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Abstract. Streamflow forecasting is a crucial compo-
nent in the management and control of water resources.
Decomposition-based approaches have particularly demon-
strated improved forecasting performance. However, direct
decomposition of entire streamflow data with calibration and
validation subsets is not practical for signal component pre-
diction. This impracticality is due to the fact that the cali-
bration process uses some validation information that is not
available in practical streamflow forecasting. Unfortunately,
independent decomposition of calibration and validation sets
leads to undesirable boundary effects and less accurate fore-
casting. To alleviate such boundary effects and improve the
forecasting performance in basins lacking meteorological
observations, we propose a two-stage decomposition predic-
tion (TSDP) framework. We realize this framework using
variational mode decomposition (VMD) and support vector
regression (SVR) and refer to this realization as VMD-SVR.
We demonstrate experimentally the effectiveness, efficiency
and accuracy of the TSDP framework and its VMD-SVR re-
alization in terms of the boundary effect reduction, compu-
tational cost, and overfitting, in addition to decomposition
and forecasting outcomes for different lead times. Specifi-
cally, four comparative experiments were conducted based
on the ensemble empirical mode decomposition (EEMD),
singular spectrum analysis (SSA), discrete wavelet trans-
form (DWT), boundary-corrected maximal overlap discrete
wavelet transform (BCMODWT), autoregressive integrated
moving average (ARIMA), SVR, backpropagation neural
network (BPNN) and long short-term memory (LSTM). The
TSDP framework was also compared with the wavelet data-
driven forecasting framework (WDDFF). Results of experi-
ments on monthly runoff data collected from three stations at

the Wei River show the superiority of the VMD-SVR model
compared to benchmark models.

1 Introduction

Reliable and accurate streamflow forecasting is of great sig-
nificance for water resource management (Woldemeskel et
al., 2018). The first attempts for streamflow prediction were
based on precipitation measurements that date back to the
19th century (Mulvaney, 1850; Todini, 2007). Since then,
streamflow forecasting models have been progressively de-
veloped through the analysis of relevant physical processes
and the incorporation of key hydrological terms into those
models (Kratzert et al., 2018). The investigated hydrologi-
cal terms include physical characteristics and boundary con-
ditions of catchments as well as spatial and temporal vari-
abilities of hydrological processes (Kirchner, 2006; Pani-
coni and Putti, 2015). Also, physics-based models have been
largely developed by harnessing high computational power
and exploiting hydrometeorological and remote sensing data
(Singh, 2018; Clark et al., 2015).

However, modeling hydrological processes with spatial
and temporal variabilities at the catchment scale requires a lot
of input meteorological data, information on boundary con-
ditions and physical properties, as well as high-performance
computational resources (Binley et al., 1991; Devia et al.,
2015). Moreover, current physics-based models do not ex-
hibit consistent performance on all scales and datasets be-
cause those models are constructed for small watersheds only
(Kirchner, 2006; Beven, 1989; Grayson et al., 1992; Ab-
bott et al., 1986). Therefore, physics-based models have been
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rarely used for practical streamflow forecasting (Kratzert et
al., 2018). Alternatively, numerous studies have explored and
developed data-driven models based on time-series analysis
and machine learning (Wu et al., 2009).

In particular, streamflow prediction methods have been
developed based on time-series models such as the Box–
Jenkins (Castellano-Méndez et al., 2004), autoregressive
(AR), moving average (MA), autoregressive moving aver-
age (ARMA) and autoregressive integrated moving average
(ARIMA) models (Li et al., 2015; Mohammadi et al., 2006;
Kisi, 2010; Valipour et al., 2013). However, the underly-
ing linearity assumption of conventional time-series mod-
els makes them unsuitable for the forecasting of nonstation-
ary, nonlinear, or variable streamflow patterns. Therefore,
maximum likelihood (ML) models with nonlinear mapping
capabilities have been introduced for streamflow forecast-
ing. These models include decision trees (DTs) (Erdal and
Karakurt, 2013; Solomatine et al., 2008; Han et al., 2002),
support vector regression (SVR) (Yu et al., 2006; Maity et
al., 2010; Hosseini and Mahjouri, 2016), fuzzy inference sys-
tems (FIS) (Ashrafi et al., 2017; He et al., 2014; Yaseen et al.,
2017) and artificial neural networks (ANNs) (Kratzert et al.,
2018; Nourani et al., 2009; Tiwari and Chatterjee, 2010; Ra-
souli et al., 2012).

Nevertheless, traditional ML models cannot always ade-
quately forecast highly nonstationary, complex, nonlinear, or
multiscale streamflow time-series data in catchments due to
the lack of meteorological observations. To handle this in-
adequacy, signal processing algorithms have been applied
to transform nonstationary time-series data into relatively
stationary components, which can be analyzed more eas-
ily. These algorithms are most commonly based on flow de-
composition, and they include wavelet analysis (WA) (Liu
et al., 2014; Adamowski and Sun, 2010), empirical mode
decomposition (EMD) (Huang et al., 2014; Meng et al.,
2019), ensemble empirical mode decomposition (EEMD)
(Bai et al., 2016; Zhao and Chen, 2015), singular spectrum
analysis (SSA) (Zhang et al., 2015; Sivapragasam et al.,
2001), seasonal-trend decomposition based on locally esti-
mated scatter-plot smoothing or LOESS (STL) (Luo et al.,
2019) and variational mode decomposition (VMD) (He et
al., 2019; Xie et al., 2019). These approaches have generally
demonstrated improved streamflow forecasting.

However, the aforementioned decomposition-based meth-
ods do not properly account for boundary effects on the de-
composition results (Zhang et al., 2015). These boundary ef-
fects are effects that cause the boundary decompositions to
be extrapolated. This extrapolation is carried out due to the
unavailability of historical and future data points which serve
as decomposition parameters (Zhang et al., 2015; Fang et
al., 2019). In fact, each of these decomposition-based mod-
els firstly decomposes the entire streamflow data and then
divides the decomposition components into calibration and
validation sets for streamflow prediction. This generally aug-
ments the calibration process with validation information

that is impractically available for realistic streamflow fore-
casting. Such validation information is useful in the reduc-
tion of the boundary effects and is hence crucial for any op-
erational streamflow forecasting algorithm. In order to avoid
using this impractically available validation information in
calibration, streamflow time-series data must be first divided
into calibration and validation sets, where each set is sepa-
rately decomposed and the boundary effects are effectively
reduced. Otherwise, the developed models would use some
validation information in the calibration process and hence
would show unrealistically good forecasting performance.

Other relevant research contributions are those of Zhang
et al. (2015), Du et al. (2017), Tan et al. (2018), Quilty
and Adamowski (2018), and Fang et al. (2019), who re-
cently pointed out and explicitly criticized the aforemen-
tioned impractical (and even incorrect) usage of signal pro-
cessing techniques for streamflow data analysis. Zhang et
al. (2015) evaluated and compared the outcomes of hindcast
and forecast experiments (with and without validation in-
formation, respectively) for decomposition models based on
WA, EMD, SSA, ARMA and ANN. The authors suggested
that the decomposition-based models may not be suitable for
practical streamflow forecasting. Du et al. (2017) demon-
strated that the direct application of SSA and the discrete
wavelet transform (DWT) to entire hydrological time-series
data leads to incorrect outcomes. Tan et al. (2018) assessed
the impracticality in streamflow forecasting with EEMD and
ANN. Quilty and Adamowski (2018) addressed the pitfalls
of using wavelet-based models for hydrological forecasting.
Fang et al. (2019) demonstrated that EMD is not suitable for
practical streamflow forecasting. In summary, these contri-
butions have demonstrated that inadequate streamflow fore-
casting models often lead to practically unachievable perfor-
mance.

Boundary effects still constitute a great challenge for
practical streamflow forecasting. These effects can lead
to shift variance for signal components, sensitivity to
the addition of new data samples, and hence significant
errors for decomposition-based models (see Sect. 3.4).
Zhang et al. (2015) examined several extension meth-
ods, which can correct the boundary-affected decomposi-
tions, to reduce the boundary effects on decomposition out-
comes. It was suggested that a properly designed extension
method can improve the forecasting performance. Quilty
and Adamowski (2018) proposed a new wavelet-based
data-driven forecasting framework (WDDFF), in which
boundary-affected coefficients were removed by adopting ei-
ther the stationary wavelet transform (SWT) algorithm (also
known as “algorithme à trous”) or the maximal-overlap
discrete wavelet transform (MODWT) algorithm. Tan et
al. (2018) proposed an adaptive decomposition-based ensem-
ble model to reduce boundary effects by adaptively adjusting
the model parameters as new runoff data are added. These so-
lutions demonstrated effective reduction of boundary effects.
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In this context, we believe that a problem worthy of in-
vestigation is to reduce the influence of the boundary effects
without altering or removing the boundary-effect decompo-
sitions while providing high-confidence testing results on un-
seen data. To attain these goals, we designed a two-stage de-
composition prediction (TSDP) framework and proposed a
TSDP realization based on VMD and SVR (where this re-
alization is denoted by VMD-SVR). The proposed frame-
work eliminates the need for validation information, reduces
boundary effects, saves modeling time, avoids error accumu-
lation, and improves the streamflow prediction performance.
The key steps of this framework can be outlined as follows
(see Sect. 3.4 for more details).

Divide the entire time-series data into a calibration set
(which is then concurrently decomposed into time-series
components) and a validation set (which is sequentially ap-
pended to the calibration set and decomposed).

Optimize and test a single data-driven forecasting model.
To build a forecasting model, we use data samples that con-
sist of input predictors (obtained by combining the predictors
of different components of the signal decomposition) and
output targets (selected from the original time series). The
data samples can be divided into calibration samples (gener-
ated from the calibration-set decomposition) and validation
samples (generated from the appended-set decomposition).
The validation data samples are then divided into develop-
ment samples (which are mixed and shuffled with the cali-
bration samples to optimize the data-driven model) and test-
ing samples (which are used to examine the confidence in the
optimized data-driven model).

This paper aims to find a general solution for dealing with
time-series decomposition errors caused by boundary ef-
fects. We designed four comparative experiments to demon-
strate the effectiveness, efficiency, and accuracy of the de-
signed TSDP framework and its VMD-SVR realization. Per-
formance comparisons were made in terms of the reduction
in boundary effects, computational cost, overfitting, as well
as decomposition and forecasting outcomes for different lead
times. In the first experiment, we demonstrate that the influ-
ence of boundary effects can be reduced by generating vali-
dation samples from appended-set decompositions and then
mixing and shuffling calibration and development samples.
In the second experiment, we compare the performance of
the TSDP framework with that of the three-stage decom-
position ensemble (TSDE) framework, in which one opti-
mized SVR model is built for each signal component. This
comparison demonstrates that the designed TSDP frame-
work saves modeling time and might improve the predic-
tion performance. In the third experiment, we demonstrate
that combining the predictors of the individual signal com-
ponents as the final predictors barely overfits the TSDP mod-
els. For the fourth experiment, we compared the EEMD,
SSA, DWT, and VMD methods in the TSDP framework and
the boundary-corrected maximal overlap discrete wavelet
transform (BCMODWT) method in the WDDFF framework.

Also, the decomposition-based models are compared to the
no-decomposition ARIMA, SVR, BPNN and LSTM models.
In order to evaluate the performance of the proposed model
against the benchmark models, we used monthly runoff data
collected at three stations which are located at the Wei River
in China.

2 Monthly runoff data

In this work, we use the monthly runoff data of the Wei River
basin (Huang et al., 2014; He et al., 2019; He et al., 2020;
Meng et al., 2019). The Wei River (see Fig. 1), the largest
tributary of the Yellow River in China, lies between 33.68–
37.39◦ N and 103.94–110.03◦ E and has a drainage area of
135 000 km2 (Jiang et al., 2019). The Wei River has a to-
tal length of 818 km and originates from the Niaoshu Moun-
tains in Gansu Province and flows east into the Yellow River
(Gai et al., 2019). The associated catchment has a continen-
tal monsoon climate with an annual average precipitation
of more than 550 mm. The precipitation of the flood season
from June to September accounts for 60 % of the annual to-
tal flow (Jiang et al., 2019). In the Guanzhong Plain, the Wei
River serves as a key source of water for agricultural, indus-
trial and domestic purposes (Yu et al., 2016). Therefore, ro-
bust monthly runoff prediction in this region plays a vital role
in water resource allocation.

The historical monthly runoff records from January 1953
to December 2018 (792 records) at the Huaxian, Xianyang
and Zhangjiashan stations (see Fig. 1) were used to evalu-
ate the proposed model and the other state-of-the-art mod-
els. The records were collected from the Shaanxi Hydrologi-
cal Information Center and the Water Resources Survey Bu-
reau. The monthly runoff records were computed from the
instantaneous values (in m3/s) observed at 08:00 each day.
The entire monthly runoff data were divided into calibra-
tion and validation sets. The calibration set covers the pe-
riod from January 1953 to December 1998 and represents
approximately 70 % of the entire monthly runoff data. The
validation set corresponds to the remaining period from Jan-
uary 1999 to December 2018. The validation set was further
evenly divided into a development set (covering the period
from January 1999 to December 2008) for selecting the opti-
mal forecasting model and a testing set (covering the period
from January 2009 to December 2018) for validating the op-
timal model.

3 Methodologies

3.1 Variational mode decomposition

The VMD algorithm proposed by Dragomiretskiy and Zosso
(2014) concurrently decomposes an input signal f (t) intoK
intrinsic mode functions (IMFs).
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Figure 1. A geographical overview of the Wei River basin.

The VMD process is mainly divided into two steps,
namely (a) constructing a variational problem and (b) solv-
ing this problem. The constructed variational problem is ex-
pressed as follows: min
{uk}{ωk}

{∑
k

∥∥∥∂t [(δ (t)+ j
πt

)
∗ uk (t)

]
e−jωk t

∥∥∥2

2

}
s.t.

∑
kuk (t)= f (t)

, (1)

where {uk} = {u1, u2, . . . ,uk} and {ωk} = {ω1, ω2, . . . , ωk}

are shorthand notations for the set of modes and their cen-
ter frequencies, respectively. The symbol t denotes time,
j2
=−1 is the square of the imaginary unit, * denotes the

convolution operator, and δ is the Dirac delta function.
To solve this variational problem, a Lagrangian multiplier

(λ) and a quadratic penalty term (α) are introduced to trans-
form the constrained optimization problem (1) into an uncon-
strained problem. The augmented Lagrangian ` is defined as
follows:

`({uk} , {ωk} , λ) :=

α
∑

k

∥∥∥∥∂t [(δ (t)+ j

πt

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2

2

+

∥∥∥f (t)−∑
k
uk (t)

∥∥∥2

2
+

〈
λ(t), f (t)−

∑
k
uk(t)

〉
. (2)

For the VMD method, the alternate direction method of mul-
tipliers (ADMM) is used to solve Eq. (2). The frequency-
domain modes uk (ω), the center frequencies ωk and the La-
grangian multiplier λ are iteratively and respectively updated
by

ûn+1
k (ω)=

f̂ (ω)−
∑
i<kû

n+1
i (ω)−

∑
i>kû

n
i (ω)+

λ̂n(ω)
2

1+ 2α(ω−ωk)2
, (3)

ω̂n+1
k =

∫
∞

0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫
∞

0

∣∣∣ûn+1
k (ω)

∣∣∣2dω , (4)

λ̂n+1 (ω)= λ̂n (ω)+ τ
(
f̂ (ω)−

∑
k
ûn+1
k (ω)

)
, (5)

where n is the iteration counter and τ is the noise tolerance,
while ûn+1

k (ω), f̂ (ω), and λ̂n (ω) represent the Fourier trans-
forms of un+1

k (t), f (t), and λn (t), respectively.
The VMD performance is affected by theK , α, τ , and ε. A

value of K that is too small may lead to poor IMF extraction
from the input signal, whereas a too-large value of K may
cause IMF information redundancy. A too-small value of α
may lead to a large bandwidth, information redundancy, and
additional noise for the IMFs. A too-large value of α may
lead to a very small bandwidth and loss of some signal in-
formation. As shown in Eq. (5), the Lagrangian multiplier
ensures optimal convergence when an appropriate value of
τ > 0 is used with a low-noise signal. The Lagrangian mul-
tiplier hinders the convergence when τ > 0 is used with a
highly noisy signal. This drawback can be avoided by setting
τ to 0. However, it is not possible to reconstruct the input sig-
nal precisely if τ equals 0. Additionally, the value of ε affects
the reconstruction error of the VMD.

3.2 Support vector regression

Support vector regression (SVR) was first proposed by Vap-
nik et al. (1997) for handling regression problems. The SVR
mathematical principles are described here briefly.

For N pairs of samples, {xi, yi}
N
i=1, xi and yi denote the

input variables and the desired output targets, respectively.
Linear regression can be replaced by nonlinear regression,
through the use of a nonlinear mapping function φ, as fol-
lows:

yi ≈ f (xi, w)= 〈w, φ (xi)〉+ b, (6)

where w and b represent the regression weights and bias, re-
spectively, and 〈., .〉 is the inner product of two vectors. In
the SVR framework, the error between yi and f (xi, w) is
evaluated using the following ε-insensitive loss function:
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|yi − f (xi, w)|ε =

{
0, if |yi − f (xi, w)|< ε
|yi − f (xi, w)| − ε, otherwise . (7)

Based on the w and b values, a regularized risk function R is
defined as

R =
C

N

∑N

i=1
|yi − f (xi, w)|ε +

1
2
‖w‖2, (8)

where the first term indicates the empirical risk based on the
ε-insensitive loss function. The second term is a regulariza-
tion term for penalizing the weight vector in order to limit
the SVR model complexity. The parameter C is a weight
penalty constant. To avoid high-dimensional nonlinear fea-
tures φ (x), SVR uses a kernel trick that substitutes the inner
product 〈φ(x), φ(x′)〉 in the optimization algorithm with a
kernel function, namely K

(
x, x′

)
. Some Lagrangian mul-

tipliers, namely αi and β, are introduced to solve the con-
strained risk minimization problem. The Lagrangian form of
the regression function is

f (x)=
∑N

i=1
αiK

(
x, x′

)
+β. (9)

The SVR model relies heavily on the kernel function and
the hyperparameters. In this work, a radial basis function
(RBF), namely K

(
x, x′

)
= exp

(
−‖x− xi‖

2/2σ 2), is used
as the kernel function. The parameter σ is used to control the
RBF width. In this study, the hyperparameters ε, C, and σ
are tuned by Bayesian optimization.

3.3 Bayesian optimization based on Gaussian processes

Bayesian optimization (BO) is a sequential model-based op-
timization (SMBO) approach typically used for global op-
timization of black-box objective functions, for which the
true distribution is unknown or the evaluation is extremely
expensive. For such objective functions, the BO algorithm
sets a prior belief on the loss function in a learning model,
sequentially refines this model by gathering function evalu-
ations, and updates the Bayesian posterior (Bergstra et al.,
2011; Shahriari et al., 2016).

To update the beliefs about the loss function and calculate
the posterior expectation, a prior function is applied. Here,
we assume that the real loss function distribution can be de-
scribed by a Gaussian process (GP). Therefore, the loss func-
tion values {f (xi)}

n
i=1 for an evaluation set {xi}

n
i=1 satisfy

the multivariate Gaussian distribution over the function space

f1:n ∼N (m(x1 :n) , K) , (10)

where m(x1 :n) is the GP mean function set and K is a ker-
nel matrix given by the covariance function K

(
x, x′

)
. An

acquisition function is used to assess the utility of candidate
points for finding the posterior distribution. In particular, the
candidate point with the highest utility is selected as the can-
didate for the next evaluation of f . Many acquisition func-
tions have been explored for Bayesian optimization. These

Figure 2. A flowchart of the Bayesian optimization.

functions include the expected improvement (EI), the upper
confidence bounds (UCBs), the probability of improvement,
the Thompson sampling (TS), and the entropy search (ES).
However, the EI function is the most commonly used among
these functions (Bergstra et al., 2011; Shahriari et al., 2016).
For the GP model, the expected improvement can be calcu-
lated as

EI(x)={ [
µ(x)− f

(
x̂
)]
8(z)+ σ (x)φ (z) if σ (x) > 0

0 if σ (x)= 0 , (11)

z=
µ(x)− f

(
x̂
)

σ (x)
, (12)

where f
(
x̂
)

is the current lowest loss value and µ(x) is the
expected loss value, while8(z) and φ (z) are the cumulative
distribution function and the probability density function, re-
spectively. Figure 2 shows a flowchart of the Bayesian opti-
mization method based on Gaussian processes (BOGP).

3.4 The TSDP framework and the VMD-SVR
realization

The boundary effects introduce errors into the construction
of decomposition-based models. These errors arise from the
extrapolation of the boundary decomposition components. In
fact, this extrapolation is carried out due to the unavailability
of historical and future data points which serve as decom-
position parameters (Zhang et al., 2015; Fang et al., 2019).
To find out the extent to which the boundary effects con-
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tribute to decomposition errors, we have evaluated the shift-
copy variance and the data-addition sensitivity for each of the
VMD, DWT, EEMD, and SSA methods. Given the monthly
runoff data of the Huaxian station from January 1953 to
November 2018, i.e., x0 =

[
q1, q2, . . ., q791

]
, and a one-step-

ahead (shift) copy of x0, i.e., x1 =
[
q2,q3, . . . , q792

]
, as-

sume the VMD method is applied to x0 and x1. Then, the
IMF1 (2 : 791) for the VMD of x0 should be maintained by
IMF1 (1 : 790) for the VMD of x1 since x0 (2 : 791) is main-
tained by x1 (1 : 790). The IMF1 is the first decomposed sig-
nal component and “(2 : 791)” means the second data point
to the 791st data point. However, the boundary decomposi-
tions of x0 (2 : 791) and x1 (1 : 790) are completely different
(see Fig. 3a and b). Therefore, VMD is shift-variant. For the
Huaxian station, given the monthly runoff data from January
1953 to November 2018, i.e., x1−791 =

[
q1, q2, . . . , q791

]
,

and the monthly runoff data from January 1953 to Decem-
ber 2018, i.e., x1−792 =

[
q1, q2, . . . , q792

]
, the IMF1 for the

VMD of x1−791 should be maintained by the IMF1 (1 : 791)
for the VMD of x1−792, since x1−791 is maintained by
x1−792 (1 : 791). However, the boundary decompositions of
x1−791 and x1−792 (1 : 791) are completely different (see
Fig. 3c and d). A similar result was obtained for the case
in which several data points were appended to a given time
series (see Fig. 3e and f). Therefore, VMD is also sensitive
to the addition of new data. It can be demonstrated that the
EEMD, DWT and SSA are also shift-variant and sensitive to
addition of new data. The BCMODWT method developed by
Quilty and Adamowski (2018) is shift-invariant, insensitive
to the addition of new data, and also shows no decomposi-
tion errors. Thus we compared in this work the BCMODWT
method of the WDDFF framework with the VMD, EEMD,
SSA and DWT methods of the TSDP framework. The results
in Fig. 3 collectively indicate that the concurrent decomposi-
tion errors are extremely small except for those of the bound-
ary decompositions.

However, the boundary effects introduce small decompo-
sition errors for the calibration set but large such errors for
the validation set. This is because the calibration set is con-
currently decomposed, whereas the validation set is sequen-
tially appended to the calibration set and decomposed. Addi-
tionally, the last decompositions of an appended set are se-
lected as the validation decompositions. Note that this proce-
dure is followed for three reasons. (1) This procedure simu-
lates practical forecasting scenarios in which a time series is
observed and predicted incrementally. (2) The validation set
should be decomposed on a sample-by-sample basis to avoid
validation-data decomposition using future information. (3)
The decomposition algorithms such as VMD, EEMD, SSA
and DWT cannot decompose one validation data point each
time (and might output the “not a number” data type). The
decomposition errors of the calibration set could be ignored
because only few of the boundary decompositions have rela-
tively large errors (see Fig. 3f). Unfortunately, the decompo-
sition errors of the validation set cannot be ignored because

all decompositions of this set are selected from the boundary
decompositions of the appended sets. In this context, large
decomposition errors (corresponding to the differences be-
tween the blue and green lines in Fig. 3g) will be introduced
to the model validation process. Figure 4 shows that the error
distribution of the validation set has a larger scale than that
of the calibration set. Thus, models calibrated on the calibra-
tion samples might generalize poorly on the validation sam-
ples due to the difference in error distribution between the
calibration and validation decompositions.

Fortunately, the difference in error distribution between
the calibration and validation decompositions can be han-
dled without altering or removing the boundary decomposi-
tions. This is based on three key remarks: (1) the boundary-
affected decompositions might contain some valuable infor-
mation for building practical forecasting models, (2) the dis-
tribution of the validation samples can be different from that
of the calibration samples (Ng, 2017), and (3) the validation
decomposition errors can be eliminated by summing signal
components into the original signal (see Fig. 3h). Note that
the summation of the sequential validation decompositions
of Fig. 3h cannot completely reconstruct the validation set.
This is mainly caused by setting the VMD noise tolerance
(τ) to 0 in this work (see Sect. 3.1) rather than the intro-
duced validation decomposition errors. Therefore, the de-
composition errors barely affect the prediction performance
if the decomposition-based models are properly constructed
to learn from the calibration set and generalize well to the
validation set.

One way to deal with the influences of boundary effects
is to generate validation samples using decompositions of
appended sets, i.e., appended decompositions. The last sam-
ple generated from appended decompositions is selected as
a validation sample since the predicted target of this sample
belongs to the validation period. The advantage is that the
predictors selected from appended decompositions are more
correlated with the prediction targets than the predictors se-
lected from validation decompositions (see Fig. 5). This is
because the appended set is decomposed concurrently. How-
ever, the validation decompositions are reorganized from the
decompositions of appended sets, which leads to the rela-
tionships between a decomposition and its lagging decom-
positions being changed a lot.

The other way to deal with boundary effects is to assess
the validation error distribution during the calibration stage.
A promising way to achieve this goal is to use the cross-
validation (CV) based on the mixed and shuffled samples
generated from the calibration and validation distributions.
The key advantage is that the developed models are simulta-
neously calibrated and validated on these distributions. Ad-
ditionally, enough validation samples should be allocated for
testing the final optimized models in order to give users a
high confidence level in unseen data. Therefore, the valida-
tion samples are further split into development samples for
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Figure 3. Examples of the boundary effects for the VMD method on monthly runoff data at the Huaxian station: (a, b) shift variance, (c, d)
sensitivity to appending one data point, (e, f) sensitivity to appending several data points, (g) differences between sequential and concurrent
validation-data decompositions, and (h) differences between the summation of the sequential and concurrent validation-data decompositions.

cross-validation and testing samples for testing the final op-
timized data-driven models.

Based on the aforementioned key remarks, the TSDP
framework is designed as follows. (i) Time series decom-
position: divide the entire time series (monthly runoff data
in this work) into a calibration set (which is then concur-
rently decomposed) and a validation set (which is then se-
quentially appended to the calibration set and decomposed).
(ii) Time series prediction: optimize and test a single pre-
diction model using calibration and validation samples gen-
erated from the calibration and appended decompositions.
For these samples, the optimal lag times (measured in hours,
days, months, or years) of the decomposed signal compo-
nents are combined as predictors, while the original signal
samples are used as the desired prediction targets. This is
the direct approach which has already been used by Mah-

eswaran and Khosa (2013), Du et al. (2017) and Quilty and
Adamowski (2018).

The design details of the TSDP framework and its VMD-
SVR realization are summarized as follows (see Fig. 6).

Step 1 Collect time-series data Q(t) as the VMD-SVR in-
put (t = 1, 2, . . .N , where N is the length of the time-
series data).

Step 2 Divide the time-series data into calibration and vali-
dation sets (with 70 % and 30 % of the overall monthly
runoff data, respectively, in this work).

Step 3 Concurrently extractK IMF signal components from
the calibration set using the VMD scheme. For optimal
selection of K , check whether the last extracted IMF
component exhibits central-frequency aliasing.

https://doi.org/10.5194/hess-24-5491-2020 Hydrol. Earth Syst. Sci., 24, 5491–5518, 2020



5498 G. Zuo et al.: Two-stage variational mode decomposition and support vector regression

Figure 4. Density estimates with Gaussian-type kernels for the calibration and validation error distributions of the monthly runoff decompo-
sitions of the Huaxian station. The real decompositions are the joint decompositions of the entire monthly runoff for the period from January
1953 to December 2018.

Figure 5. Absolute Pearson correlation coefficients (PCCs) between predictors and predicted targets of validation samples generated from
the VMD-appended decompositions and validation decompositions. The samples were collected at the Huaxian station.

Step 4 Sequentially append the validation data samples to
the calibration set to generate appended sets. Decom-
pose each appended set intoK signal components using
the VMD scheme.

Step 5 Plot the partial autocorrelation function (PACF) of
each signal component for the calibration set in or-
der to select the optimal lag period and hence gen-
erate modeling samples. The PACF lag count is set
to 20. We assume that the predicted target of the kth
signal component is xk (t +L) (where L is the lead
time which is measured in hours, days, months or
years). If the PACF of the mth lag period lies out-
side the 95 % confidence interval (i.e.,

[
−

1.96
√
n
, 1.96
√
n

]
,

where n is the signal component length) and is in-
significant after the mth lag period, then the samples
xk (t) , xk (t − 1) , . . ., xk (t + 1−m) are selected as in-
put predictors andm is selected as the optimal lag period
for the kth signal component.

Step 6 Combine the input predictors of each signal com-
ponent to form the SVR predictors. Select the original
time-series data sample after the maximum lag period
(Q(t +L)) as the predicted target.

Step 7 Based on the input predictors and output targets ob-
tained in Step 6, generate calibration samples using
the calibration signal components. Also, generate ap-
pended samples using the appended signal components
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Figure 6. A block diagram of the two-stage decomposition prediction (TSDP) framework with the VMD-SVR realization.

obtained in Step 4. Select the last sample of the ap-
pended samples as a validation sample. Divide the val-
idation samples evenly into development and testing
samples.

Step 8 Mix and shuffle the calibration and development
samples. Train and optimize the SVR model using the
shuffled samples and the BOGP algorithm. For testing,
feed the test sample predictors into the optimized SVR
model in order to predict time-series samples and com-
pare them against the original ones. The VMD-SVR
output is the predicted samples for the test predictors.

Steps 1–4 represent the decomposition stage of the pro-
posed framework, while Steps 5–8 represent the prediction
stage. Note that the VMD and SVR schemes can be respec-

tively replaced by other decomposition and data-driven pre-
diction models.

3.5 Comparative experimental setups

As shown in Fig. 7, we design four comparative experiments
to evaluate the effectiveness, efficiency, and accuracy of the
TSDP framework and its VMD-SVR realization. The evalu-
ation is carried on in terms of the boundary effect reduction
(see Ex. 1), computational cost (see Ex. 2), overfitting (see
Ex. 3) as well as decomposition and forecasting capabilities
for different lead times (see Ex. 4). The previous experiments
represent the baseline for the next ones. We first give a brief
review of the EEMD, SSA, DWT, and BCMODWT methods.
Then, we explain each experiment in detail.
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The EEMD method decomposes a time series into sev-
eral IMFs and one residual (R) given the white noise am-
plitude (ε) and the number of ensemble members (M). In
this work, we set M and ε to 100 and 0.2, respectively, as
suggested by Wu and Huang (2009). The SSA method de-
composes a time series into independent trend, oscillation,
and noise components ({S1, . . .,SL})). This decomposition is
parameterized by the window length (WL) and the number
of groups (m). The SSA method has four main steps, namely
embedding, singular value decomposition (SVD), grouping,
and diagonal averaging. If one of the subseries is periodic,
WL can be set to the period of this subseries to enhance
decomposition performance (Zhang et al., 2015). However,
the grouping step can be ignored (i.e., we do not need to
set m) if the value of WL is small (e.g., WL ≤ 20) because
grouping may hide information in the grouped subseries. In
this work, WL was set to 12 because we perform monthly
runoff forecasting. The DWT decomposes a time series into
several detail series ({D1, . . ., DL}) and one approximation
series (AL) given a discrete mother wavelet function (ψ)
and a decomposition level (L). These parameters are typ-
ically selected experimentally. In this work, we set ψ to
db10 as suggested by Seo et al. (2015). Also, we set L to
int
[
log(N)

]
following Nourani et al. (2009). Given ψ and L,

the BCMODWT method decomposes a given time series into
wavelets ({W1, W2, . . . , WL}) and scaling coefficients (VL).
The number of boundary-affected wavelets and scaling co-
efficients is given by

(
2L
− 1

)
(J − 1)+ 1 (where J is the

length of the given wavelet filter) (Quilty and Adamowski,
2018). These boundary-affected wavelets and scaling coeffi-
cients are finally removed by BCMODWT. In this work, sev-
eral wavelet functions were evaluated, including haar, db1,
fk4, coif1, sym4, db5, coif2, and db10 (with wavelet filter
lengths of 2, 2, 4, 6, 8, 10, 12, and 20, respectively). Since we
have only 792 monthly runoff values and the BCMODWT
method removes some wavelet and scaling coefficients, the
maximum decomposition level was set to 4 (286 wavelets
and scaling coefficients were removed for db10).

3.5.1 Experiment 1: evaluation of the boundary effect
reduction

First, we show how boundary effects can be reduced through
the generation of validation samples from appended decom-
positions and then mixing and shuffling the calibration and
development samples. As shown in Fig. 8, we compare four
TSDP schemes for 1-month-ahead runoff forecasting in the
first experiment. The development samples of the schemes 1
and 2 come from the calibration distribution, whereas those
of the schemes 3 and 4 come from the validation distribu-
tion. The testing samples of the schemes 1 and 3 are gen-
erated from validation decompositions, whereas those of the
schemes 2 and 4 are generated from appended decomposi-
tions. The comparisons between the first and second TSDP
schemes and between the third and fourth TSDP schemes

are carried out to verify whether generating samples from ap-
pended decompositions reduces boundary effects. Moreover,
the comparisons between the first and third TSDP schemes
and between the second and fourth TSDP schemes are per-
formed to check whether the mixing-and-shuffling step re-
duces boundary effects.

3.5.2 Experiment 2: evaluation of TSDE models

In the second experiment, we compare the prediction perfor-
mance and the computational cost of the TSDP and TSDE
models for 1-month-ahead runoff forecasting. Those mod-
els are implemented based on the EEMD, SSA, VMD, DWT
and SVR methods. In particular, we investigate four com-
bined schemes for TSDE models, namely EEMD-SVR-A
(“A” means the ensemble approach is the addition ensemble),
SSA-SVR-A, VMD-SVR-A, and DWT-SVR-A. The TSDE
models include the extra ensemble stage compared to the
TSDP models. The decomposition stages of the TSDP and
TSDE models are identical. In the TSDE prediction stage,
PACF is also used for selecting the predictors and the pre-
dicted target for each signal component. However, one opti-
mized SVR model will be trained for each signal component.
In the test phase, this model will be used for component pre-
diction. The remaining prediction procedures are identical to
those of the TSDP models. For testing in the ensemble stage,
the prediction results of all signal components are fused to
predict the streamflow data. Since the TSDE models build
one SVR model for each signal component, the computa-
tional cost of each TSDE model is expected to be signifi-
cantly higher than that of the corresponding TSDP model.

3.5.3 Experiment 3: evaluation of the PCA-based
dimensionality reduction

Our third experiment tests whether dimensionality reduction
(i.e., reduction of the number of predictors) improves the pre-
diction performance of the TSDP models. The TSDP models
can reduce the modeling time and possibly improve the pre-
diction performance compared with the TSDE models. How-
ever, combining the predictors of all signal components as
the TSDP input predictors may lead to overfitting. This is
because the TSDP predictors might be correlated and are typ-
ically much more than the TSDE ones. Therefore, it is neces-
sary to test whether the reduction of the number of the TSDP
predictors can help improve the prediction performance.

Principal component analysis (PCA) has been a key tool
for addressing the overfitting problem of redundant predic-
tors (Zuo et al., 2006; Musa, 2014). Therefore, PCA is used
in this work to reduce the TSDP input predictors. This anal-
ysis uses an orthogonal transformation in order to transform
the correlated predictors into a set of linearly uncorrelated
predictors or principal components. For further details on
PCA, see Jolliffe (2002). The main PCA parameter is the
number of principal components, which indicates the num-
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Figure 7. A block diagram of the comparative experimental setups.

Figure 8. A block diagram for different methods of generating the calibration, development and test samples.
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ber of predictors retained by the PCA procedure. The opti-
mal number of predictors is found through grid search. We
also estimate this number using the MLE method of Minka
(2000). Since the number of predictors varies for different
TSDP models, the (guessed) number of predictors is replaced
by the (guessed) number of excluded predictors for conve-
nience of comparison. In this paper, the number of excluded
predictors ranges from 0 to 16. A value of 0 indicates that
all predictors are retained (i.e., the dimensionality is not re-
duced), but the correlated predictors are transformed into un-
correlated ones. The PCA-based and no-PCA TSDP models
for 1-month-ahead runoff forecasting are finally compared.

3.5.4 Experiment 4: evaluation of the TSDP models for
different lead times

For the four experiments, we test the VMD decomposi-
tion performance by comparing the prediction outcomes of
the VMD-SVR scheme with those of three other TSDP
schemes which combine the EEMD, SSA and DWT meth-
ods, respectively, with SVR. Meanwhile, the TSDP mod-
els were compared with the BCMODWT-SVR realization
of the WDDFF framework, which was proposed by Quilty
and Adamowski (2018). Additionally, the no-decomposition
ARIMA, SVR, BPNN, and LSTM models are compared
with TSDP and WDDFF realizations. For each of these
data-driven models, the associated hyperparameter settings
or search ranges are shown in Table 1. Each hyperparameter
is fine-tuned to minimize the mean-square error (MSE). The
data-driven model with the lowest MSE is finally selected.
The degree of differencing (d) of the ARIMA model is de-
termined by the minimum differencing required to get a sta-
tionary time series from the original monthly runoff data. In
our work, stationarity testing is performed by the augmented
Dickey–Fuller (ADF) test (Lopez, 1997).

The single-hybrid method of the WDDFF framework
has shown the best forecasting performance according to
Quilty and Adamowski (2018). Therefore, in this work,
the WDDFF models were built based on BCMODWT
and SVR using the single-hybrid method. In the single-
hybrid method, the explanatory variables are decomposed
by BCMODWT. The decomposed signal components are
selected jointly with the explanatory variables as input
predictors. Since our work focuses on time-series fore-
casting using autoregressive patterns, the explanatory vari-
ables are extracted from historical time-series data. Twelve
monthly runoff series lagging from 1 month to 12 months
were selected as explanatory variables. Since these se-
ries have obvious inter-annual variations, they are also se-
lected as the input predictors for the no-decomposition
SVR, BPNN and LSTM models. The BCMODWT-SVR
scheme was implemented as follows: (1) select the monthly
runoff data (Q(t + 1), Q(t + 3), Q(t + 5), and Q(t + 7))
as prediction targets and the 12 lagging monthly runoff se-
ries (Q(t − 11)Q(t − 10) , . . . ,Q(t − 1)Q(t)) as explana-

tory variables; (2) decompose each explanatory variable
using the BCMODWT method; (3) combine the explana-
tory variables and the decomposed components to form the
model predictors; (4) select the final input predictors of the
BCMODWT-SVR scheme based on the mutual information
(MI) criterion (Quilty et al., 2016); (5) train and optimize the
SVR model based on the CV strategy and the calibration and
development samples; (6) test the optimized BCMODWT-
SVR scheme using the test samples.

4 Case study

4.1 Data normalization

To promote faster convergence of the BOGP algorithm, all
predictors and prediction targets in this work were normal-
ized to the [−1, 1] range by the following equation:

y= 2⊗
x− xmin

xmax− xmin
− 1, (13)

where x and y are the raw and normalized vectors, respec-
tively, while xmax and xmin are the maximum and minimum
values of x, respectively. Also, the multiplication and sub-
traction are element-wise operations. Note that the param-
eters xmax and xmin are computed based on the calibration
samples. These parameters are also used to normalize the de-
velopment and test samples in order to avoid using future in-
formation from the development and test phases and enforce
all samples to follow the calibration distribution.

4.2 Model evaluation criteria

To evaluate the forecasting performance, we employed four
criteria, namely the Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970), the normalized root-mean-square error
(NRMSE), the peak percentage of threshold statistics (PPTS)
(Bai et al., 2016; Stojković et al., 2017) and the time cost. The
NSE, NRMSE, and PPTS criteria are, respectively, defined as
follows:

NSE= 1−

∑N
t=1
(
x (t)− x̂ (t)

)2∑N
t=1(x (t)− x (t))

2
, (14)

NRMSE=

√∑N
t=1
(
x (t)− x̂ (t)

)2
/N∑N

t=1x (t)/N
, (15)

PPTS(γ )=
100
γ

1
N

∑G

t=1

∣∣∣∣x (t)− x̂ (t)x (t)

∣∣∣∣ , (16)

where N is the number of samples, and x (t), x (t) and x̂ (t)
are the raw, average, and predicted data samples, respec-
tively. The NSE evaluates the prediction performance of a
hydrological model. Larger NSE values reflect more pow-
erful forecasting models. The NRMSE criterion facilitates
comparison between datasets or models at different scales.
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Table 1. The hyperparameters, tuning strategies, and search ranges for the compared data-driven models.

Data-driven model Tuning strategy Hyperparameter Search space

ARIMA GS Degree of differencing (d) Determined by ADF test
Autoregressive lags (p) [1, 20]
Moving-average lags (q) [1, 20]

SVR BOGP Weight penalty (C) [0.1, 200]
Error tolerance (ε) [1e− 6, 1]
Width control coefficient (σ ) [1e− 6, 1]

BPNN&LSTM BOGP Batch size 256
Optimizer Adam
Learning rate [1e− 4, 1e− 1]
Activation function Relu
Number of hidden layers [1, 2]
Number of hidden units [8, 32]
Dropout rate [0.1, 0.5]

Lower NRMSE values indicate less residual variance. To cal-
culate the PPTS criterion, raw data samples are arranged in
descending order and the predicted data samples are arranged
following the same order. The parameter γ denotes a thresh-
old level that controls the percentage of the data samples se-
lected from the beginning of the arranged data sequence. The
parameter G is the number of values above this threshold
level. For example, PPTS(5) means the top 5 % flows, or the
peak flows, which are evaluated by the PPTS criterion. Lower
PPTS values indicate more accurate peak-flow predictions.

4.3 Open-source software and hardware environments

In this work, we utilize multiple open-source software tools.
We use Pandas (McKinney, 2010) and Numpy (Stéfan et
al., 2011) to perform data preprocessing and management,
Scikit-Learn (Pedregosa et al., 2011) to create SVR models
for forecasting monthly runoff data and perform PCA-based
dimensionality reduction, Tensorflow (Abadi et al., 2016) to
build BPNN and LSTM models, Keras-tuner to tune BPNN
and LSTM, Scikit-Optimize (Head et al., 2020) to tune the
SVR models, and Matplotlib (Hunter, 2007) to draw the
figures. The MATLAB implementations of the EEMD and
VMD methods are derived from Wu and Huang (2009) and
Dragomiretskiy and Zosso (2014), respectively. The Python-
based SSA implementation is adapted from D’Arcy (2018).
The DWT and ARIMA methods were performed based
on the MATLAB built-in “Wavelet Analyzer Toolbox” and
“Econometric Modeler Toolbox”, respectively. As well, John
Quilty of McGill University, Canada, provided the MAT-
LAB implementation of the BCMODWT method. All mod-
els were developed and the computational cost of each model
was computed based on a 2.50 GHz Intel Core i7-4710MQ
CPU with 32.0 GB of RAM.

Figure 9. Center-frequency aliasing for the last signal component
of time-series data collected from the Huaxian station.

4.4 Modeling stages

The VMD-SVR model for 1-month-ahead runoff forecasting
of the Huaxian station is employed as an example to illustrate
the modeling stages of the TSDP, TSDE, WDDFF, and no-
decomposition models.

As stated in Sect. 3.1, the decomposition level (K), the
quadratic penalty parameter (α), the noise tolerance (τ ) and
the convergence tolerance (ε) are the four parameters that
influence the VMD decomposition performance. In particu-
lar, this performance is very sensitive to K (Xu et al., 2019).
As suggested by Zuo et al. (2020), the values of α, τ , and ε
were set to 2000, 0, and 1e-9, respectively. The optimal K
value was determined by checking whether the last IMF had
central-frequency aliasing (as represented by the red rectan-
gle area in Fig. 9). Specifically, we increase K starting from
K = 2 with a step size of 1. If the center-frequency alias-
ing of the last IMF is first observed when K = L, then the
optimal K is set to L− 1. As shown in Fig. 9, the optimal
decomposition level for the Huaxian station is K = 8.
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Figure 10. PACF of the first VMD signal component for the time-
series data collected from the Huaxian station.

According to the procedure of Sect. 3.4, PACF is used to
determine the optimal predictors for the VMD-SVR scheme.
For the time-series data of the Huaxian station, the first VMD
IMF component is used as an example of tracking the opti-
mal input predictors from PACF. Figure 10 shows that the
PACF of the third lag month exceeds the boundary of the
95 % confidence interval (illustrated by the red dashed line)
and is insignificant after the third lag month. Thus x1 (t),
x1 (t − 1) and x1 (t − 2) are selected as the optimal input pre-
dictors for IMF1. In such a manner, the input predictors of all
signal components are combined together to form the VMD-
SVR predictors. Then, the original monthly runoff data, i.e.,
Q(t + 1), is selected as the predicted target.

As described in Sect. 3.2, the VMD-SVR model perfor-
mance can be optimized by tuning the SVR hyperparameters,
namely the weight penalty (C), the error tolerance (ε), and
the width control coefficient (σ ). To tune these hyperparam-
eters (C, ε, and σ ), the maximum number of BOGP iterations
was set to 100. The search space of SVR parameters is shown
in Table 1. Moreover, the CV fold number is a vital param-
eter that influences the TSDP model performance. In fact,
the 10-fold CV and leave-one-out CV (LOOCV) are two fre-
quently used schemes (Zhang and Yang, 2015; Jung, 2018).
Zhang and Yang (2015) show that the LOOCV scheme has
a better performance than a 10-fold or a 5-fold CV scheme.
However, LOOCV is computationally expensive. Addition-
ally, Hastie et al. (2009) empirically demonstrated that 5-
fold CV sometimes has lower variance than LOOCV. There-
fore, the selection of the number of CV folds should be made
while taking the specific application scenario into consider-
ation. In this work, a 10-fold CV scheme was used for tun-
ing the SVR hyperparameters due to the limited computa-
tional resources. We ran the BOGP procedure 10 times to
reduce the impact of random sampling, and the parameters
associated with the lowest MSE on development samples
were selected. As shown in Fig. 11 for the time-series data

Figure 11. Pairwise partial dependence plot of the MSE objective
function for the VMD-SVR scheme based on time-series data of the
Huaxian station.

of the Huaxian station, the pairwise partial dependence of
the SVR hyperparameters shows that the tuned parameters
(C = 18.97, ε = 1× 10−6 and σ = 0.22) are globally opti-
mized. This analysis indicates that the BOGP procedure pro-
vides reasonable results.

As stated in Sect. 3.5.4, the input predictors of the
BCMODWT-SVR scheme were generated from the explana-
tory variables and further filtered by the MI criterion. The
input predictors with a MI value larger than 0.1 were re-
tained to train the BCMODWT-SVR scheme. This choice
was made since the number of predictors is close to 0 if the
MI value is larger than 0.2. Figure 12 shows the NSE val-
ues of the BCMODWT-SVR scheme for different wavelets
and decomposition levels at the calibration-and-development
stage. The db1 wavelet with a decomposition level of 4 lead
to higher calibration and development NSE compared to
other combinations of wavelet types and decomposition lev-
els. Therefore, the wavelet type and decomposition level of
the BCMODWT-SVR models were set to db1 and 4, respec-
tively.

In this section, we compare the performance of the decom-
position algorithms through the analysis of the absolute PCC
between each signal component and the original monthly
runoff data (see Fig. 13), the frequency spectrum of each
signal component (see Fig. 14), and the MI between each
predictor and the prediction target (see Fig. 15). The abso-
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Figure 12. NSE of the BCMODWT-SVR scheme for different
wavelet types and decomposition levels. The horizontal axis repre-
sents the wavelet types, while the two vertical axes respectively rep-
resent the decomposition level and the modeling stage (e.g., “Cal,
1” and “Dev, 1” respectively represent the calibration and develop-
ment stages with a decomposition level of 1).

lute PCCs for only the first explanatory variables of the BC-
MODWT method are presented in Fig. 13. This figure shows
that the coefficients of the EEMD, SSA, and BCMODWT
methods are much larger than 0, indicating that most of the
signal components of these methods are highly correlated
and redundant. The coefficients of the VMD and DWT signal
components are less than 0.1 and 0.001, respectively. This in-
dicates that these components are highly uncorrelated. Sim-
ilar results were obtained for the time-series data of the Xi-
anyang and Zhangjiashan stations. In general, these findings
demonstrate that the SVR models established based on the
BCMODWT, EEMD, SSA signal components might poorly
forecast original monthly runoff data. On the contrary, SVR
models based on the DWT and VMD signal components
have great potential to accurately forecast monthly runoff
data.

Figure 14 shows that the VMD components have a very
low noise level around the main frequency. The EEMD IMF1
has a large noise level over the entire frequency domain while
the EEMD IMF2 has large noise levels around the main fre-
quency. The noise level of SSA S6–S12 around the main fre-
quency is larger than that of the VMD signal components.
The DWT D1 has a large noise level for low frequencies
and DWT D2 has a large noise level around the main fre-
quency. The BCMODWT W1 has a large noise level over
the entire frequency domain and BCMODWTW2 has a large
noise level around the main frequency. These results indicate
that (1) the VMD scheme is much more robust to noise than
the EEMD, SSA, DWT and BCMODWT schemes, (2) the
main components of other schemes (e.g., W1 and W2 of BC-

MODWT, IMF1 and IMF2 of EEMD, D1 and D2 of DWT,
and S6–S12 of SSA) might lead to poor forecasting perfor-
mance. Similar results were obtained for the time-series data
of the Xianyang and Zhangjiashan stations.

Figure 15d and e show that the DWT and BCMODWT
predictors for the 1-month-ahead runoff forecast have higher
MI values than that for 3-, 5-, and 7-month-ahead forecasts.
Figure 15a–c show that the MI values of the VMD, SSA,
and EEMD predictors for the 1-, 3-, 5- and 7-month-ahead
runoff forecasts are very close. This indicates that the predic-
tion performance of the DWT-SVR and BCMODWT-SVR
schemes for the 1-month-ahead runoff forecast may be much
better than that for the 3-, 5- and 7-month-ahead runoff
forecasts. Also, the results indicate that the prediction per-
formance of the VMD-SVR, SSA-SVR, and EEMD-SVR
schemes for all four lead times may not significantly vary.
Overall, the findings obtained from Figs. 13 to 15 show that
VMD has the best decomposition performance and a great
potential to achieve a good prediction performance.

5 Experimental results

5.1 Reduction of boundary effects in the TSDP models

An experimental comparison of TSDP models established
with and without the appended decompositions and the
mixing-and-shuffling step is illustrated in Fig. 16. Figure 16a
shows that the calibration and development NSE values of
the scheme 1 are very close but larger than the test NSE
value. This indicates that the optimized model based on sam-
ples generated without the appended decompositions and the
mixing-and-shuffling step approximates the calibration dis-
tribution reasonably well, though this model poorly general-
izes to the test distribution. Figure 16b shows that the NSE
interquartile range decreased substantially compared to the
test NSE of the scheme 1. Also, the NSE mean value in-
creased considerably except for the EEMD-SVR scheme.
This demonstrates the importance of generating test samples
from appended decompositions in order to improve the pre-
diction performance on the test samples. As well, Fig. 16c
shows that the NSE interquartile range increased substan-
tially compared to the NSE of the scheme 1, while the
NSE mean decreased considerably. This demonstrates that
the mixing-and-shuffling step does not improve the gener-
alization performance if the validation samples are not gen-
erated from appended decompositions. Moreover, Fig. 16d
shows that the NSE interquartile range decreased substan-
tially in comparison with the NSE of the scheme 3, while
the NSE mean increased considerably. These results also
demonstrate the importance of generating validation sam-
ples from appended decompositions in order to improve the
TSDP generalization capability. Figure 16d also shows that
the NSE interquartile range decreased substantially com-
pared with the test NSE of the scheme 2, while the NSE
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Figure 13. Absolute Pearson correlation coefficients of signal components obtained by different decomposition methods for the time-series
data of the Huaxian station.

Figure 14. Frequency spectra of the signal components for the time-series data of the Huaxian station. The spectra are shown for the SSA,
EEMD, VMD, BCMODWT, and DWT decomposition methods.

mean increased considerably. This demonstrates the impor-
tance of the mixing-and-shuffling step in improving the pre-
diction performance on test samples under the condition that
the validation samples are generated from appended decom-
positions. Similar results were obtained for the NRMSE and
PPTS criteria. In general, generating validation samples from
appended decompositions and also mixing and shuffling the
calibration and development samples help a lot with boost-
ing prediction performance. Nevertheless, generating sam-
ples from appended decompositions is more important than

the mixing-and-shuffling step for reducing the boundary ef-
fect consequences.

5.2 Performance gap between the TSDP and TSDE
models

The performance gap between the TSDP and TSDE models
is illustrated in Fig. 17. Figure 17a, b and c show that the
mean NSE for the DWT-SVR-A scheme is larger than that of
the DWT-SVR one, while the mean NRMSE and PPTS val-
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Figure 15. Mutual information between each predictor and the predicted target for the time-series data of the Huaxian station.

Figure 16. Violin plots of the NSE criterion for TSDP models and 1-month-ahead runoff forecasting (see Fig. 8 for the details of each
scheme).

ues of DWT-SVR-A are smaller than that of DWT-SVR. The
DWT-SVR-A scheme also has smaller NSE, NRMSE and
PPTS interquartile ranges than those of the DWT-SVR one.
This indicates that the DWT-SVR scheme does not improve
prediction performance in comparison to the DWT-SVR-A
one. Similar results and conclusions were obtained for the
EEMD-SVR and EEMD-SVR-A schemes. Figure 17a, b and
c also show that the mean NSE of the VMD-SVR scheme
is larger than that of the VMD-SVR-A one, while the mean
NRMSE and PPTS values of VMD-SVR are smaller than
those of VMD-SVR-A. The NSE, NRMSE and PPTS in-
terquartile ranges of VMD-SVR are smaller than those of
VMD-SVR-A. This shows that VMD-SVR improves predic-
tion performance compared with VMD-SVR-A. Similar re-
sults and conclusions were obtained for SSA-SVR and SSA-
SVR-A. Figure 17d shows that the computational cost of the
TSDE models is much larger than that of the TSDP mod-

els and that the computational cost of the TSDE models is
positively correlated with the decomposition level. Overall,
these findings demonstrated that the TSDP models do not al-
ways improve the prediction performance but are generally
of smaller computational cost compared to the TSDE mod-
els.

5.3 Effect of dimensionality reduction on the TSDP
models

The violin plots of NSE values for different (guessed) num-
bers of excluded predictors and all three data collection sta-
tions are illustrated in Fig. 18. Figure 18a and b show that
dimensionality reduction generally reduces the NSE scores
of the EEMD-SVR and SSA-SVR schemes. This indicates
that dimensionality reduction causes these schemes to lose
some valuable information. Figure 18c shows that the NSE
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Figure 17. Violin plots of the evaluation criteria for 1-month-ahead runoff forecasting during the test phase of the TSDP and TSDE models.

scores of the DWT-SVR scheme are slightly larger than the
mean NSE without PCA. Figure 18d shows that the NSE
scores of the VMD-SVR scheme are slightly larger than the
mean NSE without PCA when the number of excluded pre-
dictors is less than eight. The NSE score generally decreased
as the number of excluded predictors is increased from 0 to
16. These results demonstrate that the DWT-SVR and VMD-
SVR schemes have overfitting to some extent, and the pre-
dictors of these schemes are slightly linearly correlated. Fig-
ure 18 shows that the associated NSE scores of the guessed
number of excluded predictors for the EEMD-SVR and SSA-
SVR schemes are smaller than the mean NSE score with-
out PCA. By contrast, the corresponding NSE scores for
the DWT-SVR and VMD-SVR schemes are slightly larger
than the mean NSE score without PCA. This indicates that
the guessed number of principal components obtained by
the MLE method reduces the prediction performance of the
EEMD-SVR and SSA-SVR schemes but slightly improves
the performance for the DWT-SVR and VMD-SVR schemes.
In fact, we chose not to perform the dimensionality reduction
on the subsequent TSDP models to avoid the risk of informa-
tion loss.

5.4 Performance of the TSDP models for different lead
times

Figure 19 shows that the correlation values of the VMD-SVR
scheme for 1-, 3-, 5- and 7-month-ahead runoff forecasting
are concentrated around the ideal fit, with a small angle be-
tween the ideal and linear fits. This indicates that the raw
measurements and the VMD-SVR predictions have a high
degree of agreement. Also, the DWT-SVR correlation val-

ues are concentrated around the ideal fit with a small an-
gle between the ideal and linear fits for forecasting runoff
data 1 month ahead (see Fig. 19a). However, the correlation
values are dispersed around the ideal fit with a large angle
between the ideal and linear fits for forecasting runoff 3, 5,
and 7 months ahead (see Fig. 19b, c and d). This indicates
that the DWT-SVR model has good prediction performance
for forecasting runoff data 1 month ahead but not for 3, 5
and 7 months ahead. While similar results can be observed
for SSA-SVR, the correlation values of this scheme are less
concentrated for forecasting runoff 1 month ahead and more
concentrated for forecasting runoff 3, 5 and 7 months ahead
in comparison to the DWT-SVR correlation values. This
demonstrates that DWT-SVR is better than SSA-SVR in 1-
month-ahead prediction but worse in 3-, 5-, and 7-month-
ahead prediction. Figure 19 also shows that the correlation
values of the EEMD-SVR and BCMODWT-SVR schemes
are less concentrated than those of the VMD-SVR, DWT-
SVR and SSA-SVR schemes for forecasting runoff 1 month
ahead and also less concentrated than those of the VMD-
SVR and SSA-SVR schemes for forecasting runoff 3, 5 and
7 months ahead. This demonstrates that the EEMD and BC-
MODWT methods have poor prediction performance for all
lead times. As shown in Fig. 19a, the correlation values of the
EEMD-SVR model are more concentrated than those of the
ARIMA, SVR, BPNN and LSTM models, and the angle be-
tween the ideal and linear fits of BCMODWT-SVR is larger
than that of the ARIMA, SVR, BPNN and LSTM models.
This indicates that the decomposition of the original monthly
runoff data cannot always help improve the prediction per-
formance. As shown in Fig. 19, similar results were obtained
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Figure 18. Violin plots of the NSE values for different numbers of excluded components and 1-month-ahead runoff forecasting.

for the time-series data of the Xianyang and Zhangjiashan
stations.

Quantitative evaluation results are presented in Fig. 20.
Compared with the SVR, BPNN and LSTM models, the
ARIMA models have larger mean NSE, and smaller mean
NRMSE and mean PPTS. This indicates that the ARIMA
models have better prediction performance than the SVR,
BPNN and LSTM ones. The VMD-SVR scheme is the only
scheme with a mean NSE exceeding 0.8 for all three sta-
tions and four lead times. This NSE value is often taken
as a threshold value for reasonably well-performing mod-
els (Newman et al., 2015). This result indicates that the
measurements are reasonably matched by the VMD-SVR
predictions. Compared with the no-decomposition ARIMA
model for forecasting runoff data 1 month ahead, the mean
NSE values of VMD-SVR for forecasting runoff data 1,
3, 5 and 7 months ahead are respectively increased by
139 %, 135 %, 134 %, and 132 %. For the SSA-SVR scheme,
the corresponding increases are 136 %, 103 %, 101 % and
104 %, respectively. For the DWT-SVR scheme, the mean
NSE values respectively increased by 134 %, 2 %, −71 %
and −93 %. For the EEMD-SVR scheme, the respec-
tive decrements are −48 %, −55 %, −88 % and −125 %.
For BCMODWT-SVR, the respective changes are −51 %,
−90 %, −79 % and −84 %. These findings indicate that
(1) VMD-SVR and SSA-SVR play a positive role while
EEMD-SVR and BCMODWT-SVR play a negative role in
improving the prediction performance of decomposition-
based models for all lead times; (2) DWT-SVR has a
positive impact on the prediction performance for fore-
casting runoff 1 and 3 months ahead but a negative im-
pact on the prediction performance for forecasting runoff
5 and 7 months ahead; (3) as the lead time increased,
the VMD-SVR prediction performance slightly decreased,
the SSA-SVR and BCMODWT-SVR prediction perfor-
mance slowly decreased, while the prediction performance
of DWT-SVR and EEMD-SVR dramatically decreased. In-
deed, the overall performance is ranked from the highest
to the lowest as follows: VMD-SVR>SSA-SVR>DWT-
SVR>EEMD-SVR≈BCMODWT-SVR. Additionally, the

VMD-SVR scheme generally has a smaller interquartile
range and a good generalization capability for different wa-
tersheds. Similar results were obtained for the NRMSE and
PPTS criteria (as shown in Fig. 20b and c). Overall, the re-
sults obtained from Figs. 19 and 20 demonstrate that the
proposed VMD-SVR scheme has the best prediction perfor-
mance as well as satisfactory generalization capabilities for
different data collection stations and lead times. The results
also show that the BCMODWT-SVR scheme may not be fea-
sible for our case study.

6 Discussion

As we can see from the experimental results of Sect. 5, the
designed TSDP framework and its VMD-SVR realization at-
tain the aforementioned desirable goals (see Sect. 1). We now
discuss why and how the TSDP framework and its VMD-
SVR realization are superior to other decomposition-based
streamflow forecasting frameworks and models.

The results in Sect. 5.1 show that generating samples from
appended decompositions, as well as mixing and shuffling
the calibration and development samples improve the pre-
diction performance on test samples (see Fig. 16). The cali-
bration and the validation samples have quite different error
distributions due to boundary effects (see Fig. 4). The predic-
tors of validation samples generated from appended decom-
positions are more correlated with the predicted targets than
the predictors of validation samples directly generated from
validation decompositions (see Fig. 5). Therefore, generat-
ing validation samples from appended decompositions helps
the TSDP framework improve its generalization capability.
Mixing and shuffling the calibration and development sam-
ples and training SVR model based on a CV strategy us-
ing the mixed and shuffled samples enable the assessment
of the validation distribution during calibration with no test
information. In other words, the SVR models can be cali-
brated and validated on the calibration and validation distri-
butions simultaneously. Therefore, the mixing-and-shuffling
step helps the TSDP framework enhance its generalization
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Figure 19. Scatter plots of the TSDP and benchmark models during the test phase for forecasting runoff (a) 1 month ahead, (b) 3 months
ahead, (c) 5 months ahead and (d) 7 months ahead at the Huaxian station.

capability. Nevertheless, this step does not help much if the
validation samples are generated from validation decompo-
sitions (see Fig. 16). This because the relationship between
predictors and prediction targets presented in validation sam-
ples is changed a lot compared to that of calibration sam-
ples. However, one may sequentially append the calibration
set to the first streamflow data samples and decompose the
appended sets to force the calibration and validation sam-
ples to follow approximately the same distribution. We re-
frain from doing this (and strongly advise against it) because
the modeling process will become quite laborious and large
decomposition errors will be also introduced into the calibra-
tion samples.

The experimental outcomes of Sect. 5.2 indicate that the
TSDP framework saves modeling time and sometimes im-

proves the prediction performance compared to the TSDE
framework (see Fig. 17). This improvement can be ascribed
to the fact that the TSDP models avoid the error accumu-
lation problem and also simulate the relationship between
signal components and the original monthly runoff data as
well as the relationship between the predictors and the pre-
dicted target. This simulation improves the prediction per-
formance because the summation of the signal components
(summation is the ensemble strategy used by TSDE) ob-
tained by some decomposition algorithms cannot precisely
reconstruct the original monthly runoff data (e.g., VMD in
this work, see Fig. 3h). However, the TSDP framework ac-
counts for the noise when the predictors are fused. There-
fore, the TSDP framework might be outperformed by the
TSDE framework if some signal components have a large
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Figure 20. Violin plots of the evaluation criteria during testing for the TSDP and benchmark models (the horizontal axes represent the model
and lead time; e.g., “VMD-SVR, 1” represents the VMD-SVR model for 1-month-ahead runoff forecasting).

noise level. The DWT-SVR and EEMD-SVR schemes do
not improve the performance considerably compared with
the DWT-SVR-A and EEMD-SVR-A schemes (see Fig. 17)
since the respective main decomposition components (i.e.,
DWT D1 and D2, and EEMD IMF1 and IMF2) have large
noise levels (see Fig. 14). However, compared with the
EEMD-SVR and EEMD-SVR-A schemes, the performance
gap between DWT-SVR and DWT-SVR-A is quite small
(see Fig. 17) because the DWT has fewer signal compo-
nents which are more uncorrelated than the EEMD signal
components (see Fig. 13). Overall, we still suggest using the
DWT-SVR scheme rather than the DWT-SVR-A one to pre-
dict runoff 1 month ahead and save modeling time.

The results of Sect. 5.3 indicate that combining the pre-
dictors of the individual signal components causes overfit-
ting in the VMD-SVR and DWT-SVR schemes but does not
overfit the EEMD-SVR and SSA-SVR schemes at all (see
Fig. 18). The reason is that the predictors and prediction tar-
gets come from the same source (the monthly runoff data in
this work) and the TSDP models simulate the relationship
inside the original monthly runoff data rather than the rela-
tionship between the precipitation, evaporation, temperature,
and monthly runoff data. Therefore, the TSDP models focus
on simulating the relationship between historical and future
monthly runoff data rather than fitting noise (random sam-

pling error). Although the predictors of the VMD-SVR and
DWT-SVR schemes are slightly correlated, the prediction
performance of these schemes for 1-month-ahead forecast-
ing is already good enough and the dimensionality reduction
improves the prediction performance a little bit. Therefore,
we suggest predicting the original streamflow directly based
on the proposed TSDP framework (see Sect. 3.4 and Fig. 6)
without dimensionality reduction in the autoregression cases.
However, Noori et al. (2011) have demonstrated that, com-
pared with the no-PCA SVR model, PCA enhances consider-
ably the prediction performance for the monthly runoff with
rainfall, temperature, solar radiation, and discharge. There-
fore, performing PCA on the TSDP framework is necessary
if the predictors come from different sources.

The experimental outcomes of Sect. 5.4 indicate that the
VMD-SVR scheme has the best performance (see Figs. 19
and 20). This validates the guess we made in Sect. 4.4. This
performance improvement is due to the fact that the VMD
signal components are barely correlated (see Fig. 13) and
have a low noise level (see Fig. 14). Determining the VMD
decomposition level by observing the center-frequency alias-
ing (see Fig. 9) helps avoid mode mixing and hence leads
to uncorrelated signal components. Setting the VMD noise
tolerance (τ ) to 0 removes some noise components inside
the original monthly runoff data (see Sect. 3.1), and thus al-
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lows signal components with a low noise level. Although set-
ting the noise tolerance to 0 does not enable the summation
of the VMD signal components for the original streamflow
reconstruction (see Fig. 3h), the TSDP framework perfectly
solves this problem by building a single SVR model to pre-
dict the original streamflow instead of summing the predic-
tions of all signal components. Also, results from Sect. 5.4
show that DWT-SVR exhibits prediction performance that is
better than that of SSA-SVR for 1-month-ahead runoff fore-
casting but worse than that of SSA-SVR for 3-, 5- and 7-
month-ahead runoff forecasting (see Figs. 19 and 20). Once
again, this result verifies the guess we gave in Sect. 4.4. This
is because, in comparison with SSA, the DWT predictors
for 1-month-ahead runoff forecasting have higher MI than
those for 3-, 5-, and 7-month-ahead runoff forecasting (see
Fig. 15). The SSA-SVR scheme shows prediction perfor-
mance that is inferior to that of VMD-SVR, but shows bet-
ter prediction performance compared to other models. These
outcomes are due to the fact that the SSA signal compo-
nents are correlated (see Fig. 13) and have a larger noise
level than VMD but a lower noise level than that of the
EEMD, DWT, BCMODWT signal components (see Fig. 14).
The EEMD-SVR poor prediction performance (see Figs. 19
and 20) is because of the EEMD limitations such as sen-
sitivity to noise and sampling (Dragomiretskiy and Zosso,
2014). These limitations lead to large-noise EEMD compo-
nents IMF1 and IMF2 (see Fig. 14) with component corre-
lation, redundancy, and chaotically represented trend, period
and noise terms (see Fig. 13). The BCMODWT-SVR scheme
failed to provide reasonable forecasting performance due to:
(1) the limited sample size (only 792 data points in the orig-
inal monthly runoff data), of which the wavelet and scaling
coefficients are further removed by the BCMODWT method,
(2) the limited information explained by the explanatory vari-
ables of the original monthly runoff, where the PACF is very
small after the first lag month, (3) the correlated BCMODWT
signal components (see Fig. 13), and (4) the large-noise
BCMODWT components W1 and W2 (see Fig. 14). There-
fore, the WDDFF realization, i.e., BCMODWT-SVR, may
not be feasible for our problem. Additionally, the ARIMA
models have better performance than the SVR, BPNN and
LSTM models but worse performance than the VMD-SVR
and SSA-SVR models. This performance is likely because
the ARIMA models automatically determine the p and q in
the range [1, 20] to find more useful historical information
for explaining the monthly runoff data. However, signal com-
ponents with different frequencies extracted from VMD and
SSA explain more information inside the original monthly
runoff data. Overall, the VMD method is more robust to sam-
pling and noise and is therefore recommended for performing
monthly runoff forecasting in autoregressive scenarios.

In summary, the major contribution of this work is the de-
velopment of a new feasible and accurate approach for deal-
ing with boundary effects in streamflow time-series analy-
sis. Previous approaches handled the boundary effects by re-

moving or correcting the boundary-affected decompositions
(Quilty and Adamowski, 2018; Zhang et al., 2015) or ad-
justing the model parameters as new data are added (Tan et
al., 2018). However, to the best of our knowledge, no ap-
proaches have been successfully applied in building a fore-
casting framework that can adapt to boundary effects with-
out removing or correcting boundary-affected decomposi-
tions, while providing users with a high confidence level on
unseen data. Indeed, this work focuses on exploiting rather
than correcting or eliminating boundary-affected decompo-
sitions, in order to develop an effective, efficient, and accu-
rate decomposition-based forecasting framework. Note that
we do not need a lot of prior experience with signal pro-
cessing algorithms or mathematical methods for correcting
boundary deviations. We just enforce the models to assess the
validation distribution during the calibration phase, and en-
sure proper handling of the validation decomposition errors.
Overall, this operational streamflow forecasting framework
is quite simple and easy to implement.

7 Conclusions

This work investigated the potential of the proposed TSDP
framework and its VMD-SVR realization for forecasting
runoff data in basins lacking meteorological observations.
The TSDP decomposition stage extracts hidden information
of the original data and avoids using validation informa-
tion that is not available in practical forecasting applications.
The TSDP prediction stage reduces boundary effects, saves
modeling time, avoids error accumulation, and possibly im-
proves prediction performance. With four experiments, we
explored the reduction in boundary effects, computational
cost, overfitting, as well as decomposition and forecasting
outcomes for different lead times. We demonstrated that the
TSDP framework with its VMD-SVR realization can simu-
late monthly runoff data with competitive performance out-
comes compared to reference models. With the first experi-
ment, we evaluated the reduction of the boundary effects in
the TSDP framework. In the second experiment, we assessed
the performance gap between the TSDP and TSDE models.
For the third experiment, we empirically tested overfitting in
TSDP models. Additionally, we evaluated the prediction per-
formance of the TSDP models for different lead times in the
fourth and last experiment.

In summary, the major conclusions of this work are as fol-
lows.

– Generating validation samples with appended decom-
positions, as well as mixing and shuffling the calibration
and development samples, can significantly reduce the
ramifications of boundary effects.

– The TSDP framework saves modeling time and some-
times improves the prediction performance compared to
the TSDE framework.
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– Combining the predictors of all signal components as
the ultimate predictors does not overfit the EEMD-SVR
and SSA-SVR models and barely overfits the VMD-
SVR and DWT-SVR models. Although some overfitting
of the VMD-SVR and DWT-SVR occurs, these models
still provide accurate out-of-sample forecasts.

– The VMD-SVR scheme with NSE scores clearly ex-
ceeding 0.8 possesses the best forecasting performance
for all forecasting scenarios. The BCMODWT-SVR
scheme may not be feasible for autoregressive monthly
runoff data modeling.

The boundary effects represent a potential barrier for prac-
tical streamflow forecasting. We do believe that generating
samples from appended decompositions, in addition to mix-
ing and shuffling the calibration and development samples,
are promising ways to reduce the influences of boundary ef-
fects and improve the prediction performance on monthly
runoff future test samples. Ultimately, however, the black-
box nature of the TSDP framework and the VMD-SVR
model (or any data-driven model) is a justifiable barrier of
making decisions in water resource management using the
prediction results. Further research is needed on the VMD-
SVR result interpretability.
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Appendix A: Nomenclature

TSDP Two-stage decomposition prediction
TSDE Three-stage decomposition ensemble
WDDFF Wavelet data-driven forecasting framework
VMD Variational mode decomposition
EEMD Ensemble empirical mode decomposition
SSA Singular spectrum analysis
DWT Discrete wavelet transform
BCMODWT Boundary-corrected maximal overlap discrete wavelet transform
PCA Principal component analysis
SVR Support vector regression
ARIMA Autoregressive integrated moving average
BPNN Backpropagation neural network
LSTM Long short-term memory
ADF Augmented Dickey–Fuller
IMF Intrinsic mode function
PACF Partial autocorrelation coefficient
PCC Pearson correlation coefficient
MI Mutual information
MSE Mean square error
NSE Nash–Sutcliffe efficiency
NRMSE Normalized root mean square error
PPTS Peak percentage of threshold statistic
CV Cross-validation
BOGP Bayesian optimization based on Gaussian processes
GS Grid search
VMD-SVR A TSDP model based on VMD and SVR
EEMD-SVR A TSDP model based on EEMD and SVR
SSA-SVR A TSDP model based on SSA and SVR
DWT-SVR A TSDP model based on DWT and SVR
BCMODWT-SVR A WDDFF model based on BCMODWT and SVR.
VMD-SVR-A A TSDE model based on VMD and SVR
EEMD-SVR-A A TSDE model based on EEMD and SVR
SSA-SVR-A A TSDE model based on SSA and SVR
DWT-SVR-A A TSDE model based on DWT and SVR
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