compared to pro-
files of the new water fraction QFnew and “forward” new wa-
ter fraction PFnew calculated from the tracer time series using
EHS_ profile, with and without robust estimation (dark and
light symbols, respectively, in Figs. 3 and 4). If the tracer
time series contain no outliers (Figs. 3a and 4a), both the
robust and non-robust estimation procedures accurately es-
timate the new water fractions in each discharge range (i.e.,
the light and dark blue points closely follow the gray line).
By contrast, if the tracer time series are corrupted by out-
liers (Figs. 3b–f and 4b), the non-robust estimation procedure
yields new water fractions (light blue points) that deviate dra-
matically from the age tracking results, even if outliers make
up only 1 % of the data set (Fig. 3b). By contrast, the robust
estimation procedure yields new water fractions (dark blue
points) that closely follow the age tracking results (Figs. 3b–
e and 4b), at least as long as the fraction of outliers in the data
set does not exceed 10 %. Somewhere between an outlier fre-
quency of 10 % and 20 %, the robust estimation procedure
reaches its so-called “breakdown point” (Hampel, 1971), at
which it can no longer resist the outliers’ effects (see Fig. 3f).
This breakdown point is relatively low (for comparison, the
breakdown point of the median as an estimator of central
tendency is 50 %) because the outliers introduce highly cor-
related artifacts into the analysis (see Fig. 2b) and because
these particular outliers are very large and very strongly bi-
ased (they always lie below the true values). The breakdown
point could be raised by tailoring the exclusion criterion (step
1 in our two-step procedure) to these particular outlier char-
acteristics – for example, by basing it on deviations relative
to the median of the densest 50 % of the data, rather than
the median of all the data, to counteract the bias in the out-
liers. Doing so, however, would violate the principle that the
scripts and the data used to test them should be fully inde-
pendent of one another, as outlined in Sect. 1. In any case,
the empirical breakdown point of 10 %–20 % identified in
Fig. 3 is specific to this particular data set with these par-
ticular outlier characteristics and should not be interpreted
as indicating the likely breakdown point in other situations.
In general, however, we would expect the robust estimation
procedure to be more resistant to outliers that are smaller or
less strongly biased.

Astute readers will note that the robust estimates of new
water fractions almost exactly match the benchmark age
tracking data in the profiles shown here, whereas they un-
derestimated the same age tracking data by roughly 25 %
in Sect. 2.1 above, where the data were not separated into
distinct ranges of discharge or precipitation rates. The dif-
ference between these two cases is illuminating. Individual
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Figure 3. Profiles illustrating how new water fractions of discharge change with discharge regime, estimated using robust and non-robust
methods (dark and light blue symbols, respectively; error bars indicate 1 standard error) applied to synthetic benchmark tracer data without
different percentages of outliers. In profiles generated from outlier-free data (a), many light blue symbols are invisible because they are
directly overprinted by dark blue symbols. The light gray line indicates the true new water fraction, as calculated from water age tracking
in the benchmark model. The non-robust estimates (light blue symbols) closely follow the true values (gray line) if the tracer time series
are outlier-free (a) but deviate markedly if they are corrupted by outliers (b–f), even if those outliers comprise only a few percent of the
data (b–d). The robust estimates (dark blue symbols) closely follow the true values (gray line), until the outliers become so frequent that the
robust estimation algorithm is no longer effective against them (f).

discharge ranges exhibit well-defined relationships between
tracer fluctuations in precipitation and streamflow; that is, the
individual colored discharge ranges in Fig. 2a show roughly
linear scatterplots with well-constrained slopes. Thus, for
these individual discharge ranges, the robust estimates agree
with the benchmark “true” values (and the non-robust es-
timates do too, if the underlying data are free of outliers).
However, when these different discharge ranges are super-
imposed, the robust estimation procedure down-weights the
high-discharge points because they follow a different trend
from the rest of the data, resulting in an underestimate of the
new water fraction averaged over all discharges. Thus users

should be aware that our robust estimation procedure (like
any such procedure) can be confounded by data in which
some points exhibit different behavior than the rest and are
therefore excluded or down-weighted as potential anomalies.

4 Estimating transit time distributions using
EHS_TTD

One can estimate catchment transit time distributions (TTDs)
from tracer time series by extending Eq. (1) to a multiple
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Figure 4. Profiles illustrating how “forward” new water fractions
(new water fractions of precipitation, i.e., fractions of precipitation
leaving as streamflow during the current sampling interval) change
with precipitation regime, estimated using robust and non-robust
methods (dark and light blue symbols, respectively; error bars in-
dicate 1 standard error) applied to synthetic benchmark tracer data
without outliers (a) and with outliers (b). In (a), many light blue
symbols are invisible because they are directly overprinted by dark
blue symbols. The light gray line indicates the true forward new wa-
ter fraction, as calculated from water age tracking in the benchmark
model. The robust estimates (dark blue symbols) closely follow this
line, whether or not the benchmark data contain outliers. The non-
robust estimates (light blue symbols) closely follow the gray line
if the tracer time series are outlier-free (a) but deviate markedly if
the tracer data are corrupted by outliers (b). One off-scale value is
indicated by the light blue arrow.

regression over a series of lag intervals k = 0. . .m:

(
CQj −CQj−m−1

)
=

m∑
k=0

βk
(
CPj−k −CQj−m−1

)
+α+ εj , (2)

where the vector of regression coefficients βk can be re-
scaled to yield different types of transit time distributions
as described in Sects. 4.5–4.7 of K2019. Applying Eq. (2)
to catchment data is straightforward in principle but tricky
in practice, because any rainless intervals will lead to miss-
ing precipitation tracer concentrations CPj−k for a range of
time steps j and lag intervals k. Handling this missing data

problem requires special regression methods, as outlined in
Sect. 4.2 of K2019. Gaps in the underlying data can also lead
to ill-conditioning of the covariance matrix underlying the
least-squares solution of Eq. (2), leading to instability in the
regression coefficients βk . This ill-conditioning problem is
handled using Tikhonov–Phillips regularization, which ap-
plies a smoothness criterion to the solution in addition to
the least-squares goodness-of-fit criterion, as described in
Sect. 4.3 of K2019.

The function EHS_TTD spares users from the practical
challenges of implementing these methods. Users supply
EHS_TTD with the same data vectors needed for EHS_Fnew
as described in Sect. 2 above. Users also specifym, the max-
imum lag in the transit time distribution, and ν, the frac-
tional weight given to the Tikhonov–Phillips regularization
criterion (versus the goodness-of-fit criterion) in determin-
ing the regression coefficients βk . The default value of ν is
0.5, following Sect. 4.3 of K2019, which gives the regular-
ization and goodness-of-fit criteria roughly equal weight; if
ν is set to zero, the regularization criterion is ignored and the
estimation procedure becomes equivalent to ordinary least
squares. Users can set the optional point filter Qfilter to fil-
ter the data set by discharge time steps (for example, to track
the ages of discharge leaving the catchment during high or
low flows, regardless of the conditions that prevailed when
the rain fell that ultimately became those streamflows). Al-
ternatively, users can set the optional point filter Pfilter to
filter the data set by precipitation time steps (for example, to
track the life expectancy of rainwater that falls during large
or small storms, regardless of the conditions that will prevail
when that rainwater ultimately becomes discharge). It is also
possible to set both Pfilter and Qfilter so that both the pre-
cipitation and discharge time steps are filtered, but this capa-
bility should be used cautiously because it could potentially
lead to TTDs being estimated on only a small, and highly
fragmented, part of the data set.

The function EHS_TTD returns vectors for the transit time
distribution QTTD (the age distribution of streamflow leaving
the catchment), the “forward” transit time distribution PTTD
(the “life expectancy” distribution of precipitation entering
the catchment), and their associated standard errors. If the
vol_wtd flag is true, the corresponding volume-weighted dis-
tributions (QTTD∗ and PTTD∗) and their standard errors are
returned. In all cases, the units are fractions of discharge or
precipitation per sampling interval (e.g., d−1 for daily sam-
pling or week−1 for weekly sampling). This difference in
units should be kept in mind when comparing results ob-
tained for different sampling intervals.

4.1 Robust estimation of transit time distributions

In EHS_TTD, robust estimation of transit time distributions
follows a multi-step approach that is analogous to that which
is used in EHS_Fnew (described in Sect. 2.1 above). We first
exclude extreme values of both precipitation and streamflow
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tracer concentrations using the 6 ·MAD criterion. We then
apply iteratively reweighted least squares (IRLS) to Eq. (2),
without regularization; this yields a set of robustness weights,
which down-weight points that lie far away from the multidi-
mensional linear trend of the data. These robustness weights
are then applied within the Tikhonov–Phillips regularized re-
gression that estimates the transit time distribution. This ro-
bust estimation approach requires that we handle the missing
data problem in a different way than the one that was docu-
mented in Sect. 4.3 of K2019. The necessary modifications
are detailed in Appendix A.

This robust estimation procedure yields transit time dis-
tributions that are highly resistant to outliers (Fig. 5). The
gray lines in Fig. 5 show the true transit time distributions of
discharge (QTTD) and “forward” transit time distributions of
precipitation (PTTD), as determined by age tracking in the
benchmark model. These age tracking results are compared
to transit time distributions calculated from the tracer time
series using EHS_TTD, with and without robust estimation
(dark and light symbols, respectively, in Fig. 5). When the
tracer time series are outlier-free (Fig. 5a and c), both the
robust and non-robust estimation procedures accurately esti-
mate these TTDs (i.e., the light and dark blue points closely
follow the gray lines). When the tracer time series are cor-
rupted by outliers (Fig. 5b and d), the non-robust TTDs (light
blue points) deviate substantially from the age tracking re-
sults (gray lines), but the robust TTDs (dark blue points) fol-
low the gray lines nearly as well as with the outlier-free data.

4.2 Overestimation of uncertainties in humped transit
time distributions

The benchmark tests shown in Figs. 2–5 above, like most of
those presented in K2019, are based on a benchmark model
simulation that yields “L-shaped” TTDs, that is, those in
which the peak occurs at the shortest lag. In this section
we explore several phenomena associated with the analy-
sis of distributions that are “humped”, that is, those that
peak at an intermediate lag. Where tracer data are suffi-
cient to constrain the shapes of catchment-scale TTDs, they
suggest that humped distributions are rare (Godsey et al.,
2010). They are also not expected on theoretical grounds,
since precipitation falling close to the channel should reach
it quickly and with little dispersion, leading to TTDs that
peak at very short lags (Kirchner et al., 2001; Kirchner and
Neal, 2013). Nonetheless, humped distributions could poten-
tially arise in particular catchment geometries (Kirchner et
al., 2001) or in circumstances where tracers are introduced
far from the channel but not close to it. Thus we have re-run
the benchmark model with parameters that generate humped
TTDs (Su,ref = 50 mm, Sl,ref = 50 mm, bu = 5, bl = 2, and
η = 0.01), driven by the same time series of precipitation
rates and rainfall δ18O values used in Sects. 2–4.1 above.

Figure 6 shows both forward and backward humped tran-
sit time distributions, as estimated by EHS_TTD from the

benchmark model daily tracer time series, with their standard
errors. (Here, as in the other analyses presented in this note,
ser_corr= true, so the standard errors account for serial cor-
relation in the residuals.) It is visually obvious that the error
bars, which represent a range of ±1 standard error, are much
larger than either the differences in the TTD estimates them-
selves (the solid dots) between adjacent lags or the typical
deviations of the TTD estimates from the true values deter-
mined from age tracking (the gray lines). In other words, the
error bars greatly exaggerate the uncertainty or unreliability
of the TTD estimates. If the TTD estimates are unbiased, and
their standard error estimates are too, then the standard error
should approximate the root-mean-square deviation between
the estimate and the benchmark. If the errors are roughly nor-
mally distributed, the true value should lie within the error
bars about 65 %–70 % of the time and outside the error bars
about 30 %–35 % of the time. By contrast, the error bars in
Fig. 6 are many times larger than the typical deviation of
the TTD estimates from the true values. Figure 5 shows a
milder form of this exaggeration of uncertainty; here too, the
age tracking values almost never lie outside the error bars,
whereas that should occur about one-third of the time if the
error bars are estimated accurately.

Thus it appears that the TTD error estimates are gener-
ally conservative (i.e., they overestimate the true error), but
with humped distributions the uncertainties are greatly ex-
aggerated. Numerical experiments (Fig. 7) reveal that this
problem arises from the nonstationarity of the transit times in
the benchmark model (and, one may presume, in real-world
catchment data as well). K2019 (Sect. 4 and Appendix B)
showed that ensemble hydrograph separation correctly es-
timates the average of the benchmark model’s nonstation-
ary (i.e., time-varying) TTD, as one can also see in Figs. 6
and 8. When this (stationary) average TTD is used to predict
streamflow tracer concentrations (which is necessary to esti-
mate the error variance and thus the standard errors), how-
ever, it generates nearly the correct patterns of values but not
with exactly the right amplitudes or at exactly the right times
(see Fig. 7a). This is the natural consequence of estimating a
nonstationary process with a stationary (i.e., time-invariant)
statistical model. As a result, the residuals are larger, with
much stronger serial correlations, than they would be if the
underlying process were stationary (compare Fig. 7a and b),
resulting in much larger calculated standard errors of the
TTD coefficients. These tendencies are even stronger for
humped TTDs, which introduce stronger serial correlations
in the multiple regression fits that are used to estimate the
TTD itself. Serial correlations in the residuals reduce the ef-
fective number of degrees of freedom by a factor of approx-
imately (1− rsc)/(1+rsc), where rsc is the lag−1 serial cor-
relation coefficient of the residuals, thus increasing the stan-
dard error by roughly a factor of [(1+ rsc)/(1− rsc)]0.5. For
the nonstationary case shown in Fig. 7a, rsc is 0.96 (thus in-
creasing the standard error by a factor of roughly 7), whereas
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Figure 5. Transit time distributions of discharge (QTTDs; panels a and b) and forward new water fractions of precipitation (PTTDs; pan-
els c and d), as estimated by ensemble hydrograph separation from synthetic benchmark tracer time series without outliers (a, c) and with
outliers (b, d). Symbols show results obtained with and without robust estimation (dark and light symbols, respectively); error bars indicate
1 standard error. In (a) and (c), many light blue symbols are obscured because they are overprinted by dark blue symbols. Light gray curves
indicate the true TTDs, as calculated from water age tracking in the benchmark model. When the tracer data are free of outliers (a, c), esti-
mates obtained from robust and non-robust methods are almost equally good, both typically lying within 1 standard error of the true TTDs
(gray curves). However, when the input data are corrupted by extreme outliers (b, d), estimates from the non-robust method (light symbols)
deviate substantially from the true TTDs, whereas estimates from the robust method (dark symbols) still follow the gray curve nearly as well
as they did with the outlier-free data.

for the stationary case shown in Fig. 7b, rsc is 0.22 (thus in-
creasing the standard error by only a factor of 1.25).

Since the exaggerated standard errors in Fig. 6 arise pri-
marily from the nonstationarity in the benchmark model’s
transit times, one might intuitively suspect that this prob-
lem could be at least partly resolved by dividing the time
series into separate subsets (representing, for example, wet
conditions with shorter transit times and dry conditions with
longer transit times) and then estimating TTDs for each sub-
set separately using the methods described in Sect. 4.4 below.
Benchmark tests of this approach were unsuccessful, how-
ever. This approach might theoretically work, if the “wet”
and “dry” states persisted for long enough that tracers would
both enter and leave the catchment while it was either “wet”
or “dry”. Under more realistic conditions, however, many
different precipitation events and many changes in catchment
conditions will be overprinted on each other between the time
that tracers enter in precipitation and leave in streamflow,
making this approach infeasible.

A somewhat counterintuitive approach that shows more
promise is to use lower-frequency tracer data to estimate

humped TTDs. Figure 8 shows that if the same TTDs as those
shown in Fig. 6 are estimated from weekly data rather than
daily data, the standard errors more accurately approximate
the mismatch between the TTD estimates and the true val-
ues (i.e., the difference between the blue dots and the gray
curves). Weekly sampling yields much more reasonable stan-
dard errors in this case, because the multiple regression resid-
uals are much less serially correlated (see Fig. 7c; rsc is 0.66,
increasing the standard error by only a factor of 2.2). In ad-
dition, with daily data the TTD coefficients are estimated for
a closely spaced mesh of lag times (with lag intervals of 1 d),
and broad TTDs like the ones shown in Fig. 6 do not change
much over such short lag intervals. Thus the individual TTD
coefficients on such a closely spaced mesh are not well con-
strained; one could make the TTD stronger at the fifth daily
lag and weaker at the sixth daily lag, for example, with little
effect on the overall fit to the data. With weekly sampling,
the TTD coefficients are more widely separated in time (with
lag intervals of 1 week) and thus are less redundant with one
another.
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Figure 6. Humped transit time distributions (QTTDs) and forward
transit time distributions (transit time distributions of precipitation,
PTTDs), as estimated by ensemble hydrograph separation from syn-
thetic benchmark tracer time series. Symbols show ensemble hy-
drograph separation results obtained with and without robust esti-
mation (dark and light symbols, respectively); error bars indicate 1
standard error. Many light blue symbols are obscured because they
are overprinted by dark blue symbols. The light gray lines indicate
the true TTD, as calculated from water age tracking in the bench-
mark model. The TTDs calculated from the synthetic tracer time se-
ries follow these gray lines, but the error bars indicate that the stan-
dard errors are overestimated by large factors. Benchmark model
parameters are Su,ref = 50 mm, Sl,ref = 50 mm, bu = 5, bl = 2, and
η = 0.01. The model is driven by the same time series of precipita-
tion rates and δ18O values shown in Fig. 1 and used in Figs. 2–5.

4.3 Overestimation of Fnew when distributions are
humped

Figure 9 shows profiles of new water fractions (QFnew) and
forward new water fractions (PFnew), analogous to those
shown in Figs. 3–4, but based on model simulations yield-
ing the humped distributions shown in Fig. 6. One can im-
mediately see that the new water fractions are substantially
overestimated and that this bias is particularly large for for-
ward new water fractions associated with low rainfall rates
(i.e., the left side of Fig. 9b). These artifacts arise because
the random fluctuations in input tracer concentrations used
in the benchmark model have a serial correlation of 0.5 be-

Figure 7. Comparison of observed and fitted streamflow tracer time
series (gray dots and dark blue line, respectively, shown relative
to their lagged reference values as in the left hand side of Eq. 2)
and fitting residuals (dark blue dots), for the nonstationary bench-
mark model with a humped time-averaged TTD (a), for the same
model with the same parameters, but with constant precipitation
rates and therefore a stationary humped TTD (b), and for the same
model based on weekly rather than daily sampling (c). The ob-
served and fitted tracer time series are shown relative to the ref-
erence tracer concentration (the streamflow concentration beyond
the longest TTD lag; see K2019for details). In (a), the multiple re-
gression fit to the streamflow tracers generally exhibits the correct
behavior, but with minor errors in amplitude and timing, resulting
in residuals that exhibit strong serial correlation (lag−1 rsc= 0.96)
and thus greatly exaggerated standard errors of the regression coef-
ficients that define the TTD. By contrast, under a stationary bench-
mark model (b), achieved by holding the precipitation rate constant
at its average value, the multiple regression fit to the streamflow
tracers yields much smaller residuals (note the difference in scale)
with little serial correlation (lag−1 rsc = 0.23). Weekly samples
from the nonstationary benchmark model (c) yield residuals with
much less serial correlation (lag−1 rsc = 0.66) than daily samples
(a), resulting in less exaggerated standard errors of the regression
coefficients (compare Figs. 6 and 8).
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Figure 8. Transit time distributions (QTTDs) and forward tran-
sit time distributions (transit time distributions of precipitation,
PTTDs), as estimated by ensemble hydrograph separation from syn-
thetic weekly benchmark tracer time series. Symbols show ensem-
ble hydrograph separation results obtained with and without robust
estimation (dark and light symbols, respectively); error bars indicate
1 standard error. Many light blue symbols are obscured because they
are overprinted by dark blue symbols. The light gray lines indicate
the true TTDs, as calculated from water age tracking in the bench-
mark model. The tracer data used here are the same as in Fig. 6
but aggregated to simulate weekly instead of daily sampling. The
standard errors are not as overestimated as those in Fig. 6, because
weekly sampling results in weaker serial correlation in the residuals
of the regressions that estimate the TTD (see Fig. 7).

tween successive daily values. Thus the correlations between
input and output tracer fluctuations at lag zero (and thus the
new water fractions) are artificially inflated by leakage from
the stronger correlations at longer lags, where the TTD is
much stronger. Numerical experiments show that the bias in
the new water fractions disappears when the short-lag serial
correlation in the input tracers is removed, supporting this
hypothesis for how the bias arises. Nonetheless, real-world
precipitation tracer concentrations are often serially corre-
lated (particularly in high-frequency measurements), so re-
searchers should be aware of the bias that could potentially
arise in new water fractions if transit time distributions are
humped.

Figure 9. Profiles of new water fractions (QFnew, panel a) and for-
ward new water fractions (PFnew, panel b), estimated using robust
and non-robust methods (dark and light blue symbols, respectively;
error bars indicate 1 standard error) applied to daily tracer time se-
ries, generated by the benchmark model using parameters that gen-
erate a humped distribution (see Fig. 6). Some light blue symbols
are invisible where they are overprinted by dark blue symbols. The
light gray lines show the true new water fractions, as calculated
from water age tracking in the benchmark model. These new water
fractions are overestimated by both robust and non-robust methods.

In principle the distortions arising from the correlations in
the precipitation tracer data could potentially be alleviated by
calculating TTDs for individual precipitation and discharge
ranges using the methods outlined in Sect. 4.4 below and then
estimating QFnew and PFnew from the lag-zero coefficients of
QTTD and PTTD, respectively. Benchmark tests of this ap-
proach were not successful, however, possibly because the
transit time distributions cannot be estimated reliably when
the source data are split among so many narrow ranges of
precipitation or discharge. (Indeed, in many cases users may
seek to estimate new water fractions precisely because they
lack sufficient data to reliably estimate transit time distribu-
tions.)

Instead, benchmark tests suggest that a practical cure for
the biases shown in Fig. 9 may be, counterintuitively, to esti-
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mate profiles of QFnew and PFnew from lower-frequency mea-
surements, similar to the estimation of humped TTDs. As
Fig. 10 shows, the bias in Fig. 9 is effectively eliminated if
the profiles of new water fractions are estimated from weekly
samples instead of daily samples. This occurs because the in-
put tracers are less correlated over weekly sampling intervals
than over daily sampling intervals, and because the TTD is
much stronger at short lags on weekly timescales (Fig. 8)
than on daily timescales (Fig. 6). In real-world cases, biases
like those shown in Fig. 9 may not be obvious, because the
correct answer (shown here by the gray line, derived from
benchmark model age tracking) will not be known. How-
ever, the behavior in Fig. 9b is implausible on hydrological
grounds (Why should catchments quickly transmit a partic-
ularly large fraction of very small precipitation events to the
stream?), and the PFnew profiles in Figs. 9b and 10b show
strongly contrasting patterns. Thus observations like these
may help in identifying biased new water fraction estimates,
even in cases where the TTD itself has not been quantified.

4.4 Visualizing catchment nonlinearity using
precipitation- and discharge-filtered TTDs

Transit time distributions are typically constructed from the
entire available tracer time series for a catchment, as in
Figs. 5, 6, and 8. Such TTDs can be considered as averages
of catchments’ nonstationary transport behavior, as shown in
Sect. 4.2 above. However, ensemble hydrograph separation
can also be used to calculate TTDs for filtered subsets of the
full catchment time series, focusing on either discharge or
precipitation time steps that highlight particular conditions
of interest. (In Appendix B we describe the new procedure
that EHS_TTD uses for filtering precipitation time steps; this
approach yields more accurate results than the one outlined
in Sect. 4.2 of K2019.) TTDs from these filtered subsets of
the full time series can yield further insights into catchment
transport phenomena.

For example, we can map out the nonlinearities that give
rise to catchments’ nonstationary behavior, by comparing
TTDs from subsets of the original time series that represent
different catchment conditions (Fig. 11). Larger precipitation
events in our benchmark model result in forward transit time
distributions with peaks that are higher, earlier, and narrower
(Fig. 11a). A similar progression in peak height, timing, and
width is observed in forward TTDs (Fig. 11b) obtained from
the benchmark tracer time series by setting the point filter
Pfilter in EHS_TTD to focus on individual ranges of pre-
cipitation rates. The backward transit time distributions in
the benchmark model (Fig. 11c) differ somewhat from the
forward transit time distributions (Fig. 11a) but exhibit a
similar shift to higher, earlier, and narrower peaks at higher
discharges. This trend is also reflected in backward TTDs
(Fig. 11d) obtained from the benchmark time series by set-
ting Qfilter for the same discharge ranges used in Fig. 11c.

Figure 10. Profiles of new water fractions (QFnew, panel a) and for-
ward new water fractions (PFnew, panel b), estimated using robust
and non-robust methods (dark and light blue symbols, respectively;
error bars indicate 1 standard error) applied to weekly tracer time
series from the benchmark model using parameters that generate a
humped distribution (see Fig. 6). Some light blue symbols are in-
visible where they are overprinted by dark blue symbols. The light
gray lines show the true new water fractions, as calculated from wa-
ter age tracking in the benchmark model. In contrast to the results
from the daily time series (Fig. 9), the weekly tracer time series
yield new water fraction profiles that are consistent with the true
values determined by age tracking.

The ensemble hydrograph separation TTDs do not per-
fectly match the age tracking results shown by the dotted
gray lines in Fig. 11b and d, particularly for the smallest frac-
tions of the precipitation and discharge distributions, where
fewer data points are available. Nonetheless, although the
TTDs differ in detail from the age tracking results, they ex-
hibit very similar progressions in peak height and shape, re-
flecting the nonlinearity in the benchmark model storages,
which have shorter effective storage times at higher stor-
age levels and discharges. Although the particular results
shown in Fig. 11 are generated by a synthetic benchmark
model, they illustrate how similar analyses could be used
to infer nonlinear transport processes from real-world catch-
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Figure 11. Non-stationary transit time distributions of precipitation (a, b) and discharge (c, d), visualized through age tracking in the
benchmark model (a, c) and ensemble hydrograph separation (b, d) for selected ranges of precipitation and discharge in the daily time
series. Dotted gray lines in right panels show model age tracking results (a, c) for comparison. Curves show spline interpolations between
individual points at each daily lag. The ensemble hydrograph separation TTDs differ somewhat from the model age tracking results, but they
both exhibit similar progressions toward higher, earlier, and narrower TTD peaks at higher precipitation and discharge rates.

ment data. Comparing TTDs representing different levels
of antecedent catchment wetness, for example, could poten-
tially be used to determine how much more precipitation by-
passes catchment storage during wet conditions. Similarly,
TTDs representing different levels of subsequent precipita-
tion (over the following day or week, for example) could
potentially be used to determine how effectively such pre-
cipitation mobilizes previously stored water. Thus Fig. 11 il-
lustrates how TTDs from carefully selected subsets of catch-
ment tracer time series can be used as fingerprints of catch-
ment response and as a basis for inferring the mechanisms
underlying catchment behavior.

4.5 Sample size, sampling frequency, and number of
TTD lags

Prospective users of ensemble hydrograph separation may
naturally wonder what sample sizes and sampling frequen-
cies are needed to estimate new water fractions and transit
time distributions. The answers will depend on many differ-
ent factors, including the timescales of interest to the user, the
desired precision of the Fnew and TTD estimates, the logisti-
cal constraints on sampling and analysis, the frequency and
intermittency of precipitation events, the variability of the in-
put tracers over different timescales, and the timescales of

storage and transport in the catchment itself (that is, what the
TTD is and how non-stationary it is, which of course can only
be guessed before measurements are available). Ideally one
should sample at a frequency that is high enough to capture
the shortest timescales of interest and sample much longer
than the longest timescales of interest. One should also aim
to capture many diverse transport events, spanning many dif-
ferent catchment conditions and precipitation characteristics.

Beyond these generalizations, it is difficult to offer con-
crete advice. We can, however, report our recent experience
applying ensemble hydrograph separation to weekly and 7-
hourly isotope time series at Plynlimon, Wales (Knapp et
al., 2019). We were generally able to estimate TTDs out to
lags of about 3 months based on 4 years of weekly sam-
pling. The same 4 years of weekly samples yielded about
100 precipitation–discharge sample pairs (after samples cor-
responding to below-threshold precipitation were removed),
which were sufficient to estimate weekly event new water
fractions with an uncertainty of about 1 % (e.g., QpFnew ∼

8 ± 1%). When these were split into four seasons, we could
estimate event new water fractions with an uncertainty of
about 2 %–3 % using 20–30 weekly precipitation–discharge
pairs, and when they were split into 4–6 different ranges of
precipitation and discharge, we could reasonably well con-
strain the profiles of new water response to catchment wet-
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Figure 12. L-shaped (a, b) and humped (c, d) transit time distributions (QTTDs) calculated from benchmark daily (a, c) and weekly (b, d)
tracer time series for different numbers of lag intervals (shown by the different colors in each panel). The light gray curves indicate the true
TTDs, as calculated from water age tracking in the benchmark model. Standard errors are not shown to avoid obscuring the patterns in the
overlapping TTD estimates. TTD estimates with different numbers of lags generally agree, except for their last few lags. An exception to this
general rule is the four-lag TTD shown in dark blue in panel (d).

ness and precipitation intensity (Fig. 10 of Knapp et al.,
2019). We were able to estimate 7-hourly TTDs out to lags
of 7 d based on about 17 months of 7-hourly isotope samples,
including almost 1500 discharge samples and 540 above-
threshold precipitation samples, and splitting these data sets
in half allowed us to distinguish the TTDs for summer and
winter conditions (Figs. 11 and 12 of Knapp et al., 2019).
However, these numbers should not be uncritically adopted
as rules of thumb for other catchments, since precipitation
at Plynlimon is frequent and weakly seasonal, and the catch-
ment is characterized by rapid hydrological response but rel-
atively long storage timescales (Kirchner et al., 2000). All of
these characteristics could potentially affect the sample sizes
needed for estimating new water fractions and transit time
distributions. As more experience is gained at more catch-
ments, general rules of thumb may emerge. Until then, how-
ever, benchmark tests like those described here can poten-
tially provide a more reliable site-specific guide to sample
size requirements.

Another obvious question for users is the number of lags
over which the TTD should be estimated. Here, too, there is
no fixed rule; the answer will depend on the timescales of in-
terest, the length of the available tracer time series, and the
shape of the TTD itself (which of course will not be known in
advance). An empirical approach is to compare the results for
several different maximum lags m and see where the result-
ing TTDs are similar and different. Figure 12 shows this ap-

proach applied to daily and weekly tracer time series, yield-
ing TTDs with contrasting shapes. The upper row (panels a
and b) shows L-shaped TTDs estimated from the same syn-
thetic tracer time series that underlie Figs. 1–5, and the lower
row shows humped TTDs from the same benchmark model
driven by the same inputs, but with different parameters as
described above. In each panel, the shorter and longer TTDs
(shown in different colors) are generally consistent with one
another, except in the case of the four-lag TTD shown in blue
in Fig. 12d. In that case, such a short TTD is evidently un-
able to capture the shape of the benchmark distribution, as
indicated by its deviation from the TTDs of other lengths.
One can also see that the last few lags of any TTD can di-
verge from the TTD shape defined by the other TTDs. In
Fig. 12a the last few lags generally deviate downward, and in
Fig. 12c they generally deviate upward; thus there appears to
be no general rule except that the last few lags of any TTD
estimates should be treated with caution and potentially ex-
cluded from analysis.

A further observation from Fig. 12 is that TTD estimates
from weekly tracer data may be at least as accurate as, if not
more so than, those calculated from daily tracer data. This
may seem surprising, particularly because the time series un-
derlying Fig. 12 are all 5 years long; thus the daily time series
contain 7 times as many individual tracer measurements as
the weekly time series. Nonetheless, for several reasons it is
not surprising that in this case one could obtain more stable
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estimates from fewer data points. First of all, in these numer-
ical experiments the precipitation tracer concentrations are
serially correlated (as they also often are in the real world);
thus there is more redundancy among the daily tracer inputs
than among the weekly tracer inputs. Secondly, the precip-
itation volumes are less variable (in percentage terms) from
week to week than they are from day to day, meaning that the
weekly calculations use fewer input concentrations that are
accompanied by very small water volumes (and that there-
fore could not have much influence on the real-world catch-
ment). And thirdly, lower sampling frequencies entail TTDs
with coefficients at more widely spaced lags, which are thus
less redundant with one another and thus can be individually
constrained better. Of course with lower-frequency sampling
one loses the short-lag tail of the TTD, which may be of par-
ticular interest. But in cases where this information is not
crucial – or where only lower-frequency data are available
– it appears that TTDs can be reliably estimated from sam-
ples taken weekly and perhaps from samples taken even less
frequently.

5 Closing comments

In this short contribution, we have presented scripts that im-
plement the ensemble hydrograph separation approach. We
have also illustrated some of its quirks and limitations us-
ing synthetic data. These issues have been revealed through
benchmark tests that are substantially stricter than many in
the literature. One should not assume that other methods have
fewer quirks and limitations, unless those methods have been
tested with equal rigor.

For example, many benchmark data sets are generated us-
ing the same assumptions that underlie the analysis methods
that they are used to test. Although the results of such tests of-
ten look nice, they are unrealistic because those idealized as-
sumptions are unlikely to hold in real-world cases. For exam-
ple, the TTD methods presented here would work very well
if they were tested against benchmark data generated from
a stationary TTD (see Fig. 7b), but this is hardly surprising
since the regression in Eq. (2) assumes stationarity. However,
such a test is far removed from the real world, in which tracer
data typically come from nonstationary catchment systems.
Tests with nonstationary benchmarks yield results that are
less (artificially) pleasing but more realistic (e.g., Fig. 7a).
These tests also demonstrate an important point, by showing
how well the TTD method estimates the average of the time-
varying TTDs that are likely to arise in real-world cases (see
also Sect. 4 and Appendix B of K2019).

Although these scripts have been tested against several
widely differing benchmark data sets (both here and in
K2019), we encourage users to test them with their own
benchmark data to verify that they are behaving as expected.
As the examples presented here show, ensemble hydrograph
separation can potentially be applied not only to the high-
frequency tracer data sets that are now becoming available,
but also to longer-term, lower-frequency tracer data that have
been collected through many environmental monitoring pro-
grams. We hope that these scripts facilitate new and interest-
ing explorations of the transport behavior of many different
catchment systems.
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Appendix A: Improved solution method for transit time
distributions

Ensemble hydrograph separation estimates transit time dis-
tributions by a multiple regression of streamflow tracer fluc-
tuations against current and previous precipitation tracer fluc-
tuations (Eq. 2, which is the counterpart to Eq. (1) over multi-
ple lag intervals k). Performing this multiple regression with
real-world data requires addressing the “missing data prob-
lem”: precipitation tracer concentrations will be inherently
unavailable during time steps where no precipitation falls,
and both precipitation and streamflow tracer concentrations
may also be missing due to sampling and measurement fail-
ures. The scripts presented here handle missing data some-
what differently than the procedure outlined in Sect. 4.2 of
K2019. In this Appendix we outline the new procedure and
explain why it is necessary.

Equation (2) in the main text has the form of a multiple
linear regression equation,

yj =

m∑
k=0

βkxj,k +α+ εj , (A1)

where

yj = CQj −CQj−m−1 (A2)

and

xj,k = CPj−k −CQj−m−1 . (A3)

The conventional least-squares solution to such a multiple
regression is usually expressed in matrix form as

β̂ =
(
XTX

)−1XTY , (A4)

where β̂ is the vector of the regression coefficients βk , Y
is the vector of the reference-corrected streamflow tracer
concentrations yj = CQj −CQj−m−1 , and X is the matrix of
the reference-corrected input tracer concentrations xj,k =
CPj−k −CQj−m−1 at each time step j and lag k.

Equation (A4) cannot be applied straightforwardly to real-
world catchment data, because it cannot be solved when val-
ues of yj or xj,k are missing. K2019 handled this missing
data problem using a variant of Glasser’s (1964) “pairwise
deletion” approach. In this approach, Eq. (A4) was re-cast in
terms of covariances,(
β̂k

)
=

(
cov(Xk,Xl)(kl)

)−1(
cov(Xk,Y )(ky)

)
, (A5)

and these covariances were evaluated only for pairs of non-
missing values (see Eqs. 42 and 43 of K2019), as signified by
the subscripts in parentheses (i.e., they were only evaluated
for time steps j where both xj,k and xj,l or xj,k and yj were
non-missing). The solution method presented in K2019 rec-
ognized that these covariances must be adjusted to account

for the two different reasons that values can be missing. A
value of xj,k that is missing because of a sampling or analysis
failure represents missing information; it cannot be included
in calculating the corresponding covariances, but (barring bi-
ases in which values are missing) it should have no system-
atic effect. By contrast, if a value of xj,k is missing because
too little rain fell, it should dilute the covariances in which
it appears, because with trivial precipitation inputs, the miss-
ing tracer concentration could not cause any meaningful co-
varying change in streamflow tracer concentrations. These
considerations required the elements of the covariance ma-
trix in Eq. (A5) to be adjusted using prefactors called nxk
and nxkxl that accounted for the number of precipitation sam-
ples that were missing for the two different reasons outlined
above (see Eqs. 44–45 and Appendix B of K2019).

Practical experience since the publication of K2019 has
revealed at least three important limitations in the approach
outlined above (and detailed in Sect. 4.2 and Appendix B of
K2019). First, although this approach can work well if values
of yj or xj,k are missing at random, in non-random cases it
can lead to the covariances being estimated from inconsistent
sets of values. For example, if yj is missing for some par-
ticular j , the corresponding values of xj,k will still be used
in estimating the covariance matrix cov(Xk,Xl)(kl). This is
advantageous if the values are missing at random, because
all the covariances will include as many data pairs as pos-
sible. However, the covariance estimates could become in-
consistent, with potentially substantial consequences for the
solution to Eq. (A5), if the values are missing non-randomly.
In our case, the missing values are inherently structured, be-
cause a single missing precipitation tracer concentration CPj
causes a diagonal line of missing values in X, and a single
missing streamflow tracer concentration CQj causes a miss-
ing row in X and two missing values in Y . The second prob-
lem is that our robust estimation procedure depends on itera-
tively reweighted least squares (IRLS), which in turn requires
us to calculate the regression residuals, which is impossible
for any time step j that is missing either yj or any of the xj,k .
The third problem is that estimating the uncertainties in the
TTD requires the error variance, which again requires calcu-
lating the residuals. This last problem can be circumvented
by using Glasser’s (1964) error variance formula (Eq. 52 of
K2019), but K2019 warns that this formula can yield implau-
sible results, including negative error variance values (which
are of course logically impossible).

Here, rather than removing the missing values and using
Glasser’s (1964) error variance formula, instead we fill in the
missing values and calculate the residuals directly by invert-
ing Eq. (A1), thus facilitating both robust estimation using
IRLS and direct calculation of the error variance for pur-
poses of uncertainty estimation. The key to this approach is
that we subtract the means from Y and from each column
Xk of X, (or subtract the weighted means in case of volume-
weighting), and then we fill in the missing values with zeroes.
Because each of the variables has already been “centered” to
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have a mean of zero, the in-filled values of zero will have no
effect on the solution of Eq. (A1); in statistical terms, they
will exert no leverage. This approach also has the advantage
that the intercept α in Eq. (A1) becomes zero and drops out
of the problem.

Broadly speaking, the solution proceeds similarly to
Sect. 4.2–4.4 of K2019, with several important differences.
One is that the covariance matrix now requires different pref-
actors than the nxk and nxkxl used in K2019 to account for the
two different types of missing data, because missing values
will affect the covariances differently now that they are be-
ing in-filled with zeroes. In principle, a value of xj,k that is
missing because of a sampling or analysis failure represents
missing information, so it should not alter the covariances in
which it appears. However, those covariances will be diluted
when the missing value is replaced by zero (since it will add
nothing to the cross-products in the numerator of the covari-
ance formula but will add to the total number n in the de-
nominator). The resulting covariances must be re-scaled to
reverse this dilution artifact. By contrast, if values of xj,k are
missing because no rain fell, they should dilute the covari-
ances in which they appear, because with no precipitation,
they could not cause any co-varying change in streamflow
tracer concentrations. Thus replacing these missing values
with zeroes correctly dilutes the corresponding covariances.

A sketch of the solution procedure is as follows. First
we identify and remove outliers in the precipitation and
streamflow tracer concentrations CP and CQ as described in
Sects. 2.1 and 4.1 and use the remaining values to calculate
the yj and xj,k using Eqs. (A2) and (A3). Next we calculate
a matrix uj,k of Boolean flags that indicate whether a given
value of xj,k will be usable or not, according to the criteria
outlined in the paragraph above: a value of xj,k is unusable if
it is missing (and thus will need to be replaced by zero) and
its corresponding value of precipitation is above p_threshold
(and thus its contribution to the covariances would not be
nearly zero anyway). If either of these conditions is not met,
the value of xj,k is usable (potentially with replacement by
zero if it is missing and corresponds to below-threshold pre-
cipitation inputs). In more explicit form,

uj,k =

{
0 if xj,k is missing and Pj−k ≥ Pthreshold
1 otherwise. (A6)

We then eliminate any rows j in X, Y , and U for which yj is
missing and/or all of the xj,k are missing, because in such
cases Eq. (A1) would have no meaningful solution. Next,
we subtract the means (or the weighted means) from Y and
from each columnXk of X and replace the missing values of
xj,k with zeroes (there will be no missing values of yj at this
stage).

If robust= true, we then solve the multiple regression in
Eq. (A1) using IRLS. We do not use the regression coef-
ficients βk from the IRLS procedure, but instead we use
its robustness weights to down-weight anomalous points.
These robustness weights are then multiplied by the volume

weights (if vol_wtd is true). The end result is a set of point
weights wj that equal 1 times the volume weights (if any)
times the IRLS robustness weights (if any) or that just equal
1 if vol_wtd and robust are both false.

We then calculate the (weighted) covariances as

cov(Xk,Xl)=
nw

nw− 1

∑
jwj

(
xj,k − xk

)(
xj,l − xl

)∑
jwj

(A7)

and

cov(Xk,Y )=
nw

nw− 1

∑
jwj

(
xj,k − xk

)(
yj − y

)∑
jwj

, (A8)

where nw is the effective number of equally weighted points,

nw =

(∑
jwj

)2

∑
j

(
w2
j

) , (A9)

which accounts for the unevenness of the weights wj (if all
of the weights are equal, nw equals n, the length of the vec-
tor Y ). The means shown in Eqs. (A7) and (A8) all equal
zero, but they are preserved here so that the formulae can be
readily recognized. To account for the contrasting types of
missing values as outlined above, we multiply each of the
covariances by prefactors uxk/uxkxl , defined as

uxk =
∑
j

wjuj,k and uxkxl =
∑
j

wjuj,kuj,l . (A10)

With these prefactors, the solution to Eq. (A1) becomes(
β̂k

)
=

(
uxk/uxkxlcov(Xk,Xl)

)−1(
cov(Xk,Y )

)
= C−1

(
cov(Xk,Y )

)
. (A11)

To solve the same problem with Tikhonov–Phillips regular-
ization, we instead solve(
β̂k

)
=

(
C+ λH

)−1(
cov(Xk,Y )

)
, (A12)

where C is the covariance matrix
(
uxk/uxkxlcov(Xk,Xl)

)
,

H is the Tikhonov–Phillips regularization matrix, and λ con-
trols the relative weight given to the regularization criterion
(see Eqs. 49 and 50 of K2019).

To estimate the uncertainties in the regression coefficients
β̂k, we first calculate the residuals by inverting Eq. (A1), re-
calling that α =0,

εj = yj −

m∑
k=0

βkxj,k. (A13)

We then calculate the (weighted) residual variance, account-
ing for both the degrees of freedom and any unevenness in
the weights,

s2
ε =

n− 1
n− (m+ 1)− 1

nw

nw− 1

∑
jwj

(
εj − ε

)2∑
jwj

, (A14)
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where the (weighted) mean of the residuals should be zero
but is included here for completeness. We then calculate
the standard errors of the regression coefficients, following
Eq. (54) of K2019, using

SE
(
β̂k

)
=

√
s2
ε

neffk

√[
(C+ λH)−1 (C)(C+ λH)−1]

kk
, (A15)

but with the difference that the unevenness in the weighting
is already taken into account in Eq. (A14), so the effective
sample size is now calculated following Eq. (13) of K2019
as

neffk =
∑
j

uj,k
1− rsc

1+ rsc
, (A16)

where rsc is the lag-1 (weighted) serial correlation in the
residuals εj . If the ser_corr option is set to false, the effective
sample size is calculated as

neffk =
∑
j

uj,k. (A17)

The regression coefficients and their standard errors are then
converted into TTDs and their associated standard errors us-
ing Eqs. (55), (60), and (63)–(66) of K2019. Readers should
note, however, that these scripts do not explicitly take ac-
count of the sampling interval and its units. Thus their results
should be interpreted as being in reciprocal units of the sam-
pling interval (e.g., d−1 for daily sampling and week−1 for
weekly sampling).

Appendix B: Improved method for filtering
precipitation time steps in TTD estimation

The system of equations that is used to estimate transit time
distributions in ensemble hydrograph separation (Eq. A1)
can be represented as a matrix equation of the form

y1
y2
y3
y4
y5
y6
...

yn


=



x1,0 x1,1 x1,2 · · · x1,m
x2,0 x2,1 x2,2 · · · x2,m
x3,0 x3,1 x3,2 · · · x3,m
x4,0 x4,1 x4,2 · · · x4,m
x5,0 x5,1 x5,2 · · · x5,m
x6,0 x6,1 x6,2 · · · x6,m
...

...
...

. . .
...

xn,0 xn,1 xn,2 · · · xn,m



β0
β1
β2
...

βm

+



α

α

α

α

α

α
...

α


+



ε1
ε2
ε3
ε4
ε5
ε6
...

εn


, (B1)

where xj,k expresses the concentration of the tracer input that
enters the catchment at time step i = j − k, k time steps be-
fore some of it leaves the catchment at time step j as part
of the discharge concentration yj , with both concentrations
normalized as described in Eqs. (A2) and (A3). Filtering this
system of equations according to discharge time steps (so
that, for example, periods with low discharge are excluded) is
accomplished straightforwardly by deleting the correspond-
ing rows from the matrices. For example, if we want to ex-
clude discharge time steps 3, 4, and 5, Eq. (B1) becomes
y1
y2
y6
...

yn

=

x1,0 x1,1 x1,2 · · · x1,m
x2,0 x2,1 x2,2 · · · x2,m
x6,0 x6,1 x6,2 · · · x6,m
...

...
...

. . .
...

xn,0 xn,1 xn,2 · · · xn,m



β0
β1
β2
...

βm

+

α

α

α
...

α

+

ε1
ε2
ε6
...

εn

 , (B2)

which can be solved in exactly the same way as the full sys-
tem of equations shown in Eq. (B1). Filtering according to
precipitation time steps (so that, for example, periods with
dry antecedent conditions are excluded) is less straightfor-
ward. The approach outlined in Sect. 4.8 of K2019 simply
excludes the corresponding values of xj,k , which form diag-
onal stripes in the X matrix. For example, for an artificially
simplified case with only nine discharge time steps and four
lags, these diagonal stripes of missing values would appear
as

y1
y2
y3
y4
y5
y6
y7
y8
y9


=



− − x1,2 x1,3
x2,0 − − x2,3
x3,0 x3,1 − −

− x4,1 x4,2 −

x5,0 − x5,2 x5,3
− x6,1 − x6,3
x7,0 − x7,2 −

x8,0 x8,1 − x8,3
x9,0 x9,1 x9,2 −




β0
β1
β2
β3



+



α

α

α

α

α

α

α

α

α


+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9


. (B3)

The technical problem of performing such a calculation can
be solved as described in Appendix A above, but this alone
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will not solve the mathematical problem created by the di-
agonal stripes of missing values. The mathematical problem
is that the influence of the missing xj,k will still be reflected
in the fluctuations in the discharge tracer concentrations yj ,
and any regression solution will seek to explain those fluctua-
tions in terms of the xj,k values that remain, thus biasing the
regression coefficients βk . A better approach than Eq. (B3)
is not to remove the excluded values entirely but instead to
separate them in a new group of variables with their own co-
efficients, as follows:



y1
y2
y3
y4
y5
y6
y7
y8
y9


=



− − x1,2 x1,3
x2,0 − − x2,3
x3,0 x3,1 − −

− x4,1 x4,2 −

x5,0 − x5,2 x5,3
− x6,1 − x6,3
x7,0 − x7,2 −

x8,0 x8,1 − x8,3
x9,0 x9,1 x9,2 −




β0
β1
β2
β3



+



x′1,0 x′1,1 − −

− x′2,1 x′2,2, −

− − x′3,2 x′3,3
x′4,0 − − x′4,2
− x′5,1 − −

x′6,0 − x′6,2 −

− x′7,1 − x′7,3
− − x′8,2 −

− − − x′9,2




β ′0
β ′1
β ′2
β ′3



+



α

α

α

α

α

α

α

α

α


+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9


. (B4)

In Eq. (B4), each of the original input tracer values xj,k either
appears in the left-hand matrix of included values (denoted
xj,k) and is multiplied by the corresponding coefficient βk
or, if it has been filtered out, appears in the right-hand matrix
of excluded values (denoted x′j,k) and is multiplied by the
corresponding coefficient β ′k . Equation (B4) suppresses the
distortion of the βk coefficients from the missing xj,k , be-
cause each row of this matrix equation retains all the values
in the original equation (Eq. B2), but now has separate sets
of coefficients for the included values and the excluded val-
ues. We can merge these two sets of coefficients and combine
the X and X′ matrices, re-casting Eq. (B4) as a conventional

regression problem,

y1
y2
y3
y4
y5
y6
y7
y8
y9



=



− − x1,2 x1,3 x′1,0 x′1,1 − −

x2,0 − − x2,3 − x′2,1 x′2,2, −

x3,0 x3,1 − − − − x′3,2 x′3,3
− x4,1 x4,2 − x′4,0 − − x′4,2
x5,0 − x5,2 x5,3 − x′5,1 − −

− x6,1 − x6,3 x′6,0 − x′6,2 −

x7,0 − x7,2 − − x′7,1 − x′7,3
x8,0 x8,1 − x8,3 − − x′8,2 −

x9,0 x9,1 x9,2 − − − − x′9,3




β0
β1
β2
β3
β ′0
β ′1
β ′2
β ′3


+



α

α

α

α

α

α

α

α

α


+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9


,

(B5)

which can be solved by the approach outlined in Appendix
A. One important detail is that the Tikhonov–Phillips reg-
ularization matrix must be segmented so that regularization
is applied separately to the βk and the β ′k; otherwise a regu-
larization algorithm would try to smooth over the jump be-
tween βm, which will typically be small, and β ′0, which could
be large. Regularization can be applied separately to the two
sets of coefficients by configuring the regularization matrix
as(
(H) (0)
(0) (H)

)
, (B6)

where the diagonal submatrices H are (m+ 1)-by-(m+ 1)
Tikhonov–Phillips regularization matrices (see Eq. 49 of
K2019), and the off-diagonal submatrices are (m+ 1)-by-
(m+ 1) matrices of zeroes.

Benchmark tests verify that the approach outlined in
Eq. (B5) yields much more accurate estimates of βk than the
approach outlined in K2019 does. Therefore this approach is
employed in EHS_TTD whenever the input data are filtered
according to precipitation time steps.

https://doi.org/10.5194/hess-24-5539-2020 Hydrol. Earth Syst. Sci., 24, 5539–5558, 2020



5558 J. W. Kirchner and J. L. A. Knapp: Technical note: Calculation scripts for ensemble hydrograph separation

Data availability. The R and MATLAB scripts and benchmark data
sets are available at https://doi.org/10.16904/envidat.182 (Kirchner
and Knapp, 2020).

Author contributions. JWK wrote the R scripts and JLAK trans-
lated them into MATLAB. JWK conducted the benchmark tests,
drew the figures, and wrote the first draft of the manuscript. Both
authors discussed the results and revised the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Review statement. This paper was edited by Josie Geris and re-
viewed by two anonymous referees.

References

Cleveland, W. S.: Robust locally weighted regression and
smoothing scatterplots, J. Am. Stat. Assoc., 74, 829-836,
https://doi.org/10.1080/01621459.1979.10481038, 1979.

Glasser, M.: Linear regression analysis with missing observations
among the independent variables, J. Am. Stat. Assoc., 59, 834–
844, https://doi.org/10.1080/01621459.1964.10480730, 1964.

Godsey, S. E., Aas, W., Clair, T. A., de Wit, H. A., Fernandez, I.
J., Kahl, J. S., Malcolm, I. A., Neal, C., Neal, M., Nelson, S. J.,
Norton, S. A., Palucis, M. C., Skjelkvåle, B. L., Soulsby, C., Tet-
zlaff, D., and Kirchner, J. W.: Generality of fractal 1/f scaling
in catchment tracer time series, and its implications for catch-
ment travel time distributions, Hydrol. Process., 24, 1660–1671,
https://doi.org/10.1002/hyp.7677, 2010.

Hampel, F. R.: A general qualitative definition of
robustness, Ann. Math. Stat., 42, 1887–1896,
https://doi.org/10.1214/aoms/1177693054, 1971.

Holland, P. W. and Welsch, R. E.: Robust regression using iter-
atively reweighted least-squares, Commun. Stat., 6, 813–827,
https://doi.org/10.1080/03610927708827533, 1977.

Kirchner, J. W. and J. L. A. Knapp Ensemble hydrograph separation
scripts, EnviDat. https://doi.org/10.16904/envidat.182, 2020.

Kirchner, J. W., Feng, X., and Neal, C.: Fractal stream chemistry
and its implications for contaminant transport in catchments, Na-
ture, 403, 524–527, 2000.

Kirchner, J. W., Feng, X., and Neal, C.: Catchment-scale ad-
vection and dispersion as a mechanism for fractal scaling
in stream tracer concentrations, J. Hydrol., 254, 81–100,
https://doi.org/10.1016/S0022-1694(01)00487-5, 2001.

Kirchner, J. W. and Neal, C.: Universal fractal scaling in stream
chemistry and its implications for solute transport and water
quality trend detection, P. Natl. Acad. Sci. USA, 110, 12213–
12218, https://doi.org/10.1073/pnas.1304328110, 2013.

Kirchner, J. W.: Aggregation in environmental systems – Part 2:
Catchment mean transit times and young water fractions under
hydrologic nonstationarity, Hydrol. Earth Syst. Sci., 20, 299–
328, https://doi.org/10.5194/hess-20-299-2016, 2016.

Kirchner, J. W.: Quantifying new water fractions and transit
time distributions using ensemble hydrograph separation: the-
ory and benchmark tests, Hydrol. Earth Syst. Sci., 23, 303–349,
https://doi.org/10.5194/hess-23-303-2019, 2019.

Knapp, J. L. A., Neal, C., Schlumpf, A., Neal, M., and Kirchner,
J. W.: New water fractions and transit time distributions at Plyn-
limon, Wales, estimated from stable water isotopes in precipi-
tation and streamflow, Hydrol. Earth Syst. Sci., 23, 4367–4388,
https://doi.org/10.5194/hess-23-4367-2019, 2019.

Hydrol. Earth Syst. Sci., 24, 5539–5558, 2020 https://doi.org/10.5194/hess-24-5539-2020

https://doi.org/10.16904/envidat.182
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1964.10480730
https://doi.org/10.1002/hyp.7677
https://doi.org/10.1214/aoms/1177693054
https://doi.org/10.1080/03610927708827533
https://doi.org/10.16904/envidat.182
https://doi.org/10.1016/S0022-1694(01)00487-5
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.5194/hess-20-299-2016
https://doi.org/10.5194/hess-23-303-2019
https://doi.org/10.5194/hess-23-4367-2019

	Abstract
	Introduction
	Estimating new water fractions using the function EHS_Fnew
	Robust estimation of new water fractions

	Profiling catchment behavior using EHS_ profile
	Estimating transit time distributions using EHS_ TTD
	Robust estimation of transit time distributions
	Overestimation of uncertainties in humped transit time distributions
	Overestimation of Fnew when distributions are humped
	Visualizing catchment nonlinearity using precipitation- and discharge-filtered TTDs
	Sample size, sampling frequency, and number of TTD lags

	Closing comments
	Appendix A: Improved solution method for transit time distributions
	Appendix B: Improved method for filtering precipitation time steps in TTD estimation
	Data availability
	Author contributions
	Competing interests
	Review statement
	References

