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Abstract. Wavelet coherence is a method that is commonly
used in hydrology to extract scale-dependent, nonstationary
relationships between time series. However, we show that the
method cannot always determine why the time-domain cor-
relation between two time series changes in time. We show
that, even for stationary coherence, the time-domain correla-
tion between two time series weakens if at least one of the
time series has changing skewness. To overcome this draw-
back, a nonlinear coherence method is proposed to quan-
tify the cross-correlation between nonlinear modes embed-
ded in the time series. It is shown that nonlinear coherence
and auto-bicoherence spectra can provide additional insight
into changing time-domain correlations. The new method is
applied to the El Niño–Southern Oscillation (ENSO) and all-
India rainfall (AIR), which is intricately linked to hydrolog-
ical processes across the Indian subcontinent. The nonlin-
ear coherence analysis showed that the skewness of AIR is
weakly correlated with that of two ENSO time series after the
1970s, indicating that increases in ENSO skewness after the
1970s at least partially contributed to the weakening ENSO–
AIR relationship in recent decades. The implication of this
result is that the intensity of skewed El Niño events is likely
to overestimate India’s drought severity, which was the case
in the 1997 monsoon season, a time point when the nonlin-
ear wavelet coherence between AIR and ENSO reached its
lowest value in the 1871–2016 period. We determined that
the association between the weakening ENSO–AIR relation-
ship and ENSO nonlinearity could reflect the contribution of
different nonlinear ENSO modes to ENSO diversity.

1 Introduction

The South Asian monsoon, which is the dominant precipita-
tion source for the Indian subcontinent, has been a target for
seasonal prediction for well over a century (Blanford, 1884).
Despite this long heritage of research, skillful prediction re-
mains a challenge, driving extensive and ongoing research
on statistically and dynamically based prediction methods
(e.g., REFS). It is difficult to overstate the importance of
the South Asian monsoon to the well-being of citizens in In-
dia. Strong monsoon years have caused catastrophic flood-
ing (Kale, 2012; Sanyal and Lu, 2005) and large landslides
(Dortch et al., 2009), while weak monsoons have led to water
shortages (Mishra et al., 2016) and crop losses (Parthasarathy
et al., 1988; Prasanna, 2014) that resulted in significant food
shortages in the past (Fagan, 2009). Thus, while the major-
ity of monsoon forecast studies target the prediction of rain-
fall totals, the hydrological and agricultural impacts of mon-
soon variability provide the most pressing motivation for our
work.

Much of the research on South Asian monsoon predic-
tion has focused on the relationship between the El Niño–
Southern Oscillation (ENSO; Walker and Bliss, 1932) and
monsoon strength. During El Niño years, droughts are fa-
vored, while rainfall surpluses are favored during La Niña
years (Shukla and Paolino, 1983; Kripalani and Kulkarni,
1997). However, there is no one-to-one relationship between
ENSO and Indian rainfall. As a result, summer rainfall pre-
dictions based on ENSO have proven challenging. For ex-
ample, the 1997–1998 El Niño event was extremely strong,
yet climatological Indian monsoon conditions were observed
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(Shen and Kimoto, 1999; Slingo and Annamalai, 2000). It is
therefore important to understand why certain El Niño events
are not accompanied by monsoon failures.

There are a few reasons for the challenges faced when pre-
dicting Indian rainfall using ENSO. The first reason is that
the relationship between ENSO and India’s rainfall is nonsta-
tionary. As shown by Torrence and Webster (1999), the rela-
tionship between ENSO and India’s rainfall cycles between
periods of high and low coherence. Kumar et al. (1999)
found that the relationship between Indian rainfall and ENSO
weakened in the 1970s and hypothesized that a southward
shift in Walker circulation anomalies associated with ENSO
events and increased Eurasian spring and winter surface tem-
peratures were responsible for the weakening relationship.
Other works suggest that the changing ENSO–Indian rain-
fall relationship is the result of the modulating influence of
tropical Atlantic sea surface temperatures (SSTs) and the
Atlantic Multi-decadal Oscillation (AMO; Lu et al., 2006;
Kucharski et al., 2007, 2009; Chen et al., 2010). In con-
trast, Kumar et al. (2006) and Fan et al. (2017) argued that
the occurrence of different ENSO flavors (Johnson, 2013),
such as the eastern Pacific and central Pacific types, could ex-
plain the ENSO–Indian rainfall relationship changes. Other
investigators adopted another perspective to explain changes
in the ENSO–Indian rainfall relationship and concluded that
temporal undulations in the ENSO–Indian rainfall relation-
ship are related to statistical undersampling and stochastic
fluctuations (Gershunov et al., 2001; van Oldenborgh and
Burgers, 2005; Delsole and Shukla, Cash et al., 2017). In a
recent analysis, Yun and Timmermann (2018) showed that
changes in the ENSO–Indian rainfall relationship are consis-
tent with a stochastically perturbed ENSO signal and argued
that changes in the ENSO–Indian monsoon relationship may
not be related to external climate-forcing mechanisms.

The second reason for the ENSO-related prediction chal-
lenges is that ENSO itself is a nonstationary phenomenon.
Using wavelet analysis, Kestin et al. (1998) found that the in-
terannual variability of ENSO from 1930 to 1960 was dom-
inated by a 4- to 7-year periodicity, whereas from 1960 to
1990 the interannual variability was also dominated by a
2- to 5-year periodicity. A wavelet power spectral analy-
sis conducted by Torrence and Webster (1999) and Schulte
(2016a) showed that ENSO signal energy in the 2- to 7-year
band undulates throughout the historical period and increases
after the 1960s (Schulte, 2016a). These changes in spec-
tral characteristics are relevant to Indian monsoon prediction
because differing spectral characteristics among predictors
(e.g., ENSO) and predictands (e.g., Indian rainfall) can neg-
atively impact the predictive skill of statistical models (Jiang
et al., 2020). Using a wavelet-based variance transformation
method, Jiang et al. (2020) demonstrated that accounting for
differences in spectral characteristics can improve prognos-
tic skill. That study suggests that Indian monsoon prediction
could be improved by using wavelet-based methods instead
of time-domain correlation and regression methods.

The nonlinear characteristics (e.g., skewness) of ENSO
are also nonstationary and undergo interdecadal changes (Wu
and Hsieh, 2003). Numerous studies have reported an ENSO
regime shift in the 1970s in which ENSO began to evolve
more nonlinearly than in previous decades (An, 2004, 2009;
An and Jin, 2004). It is a curious fact that the ENSO regime
shift in the 1970s coincided with the weakening ENSO–
Indian rainfall relationship, as documented by Kumar et
al. (1999). This observation creates a question that begs to be
answered, namely whether nonlinear ENSO regime changes
are related to changes in the ENSO–Indian rainfall relation-
ship.

Various mechanisms have been proposed to explain the
cause of ENSO skewness. Kang and Kug (2002) suggested
that the asymmetry between the magnitude of El Niño and
La Niña events is related to the relative westward displace-
ment of zonal wind stress anomalies during La Niña events
compared to El Niño events. Jin et al. (2003) and An and Jin
(2004) found that ENSO asymmetry is related to nonlinear
dynamical heating (NDH), where the magnitude of NDH is
related to the propagation characteristics of ENSO. As shown
by An and Jin (2004), NDH during strong El Niño events like
the 1982–1983 and 1997–1998 events tends to be stronger
than during weak El Niño events because SST anomalies
tend to propagate eastward. Since the late 1970s there has
been a propensity for eastward propagation characteristics of
ENSO (Santoso et al., 2013), contrasting with the time pe-
riod before the 1970s that consisted of the relatively weak
El Niño events of 1957–1958 and 1972–1973 (An and Jin,
2004; An, 2009). More recently, Su et al. (2010) showed that
vertical temperature advection may have an opposing effect
on ENSO asymmetry, and that the asymmetry in the extreme
eastern equatorial Pacific is related to meridional ocean tem-
perature advection.

Previous investigators have used different metrics to quan-
tify ENSO asymmetry. To measure the nonlinear character of
ENSO, An and Jin (2004) used time-domain metrics, such as
skewness and maximum potential intensity (MPI), to quan-
tify the skewness of SST anomalies and the skewness of indi-
vidual ENSO events, respectively. An (2004) applied a prin-
cipal component analysis (PCA) to a 21-year moving win-
dow of tropical Pacific SST skewness and found that the
first PCA mode is characterized by positive skewness across
the eastern equatorial Pacific and negative skewness across
the central equatorial Pacific. This pattern means that in-
terdecadal changes in the nonlinearity of ENSO are associ-
ated with positively skewed SST anomalies across the eastern
equatorial Pacific, implying that El Niño events are stronger
than La Niña events. While the methods implemented in
the aforementioned studies provided important insights, they
cannot reveal the frequency modes of ENSO that are con-
tributing to the skewness.

Recognizing the limitations of time-domain approaches,
Timmermann (2003) conducted a bispectral analysis of the
Niño 3 anomaly time series, where a peak (f1; f2) in
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the bispectrum means there is statistical phase dependence
among oscillators with frequencies of f1 and f2 and f1+f2.
That bispectral analysis revealed statistically significant bis-
pectral power at several frequency pairs, including (0.038,
0.038), (0.028, 0.028), (0.0225, 0.0225), (0.0045, 0.032), and
(0.0045, 0.045) [months−1]. The peaks (0.0045, 0.032) and
(0.0045, 0.045) [months−1] were identified with the nonlin-
ear interactions among the 18- and 2-year variability. Al-
though the analysis provided new insights, the Fourier-based
analysis could not reveal how the nonlinear nature of ENSO
changed with time, which is an important property to capture
given how the nonlinear characteristics of ENSO are nonsta-
tionary (Santoso et al., 2013). Much like the cross-wavelet
power (Maraun and Kurths, 2004) and time-domain covari-
ance, bispectral power is not a bounded quantity, and so high
bispectral power does not always mean strong phase depen-
dence.

In this study, the deficiencies associated with the above-
mentioned techniques are addressed using higher-order
wavelet analysis, which allows for the quantification of
frequency-dependent and nonstationary nonlinearities in
time series (Van Milligen et al., 1995; Elsayed, 2006;
Schulte, 2016b). More specifically, the objectives of the pa-
per are the following: (1) to quantify the nonlinearity of
ENSO using higher-order wavelet analysis together with re-
cently developed statistical tests, (2) to determine if differ-
ent nonlinear modes of ENSO are associated with distinct
SST patterns, and (3) to develop nonlinear wavelet coher-
ence methods to test the hypothesis that the breakdown of
the ENSO–Indian rainfall relationship in recent decades is
related to the shift of ENSO from a linear regime to a non-
linear one. The paper is organized as follows: in Sect. 2, the
data used are described. Section 3 includes the description
of the implemented methodologies. Results are presented in
Sect. 4, and concluding remarks are provided in Sect. 5.

2 Data

The variability in India rainfall from 1871 to 2016 was ana-
lyzed using the all-India rainfall (AIR; Parthasarathy et al.,
1994) time series, which was created by averaging repre-
sentative rain gauges at various locations across India. The
full monsoon season (June–September) and the late mon-
soon (August–September) season were used to identify pos-
sible within-season variations in the ENSO–all-India rainfall
(ENSO–AIR) relationships. To remove the influence of the
annual cycle, AIR time series were converted into anomaly
time series by subtracting the 1871–2016 long-term mean for
each month from the individual monthly values. The AIR
anomaly (hereafter AIR) time series were subsequently stan-
dardized by dividing them by their 1871–2016 standard de-
viations. Because wavelet analysis focuses on specific fre-
quency components that are not impacted by long-term time-
domain trends, no detrending of the data was performed.

The monthly data for the Niño 1 and 2, Niño 3, Niño 3.4,
and Niño 4 indices (available at: https://www.psl.noaa.gov/
gcos_wgsp/Timeseries/, last access: 15 March 2019) from
1871 to 2016 were used to understand how the nonlinear
characteristics of SSTs varied from one ENSO region to an-
other. The Niño 1+2 index is the average SST in the region,
with latitudinal boundaries of 0◦ and 10◦ S and longitudinal
boundaries of 90 and 80◦W. The Niño 3 index is the aver-
age SST in the region, with latitudinal boundaries of 5◦ N
and 5◦ S and longitudinal boundaries of 150 and 90◦W. Vari-
ations in SSTs further west were described using the Niño
3.4 and Niño 4 indices, where the Niño 3.4 index is defined
as the average SST in the region bounded by 5◦ N and 5◦ S
and 170 and 120◦W. The Niño 4 index is defined as average
SSTs in the region bounded by 5◦ N and 5◦ S and 160◦ E and
150◦W. The seasonal cycle was removed from these time se-
ries in the same way as it was removed from the AIR time
series.

The monthly SST data from 1871 to 2016 were based on
the Hadley Centre Global Sea Ice and Sea Surface Tempera-
ture (HadISST1; Rayner et al., 2003). The data at each grid
point were converted to monthly anomalies in the same way
as they were computed for the ENSO and AIR time series.

3 Methods

3.1 Wavelet analysis

To better diagnose the changes in time series statistics asso-
ciated with AIR and ENSO, we adopted a wavelet analysis.
For a time series, X, comprising data points x1, x2, . . . , xN ,
the continuous wavelet transform is given by the following:

Wn (s)=

√
δt

s

∑N

n′=1xn′ψ0

[(
n′− n

) δt
s

]
, (1)

where s is the wavelet scale, ψ0 is an analyzing wavelet, δt
is a time step (1 month in this study), and n is time. The
sample wavelet power spectrum |Wn (s)|

2 measured the en-
ergy content of a signal at time n and scale s. The commonly
used Morlet wavelet, with angular frequencyω = 6, was used
throughout this paper because it balances time and frequency
localization, and because it is commonly used in hydrolog-
ical and climate studies (Schaefli et al., 2007; Zhang et al.,
2007; Holman et al., 2011; Carey et al., 2013). The readers
are referred to Torrence and Compo (1998) and Grinsted et
al. (2004) for more details about wavelet analysis.

Linear wavelet coherence (Table 1) was used to quantify
the linear relationship between two time series as a function
of frequency and time. The linear wavelet coherence between
two time series X and Y is given by the following:

R2
n(s)=

∣∣Ss−1WXY
n (s)

∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2)S (s−1
∣∣WY

n (s)
∣∣2) , (2)
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where S is a smoothing operator (Grinsted et al., 2004)
and WXY

n (s) is the cross-wavelet power spectrum. Two time
series are perfectly coherent (R2

n(s)= 1) at s if φXn (s)−
φYn (s)= c over a sufficiently long time interval, where c is a
constant, φXn (s) is the phase associated with X, and φYn (s) is
the wavelet phase associated with Y .

In the context of the Indian monsoon, strong coherence be-
tween rainfall and a climate pattern (e.g., ENSO) at a scale
s indicates shared temporal characteristics between a climate
pattern and rainfall. Because the theory supports a causal link
between ENSO and monsoon variability through changes
in the Walker circulation (Ropelewski and Halpert, 1987),
strong coherence means that when ENSO is in a warm (cool)
phase at the scale s, negative (positive) rainfall anomalies are
preferred. Thus, a periodic climate forcing could create peri-
odicities in an otherwise noisy rainfall time series.

3.2 Higher-order wavelet analysis

Although the wavelet power spectrum is useful for quantify-
ing the signal energy at a scale s and time n, it cannot de-
termine if there is a nonlinear relationship among different
frequency components. In fact, the power spectrum can only
fully describe time series in frequency space in the case of
linear systems in which the output is proportional to the in-
put (King, 1996). As ENSO is nonlinear, we adopted higher-
order wavelet methods to address the deficiencies in tradi-
tional wavelet methods. The type of nonlinearities consid-
ered in this study were quadratic nonlinearities in which the
scales s1, s2, and s3 satisfied the sum rule as follows:

1
s3
=

1
s1
+

1
s2
, (3)

and the wavelet phases satisfied the following:

φn (s3)= φn (s1)+φn (s2) . (4)

These types of nonlinearities arise, for example, when a sinu-
soid is squared, in which case a harmonic is produced. More
generally, quadratic nonlinearities induce time series skew-
ness, which was computed in this study using the following:

skewness=
1
N

∑N
i=1(xi − x̄)

3

SD
, (5)

where SD in the standard deviation of the time series, and x̄
is the mean of the time series. Positive (negative) skewness
meant that the right (left) tail of the time series distribution is
longer than the left (right). In other words, positive (negative)
skewness meant that there was a tendency for positive (neg-
ative) time series events (i.e., anomalies) to be more intense
than negative (positive) ones.

In this paper, quadratic nonlinearities giving rise to time
series skewness were quantified using local and global
wavelet-based auto-bicoherence methods (Schulte, 2016b).
Global auto-bicoherence (Table 1) was computed as follows:

biXglobal (s1, s2)=∣∣∣BXglobal (s1, s2)

∣∣∣2(∑N
n=1

∣∣WX
n (s1)W

X
n (s2)

∣∣2)(∑N
n=1

∣∣WX
n (s3)

∣∣2) , (6)

where

BXglobal (s1, s2)=
∑N

n=1
ŴX
n (s3)W

X
n (s1)W

X
n (s2) (7)

is the global bispectrum, and the hat denotes the complex
conjugate. Identical to wavelet coherence, auto-bicoherence
is bounded by 0 and 1, with a value of 1 indicating the
strongest possible phase coupling among the phases φn (s3),
φn (s2), and φn (s1), such that sum rules of Eqs. (3–4) are sat-
isfied. A peak in the auto-coherence spectrum at (s1, s2) in-
dicated that there was quadratic-phase coupling among oscil-
latory modes that was contributing to time series skewness. It
is important to note that the auto-bicoherence method cannot
detect other types of nonlinearities such as cubic nonlinear-
ities, whose detection would require trispectra (Collis et al.,
1998).

To determine if the strength of the quadratic-phase cou-
pling was a function of time, the local auto-bicoherence spec-
trum (Schulte, 2016b) given by the following:

biXn (s1, s1)= ∣∣∣Ss−1
1 BXn (s1, s1)

∣∣∣2
S
(
s−1

1

∣∣WX
n (s1)W

X
n (s1)

∣∣2)S (s−1
1

∣∣WX
n (

s1
2 )
∣∣2) (8)

was computed, where BXn (s1, s1) is the local bispectrum,
given as follows:

BXn (s1, s1)= Ŵ
X
n (s3)W

X
n (s1)W

X
n (s1) (9)

and s3 = s1/2. In this special case, the local auto-bicoherence
spectrum revealed the time evolution of the auto-bicoherence
estimates located along the diagonal slices of the global auto-
bicoherence spectra. Local biphase is as follows:

ψn(s1, s1)= φn (s1)+φn (s1)−φn (s3) (10)

and was used to measure the skewness and asymmetries
of waveforms. A biphase of 0◦ meant that the relationship
among the scale components produced positive skewness
with respect to a horizonal axis so that positive deviations
from the mean are larger than negative deviations from the
mean (King, 1996; Maccarone, 2013; Schulte, 2016b). On
the other hand, a biphase of 180◦ indicated negative skew-
ness with respect to the mean. Biphases near −90◦ or 90◦

indicated that a time series rose (fell) more quickly than it
fell (rose).
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Table 1. Wavelet quantities and the relationships they measure.

Wavelet quantity Quantified relationship

Linear coherence Cross-correlation between the variance of two time series at a Fourier period
Global auto-bicoherence Time-averaged, quadratic-phase coupling among two or three linear modes
Local auto-bicoherence Quadratic-phase coupling among two or three linear modes at a time point
Nonlinear coherence Cross-correlation between the skewness of nonlinear modes

To be consistent with the wavelet power and coherence
analyses, results for the higher-order wavelet analysis were
casted in terms of the Fourier period rather than wavelet
scale. The Fourier period corresponding to si was denoted
by pi , where the Fourier period is obtained by multiplying si
by 1.03 for the Morlet wavelet (Torrence and Compo, 1998).
Thus, the local diagonal slice of the auto-bicoherence spectra
were plotted using the Fourier period p1 corresponding to s1
as the vertical axis and time as the horizonal axis.

3.3 Statistical hypothesis testing

The statistical significance of all wavelet spectra was eval-
uated using the cumulative area-wise test (Schulte, 2016a,
2019a) to account for the simultaneous testing of multiple
hypotheses (Maraun and Kurths, 2004; Maraun et al., 2007).
This test evaluated the statistical significance of points in
the wavelet domain based on the area of contiguous regions
of point-wise significance (i.e., patches) to which they be-
long, so a larger area implies a greater statistical signifi-
cance. Given that the patch area can change as the point-
wise significance changes, the cumulative area-wise test was
used to evaluate significance based on the patch area aver-
aged across a set of point-wise significance levels (Schulte,
2019a). The test was applied at the 5 % cumulative area-
wise significance level, using point-wise significance lev-
els ranging from 0.02 to 0.18, because this choice of point-
wise significance levels was shown to result in the cumu-
lative area-wise test outperforming the point-wise test in
terms of true positive detection for moderate to high signal-
to-noise ratios, even though the cumulative area-wise test
is more stringent. The test was performed using the Ad-
vanced Biwavelet Wavelet R software package (available at:
http://justinschulte.com/wavelets/advbiwavelet.html, last ac-
cess: 20 July 2020). Technical details of the testing procedure
can be found in Schulte (2019a) and Appendix A.

To assess the statistical significance of the global auto-
bicoherence estimates, a modified version of the cumulative
area-wise test was applied. In the modified version of the cu-
mulative area-wise test, the normalized area of patches was
computed by dividing the patch area by the product ŝ1ŝ2,
where ŝ1 is the mean first coordinate of the patch, and ŝ2
is the mean second coordinate. The reason for this modi-
fied normalized area is that dividing area by, say, ŝ12 re-
tained the correlation between the normalized area and s2.
The test was applied using the same point-wise significance

levels that were used to assess the statistical significance of
wavelet power and coherence.

3.4 Higher-order coherence

Although wavelet coherence spectra can provide information
regarding how the relationship between two climate variables
changes at a scale s, it cannot completely explain why the
time-domain correlation between the climate variables tem-
porally fluctuates. The reason is that linear wavelet coher-
ence only examines how well the variance of one time series
corresponds to the variance of another at a scale s (Table 1)
because linear coherence is determined by the wavelet power
spectra of the time series. However, for two time series to be
perfectly correlated in the time domain, higher skewness of
one time series must also correspond to higher skewness of
the other time series.

Recognizing the skewness associated with two time series
was correlated in frequency space using the following:

Bi2n(s1, s2)= ∣∣∣Ss−1
smoothB

XY
n (s1, s2)

∣∣∣2
S
(
s−1

smooth

∣∣BXn (s1, s2)∣∣2)S (s−1
smooth

∣∣BYn (s1, s2)∣∣2) , (11)

which was referred to as third-order coherence (nonlinear co-
herence, hereafter; the readers are referred to Appendix B
for a more general definition of higher-order coherence). In
Eq. (11), ssmooth is one of the three scales, and BXY

n (s1, s2)

is the third-order cross-wavelet power spectrum, which is the
product of the bispectrum of X and the conjugate of the bis-
pectrum of Y , the higher-order analog of the cross-wavelet
power spectrum. The word cross-bispectrum was not used to
avoid confusion with cross-bicoherence analysis (Van Milli-
gen,1995). Like wavelet coherence, the nonlinear coherence
is bounded by 0 and 1, with a value of 1 indicating that the
bispectra of X and Y at (s1, s2) are perfectly and linearly
correlated. The statistical significance of nonlinear coherence
was assessed using the cumulative area-wise test in the same
way as it was used to assess the statistical significance of lin-
ear wavelet coherence.

Higher-order wavelet analysis can also be interpreted in
terms of linear and nonlinear modes. A linear mode γXsi is
the signal component of X at the scale si obtained by set-
ting all wavelet coefficients to zero, except those at si , and
taking the inverse wavelet transform of the result. Because
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linear modes are only composed of a single frequency com-
ponent, the local cross-correlation (coherence) between γXsi
and γ Ysi is only impacted by the variances in X and Y at si .
On the other hand, nonlinear coherence measures the local
cross-correlation between the skewness of γXs1 +γ

X
s2
+γXs3 and

γ Ys1 + γ
Y
s2
+ γ Ys3 or between γXs1 + γ

X
s1/2

and γ Ys1 + γ
Y
s1/2

in the
case that s1 = s2.

To better understand nonlinear coherence, we supposed
that, in the following:

φXn (s1)−φ
Y
n (s1)= c1 (12)

φXn (s2)−φ
Y
n (s2)= c2 (13)

φXn (s3)−φ
Y
n (s3)= c3 (14)

was applied for constants c1, c2, and c3. Adding Eqs. (12)
and (13) and subtracting Eq. (14) from the result produced
the equality, as follows:

φXn (s1)+φ
X
n (s2)−φ

X
n (s3)− (φ

Y
n (s1)+φ

Y
n (s2)

−φYn (s3))= ψ
X
n (s1, s2)− ψ

Y
n (s1, s2)=

ψbi
n (s1, s2)=K, (15)

for some constant K= c1+ c2− c3. Thus, if X was found to
be perfectly nonlinearly coherent with Y,then Xand Ywere
perfectly coherent at the three scales participating in the
quadratic-phase coupling. Even if the coherence was per-
fect at two scales, the relative biphase ψbi

n (s1, s2) fluctuated
randomly if the relative phase difference at the remaining
scale fluctuated randomly, so the nonlinear coherence was
low. Thus, if nonlinear coherence was high, then there was
some nonrandom relationship between X and Y at all three
scales, even if high linear coherence was not identified at one
or more scales. This theoretical idea indicates that nonlin-
ear coherence can uncover relationships that linear coherence
cannot (see Fig. S1 in the Supplement).

The relative biphase difference ψbi
n (s1, s2) is the higher-

order analog of the relative phase difference between two
time series. It measures how much the cycle geometry of one
time series lags that of another. A lagged biphase of 180◦

means that the skewness or asymmetry of the forcing time
series is opposite to that of the response. For example, if the
forcing has positive skewness, then the response will have
negative skewness. If the relative biphase is 0◦, then a neg-
ative (positive) skewness of the forcing produces a negative
(positive) skewness of the response, contributing to the posi-
tive time-domain correlation between the time series. Scales
and time points for which nonlinear coherence is high are
where the relative biphase is stable.

In this paper, we focused on nonlinear coherence com-
puted along the diagonal slices (p1 = p2) of the time series
bispectra so that ssmooth = s1 = s2 in this study. The nonlin-
ear coherence spectra were then plotted using p1 as the ver-
tical axis and time as the horizonal axis. High nonlinear co-
herence at p1 and n meant that the skewness or asymme-

try between γXp1
+ γXp1/2

and γ Yp1
+ γ Yp1/2

were locally cross-
correlated.

To demonstrate the concept of nonlinear coherence, we
considered a simple example in which the nonlinear climate
forcing time series was given by the following:

F(t)= cos
(

2π
p1
t +ϕ

)
+ γ (t)cos

(
2π
p3
t + 2ϕ

)
+WF(t), (16)

and the response to the forcing was given as follows:

R(t)= cos
(

2π
p1
t +ϕ

)
+WR(t). (17)

In Eqs. (16) and (17), γ (t) is a time-varying nonlinear co-
efficient, WF(t) is Gaussian white noise associated with the
forcing, WR(t) is Gaussian white noise associated with the
response, ϕ = 0 is phase, and p1 = 2p3 = 32. The nonlinear
coefficient was assumed to be a linear function of time, as
follows:

γ (t)= t/500. (18)

The effect of the coefficient was to linearly increase the vari-
ance of F(t) at p3 = 16 and increase the strength of the
quadratic-phase coupling between the modes with periods
p3 = p1/2= 16 and p1 = 32.

As shown in Fig. 1a, F(t) (black curve) and R(t) (thick
green curve) evolve coherently from t = 0 to t = 200. Af-
ter t = 200, F(t) begins to noticeably exceed R(t) at cer-
tain time points (e.g., t = 430), while the relationship be-
tween them at other points is reversed (e.g., t = 450) in the
sense that a positive forcing produces a negative response.
As a result, the correlation between F(t) and R(t) weak-
ens (Fig. 1b). An inspection of the wavelet coherence spec-
trum (Fig. 2a) reveals that the coherence at p1 = 32 is strong
and stable, so changes in the relationship strength at that
timescale are not the cause of the weakening time-domain
correlation. The coherence at all other periods is also sta-
tionary by construction, so it is not the changing relationship
strength at any timescale that is causing the time-domain cor-
relation weakening. However, the variance of F(t) at p3 =

16 increases with time (not shown), and the coherence be-
tween F(t) and R(t) is also weak at that timescale, implying
that larger fluctuations in F(t) at p3 = 16 are not accompa-
nied by larger fluctuations in R(t). Thus, a variance increase
of F(t) is one reason for the weakening time-domain correla-
tion, though the linear coherence and wavelet power methods
cannot explain why the skewness of F(t) increases without
a corresponding increase in the skewness of R(t) (Fig. 1c).

An inspection of the local auto-bicoherence spectrum of
F(t) (Fig. 2b) reveals that the auto-bicoherence at p1 = 32 is
increasing with time, indicating that the phase coupling be-
tween modes with periods p3 = 16 and p1 = 32 is strength-
ening with time. The biphase of 0◦, as indicated by arrows
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Figure 1. (a) An idealized nonlinear forcing time series, together
with an idealized response R(t). The 120 point sliding correlation
between F(t) and R(t). (c) The 120 point sliding skewness of F(t)
and R(t).

pointing to the right, confirms that the quadratic-phase cou-
pling is contributing to the positive skewness, seen in Fig. 1a,
to an increasing degree. Furthermore, the nonlinear coher-
ence between R(t) and F(t) is weak and mostly statistically
insignificant at p3 = 32 (Fig. 2c), implying the skewness of
γ F

16+ γ
F
32 is uncorrelated with the skewness of γ R

16+ γ
R
32,

where γ F
16+ γ

F
32 is the sum of the cosines in Eq. (16) and

the components of WF(t) at p3 = 16 and p1 = 32. The non-
linear mode γ R

16+ γ
R
32 is the sum of the cosine in Eq. (17)

and the components ofWR(t) at p3 = 16 and p1 = 32. Thus,
the skewness of R(t) in the time domain is practically un-
correlated with the skewness of F(t) because the skewness
of F(t) is solely related to the phase coupling between the
modes with periods p3 = 16 and p1 = 32. Thus, the increase
in the skewness of F(t) also contributes to the weakening
time-domain correlation.

The lack of nonlinear coherence at timescales for which
F(t) is nonlinear has implications for empirical prediction.
At time points where F(t) is positively skewed, R(t) is over-
estimated because R(t) is not inheriting the skewness of
F(t). That is, if one created a linear regression model based
on the relationship between F(t) and R(t) from t = 0 to
t = 200, one would find that a forcing value of, say, 1 would
produce a response close to 1. If the same model was used to

Figure 2. (a) Wavelet coherence between the time series of F(t) and
R(t) as shown in Fig. 1. Arrows indicate the relative phase differ-
ence, where arrows pointing to the right mean that the time series
are in phase. (b) The local diagonal slice of the auto-bicoherence
spectrum of F(t). Arrows represent the biphase, where arrows
pointing to the right mean that the quadratic-phase coupling be-
tween the mode with period indicated on the vertical axis and its
harmonic contributes to positive skewness. (c) Nonlinear coherence
between F(t) and R(t). Contours in all panels enclose regions of
5 % cumulative area-wise significance. The shaded region repre-
sents the cone of influence where edge effects may be important.

predict R(t) at, say, t = 430, one would predict that the forc-
ing with a value of around 2 should result in a response near
2. However, because the relatively large value F (430) results
from skewness, and R(t) is uncorrelated with its skewness,
the response is only as strong as the part of F(t) not resulting
from the quadratic-phase coupling. The more nonlinear F(t)
becomes, the more F(t) will overestimate R(t) when F(t)
is positively skewed. Similarly, the positive forcing produces
a negative response at t = 450 because of skewness and not
simply because of a change in variance. Nonlinear coherence
allows for the quantification and identification of these time-
domain aberrations.

The weakening relationship shown in Fig. 1b could lead a
researcher studying a hydrological process to believe that an-
other direct-forcing mechanism must be influencing the hy-
drological process. This belief could lead to the application
of partial wavelet coherence (Ng and Chan, 2012) and par-
tial correlation analyses to identify another influential forc-
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Figure 3. The time series of the (a) Niño 1+ 2 and (b) Niño 4
indices.

ing mechanism. However, in this case, there are no other
direct-forcing mechanisms; the weakening time-domain re-
lationship is solely related to how F(t) transitioned from a
linear regime to a nonlinear regime. This theoretical result
suggests that hydrological studies using wavelet coherence
should also consider the nonlinearity of the times series.

4 Results

4.1 The ENSO and Indian monsoon time series and
their time-domain relationship

The contrasting Niño 1+ 2 and Niño 4 indices are shown
in Fig. 3. For the Niño 1+ 2 time series (Fig. 3a), a few
recent and notably intense warm events are located around
1982–1983, 1997–1998, and 2015–2016, coinciding with the
strongest El Niño events in recent decades (McPhaden, 1999;
Hu and Fedorov, 2017; Santoso et al, 2017). A few notably
intense Niño 1+ 2 events are also seen in the 1800s, indi-
cating that intense ENSO events are not unique to recent
decades. An inspection of Fig. 3a also reveals that the recent
intense warm Niño 1+ 2 events are also skewed in the sense
that they are stronger than the surrounding cool Niño 1+ 2
events. Unlike the 1982–1983 and 1997–1998 Niño 1+ 2
events, the 1982–1983 and 1997–1998 warm events for the
Niño 4 time series are unremarkable (Fig. 3b). Furthermore,
cool Niño 4 events are preferentially stronger than warm
events after the 1960s, suggesting an intensification of the
negative skewness.

The 20-year sliding skewness time series of the Niño 1+2
index (Fig. 4) reveals enhanced skewness during the 1800s,

Figure 4. The 20-year sliding skewness of (a) June–September and
(b) August–September all-India rainfall (AIR) and full time series
for the Niño 1+ 2 and Niño 4 indices.

near-zero skewness around the 1930s and early 1940s, and
especially enhanced skewness after the 1970s associated with
an upward trend in skewness beginning around the 1940s. In
contrast to the Niño 1+ 2 index, the skewness of the Niño 4
index becomes more negative after the 1960s, and the mag-
nitude of the skewness is generally smaller than that of the
Niño 1+ 2 time series. This finding suggests that the tran-
sition of the Niño 1+ 2 time series to a nonlinear regime is
more pronounced than the transition associated with the Niño
4 time series.

Interestingly, a 20-year sliding skewness analysis of AIR
(Fig. 4) reveals that the skewness of June–September AIR re-
mains close to zero until the 1990s, despite the upward trend
in Niño 1+2 skewness beginning in the 1940s (Fig. 4a). Sim-
ilarly, the skewness of August–September AIR does not in-
crease to the extent that Niño 1+ 2 skewness does (Fig. 4b).
On the other hand, the skewness of August–September AIR
could be negatively correlated with the skewness of the Niño
4 index after the 1960s, consistent with how the August–
September AIR and the Niño 4 index are negatively corre-
lated. The skewness of June–September AIR becomes more
negative in the 1990s and 2000s, but it is unclear if that neg-
ative skewness is related to ENSO, noise, or another climate
pattern because the skewness of the Niño 1+ 2 and Niño 4
indices do not change as abruptly. Negative June–September
AIR skewness is accompanied by enhanced positive skew-
ness of the Niño 1+ 2 index prior to the 1940s, which is
consistent with how June–September AIR is negatively cor-
related with the Niño 1+ 2 index during that time period
(Fig. 5a).

Hydrol. Earth Syst. Sci., 24, 5473–5489, 2020 https://doi.org/10.5194/hess-24-5473-2020



J. Schulte et al.: A skewed perspective of the Indian rainfall–ENSO relationship 5481

Figure 5. The 20-year sliding correlation between anomalies for
June–September AIR, and the time series for the June–September
Niño 1 and 2 and Niño 4 indices. (b) Same as (a) but for the August–
September season.

The differences in skewness shown in Fig. 4 suggests
that the correlation between the ENSO time series and AIR
degrades after the 1970s, which is confirmed by the 20-
year sliding correlation between the June–September AIR
and ENSO time series (Fig. 5a). The relationship with the
Niño 1+ 2 generally weakens from the 1800s to the 2000s.
In contrast, the June–September AIR–Niño 4 index relation-
ship appears to have no long-term trend, resulting in the Niño
4 index becoming more strongly correlated with AIR than the
Niño 1+ 2 index after the 1970s.

The stronger AIR–Niño 4 index relationship compared to
the AIR–Niño 1+ 2 index relationship after the 1970s is
more evident in the August–September analysis (Fig. 5b). An
abrupt weakening of the August–September AIR–Niño 1+2
index relationship occurs around the 1970s, with the relation-
ship reversing around the 1990s. A comparison of Figs. 4b
and 5b reveals that the weakening and reversal of the rela-
tionship occurs during the time period when the Niño 1+ 2
index is especially skewed. The difference in the magnitudes
of Niño 1+2 and Niño 4 skewness after the 1970s could ex-
plain why the August–September AIR–Niño 1+2 index rela-
tionship weakens more abruptly than the AIR–Niño 4 index
relationship. Thus, a further investigation is needed to better
understand the temporal changes in ENSO statistics and their
impact on the ENSO–AIR relationship.

4.2 Wavelet power analysis and coherence

The wavelet power spectra associated with the Niño 1+2 and
Niño 4 time series (Fig. 6) reveal enhanced variance in the
16 to 64 month band after 1965 for all the time series. The
appearance of holes in the contoured regions suggests that

Figure 6. Wavelet power spectrum of the (a) Niño 1 and 2 and
(d) Niño 4 indices. Contours enclose regions of 5 % cumulative
area-wise significance. The shaded region represents the cone of
influence, which is the region where edge effects are nonnegligible.

there are oscillatory modes with nearby frequencies (Schulte,
et al., 2015), though the wavelet power spectra cannot deter-
mine if there is quadratic-phase coupling between the oscil-
latory modes.

The linear wavelet coherence spectrum, shown in Fig. 7,
indicates that the AIR relationship with the Niño 1+ 2 and
Niño 4 indices in the 16 to 64 month band breaks down
after 1995, which is consistent with the findings from the
sliding correlation analysis shown in Fig. 5. The relation-
ship between AIR and these ENSO indices also weakens
around 1925, but this weakening does not appear in the slid-
ing correlation analysis. Note that the lack of linear coher-
ence after 1995 coincides with the enhanced ENSO variance
(Fig. 6), implying that higher ENSO variance need not be
associated with higher AIR variance at those timescales, so
changes in ENSO variance could be contributing to the weak-
ening ENSO–AIR time-domain correlation. However, ENSO
skewness is also enhanced during this time period (Fig. 4),
so the weakening relationships may not simply be related to
ENSO variance. Thus, further analysis is needed to extract
information unrevealed by the linear wavelet power and co-
herence methods.

4.3 Local auto-bicoherence of ENSO

Figure 8 shows that the local auto-bicoherence spectra of
all ENSO time series contain statistically significant local
auto-bicoherence, but the spectrum of the Niño 4 index is
only associated with a few statistically significant regions,
such as the one around 2015 at a period of 32 months.
For the Niño 1+ 2 index, there is an intensification in the
auto-bicoherence spectrum after the 1970s, which is consis-
tent with the ENSO regime shift (Santoso et al., 2013). A
comparison of Figs. 4 and 8 reveals that enhanced skew-
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Figure 7. Wavelet coherence spectrum between AIR and time series
for the (a) Niño 1 and 2 and (b) Niño 4 indices. Contours enclose re-
gions of 5 % cumulative area-wise significance. The shaded region
represents the cone of influence, which is the region where edge
effects are nonnegligible.

Figure 8. Local auto-bicoherence spectra of the (a) Niño 1 and 2
and (b) Niño 4 indices. Contours enclose regions of 5 % cumula-
tive area-wise significance, and the shading represents the cone of
influence.

ness coincides with stronger auto-bicoherence on the 32 to
64 month timescale, suggesting that the skewness partially
arises from the stronger quadratic-phase coupling among os-
cillatory modes with periods ranging from 32 to 64 months.

To confirm that the nonlinear-phase coupling identified in
Fig. 8 is associated with skewed waveforms, we inspected
the corresponding local biphase spectra (not shown). It was
found that the biphase in the 42 to 64 month band is generally
0◦, so the nonlinear-phase coupling in that band contributes
to the positive skewness of the 1982–1983, 1997–1998, and
2015–2016 events.

Figure 9. Nonlinear wavelet coherence between the full AIR time
series and full times series for the (a) Niño 1 and 2 and (b) Niño
4 indices. Contours enclose regions of 5 % cumulative area-wise
significance, and the shading represents the cone of influence.

4.4 Nonlinear coherence between all-India rainfall and
ENSO

The results shown in Fig. 9 indicate that the nonlinear
wavelet coherence between AIR and the time series for the
Niño 1+ 2 and Niño 4 indices is statistically significant in
the 32 to 64 month band, mainly prior to the 1980s. The
nonlinear coherence in this band appears to peak around the
1972–1973 El Niño event, indicating that an increase in the
positive skewness of ENSO should tend to coincide with the
enhanced negative skewness of AIR around this time. How-
ever, much of the statistically nonlinear coherence is located
during the time period when ENSO is more linear than it has
been in recent decades (Fig. 8), so the effects of the nonlin-
earities are small regardless of the nonlinear wavelet coher-
ence. In contrast, the auto-bicoherence of the Niño 1+2 time
series in the 32 to 64 month band is statistically significant
and high after the 1970s (Fig. 8), so the lack of nonlinear
coherence after the 1980s, shown in Fig. 9, is expected to
impact the time-domain correlation more strongly, much like
the theoretical situation shown in Figs. 1 and 2. Our results
are consistent with this theoretical idea because the AIR–
Niño 1+ 2 relationship weakens more than the AIR–Niño
4 relationship after the 1970s (Fig. 5), which is expected be-
cause the Niño 1+2 index is more nonlinear than the Niño 4
index during this time period. However, unlike the theoretical
example shown in Fig. 2, the linear coherence between the
ENSO time series and AIR also weakens around the 1990s
(Fig. 7), so the weakening relationship could be the result of
a combination of factors that includes ENSO nonlinearity.

The 20-year sliding mean of the ENSO auto-bicoherence,
coherence, and nonlinear coherence averaged in the 32 to
64 month band further highlights the impact of ENSO non-
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linearity. As shown in Fig. 10a, the sliding mean nonlin-
ear coherence between the Niño 1+ 2 index and AIR fluc-
tuates less than the linear coherence and reaches a clear
global maximum around the 1970s before rapidly declin-
ing to a global minimum around the late 1990s when the
Niño 1+ 2 index is very nonlinear. As shown in Fig. 10a,
the Niño 1+2 auto-bicoherence peaks around the same time
that the August–September AIR–Niño 1+ 2 index correla-
tion is positive. In fact, the correlation between the sliding
September–August AIR–Niño 1+ 2 correlation time series
and the sliding Niño 1+ 2 auto-bicoherence time series is
0.81, much higher than the correlation with the linear co-
herence (r =−0.11) and nonlinear coherence (r =−0.34)
time series. These results support the idea that the Niño 1+2
regime shift impacted the weakening time-domain correla-
tion. On the other hand, the correlation between the Niño
4 auto-bicoherence and the August–September AIR–Niño 4
correlation time series is weak, so changes in the nonlinear-
ity of the Niño 4 index are unlikely to contribute substan-
tially to changes in the AIR–Niño 4 relationship. Neverthe-
less, this result agrees with theory that suggests that nonlin-
earity is only an important contributor when the time series
is highly nonlinear, which is not the case for the Niño 4 in-
dex because of the low auto-bicoherence (Figs. 8b and 10b).
Because the nonlinear coherence between AIR and indices
for the Niño 1+ 2 and Niño 4 is weak (Figs. 9 and 10),
the more pronounced change in the August–September AIR–
Niño 1+ 2 correlation reflects the more intense increase in
Niño 1+2 nonlinearity compared to that of the Niño 4 index
in recent decades.

4.5 A possible explanation for the ENSO nonlinearity
impacts

To better understand the association between ENSO non-
linearity and the AIR–ENSO relationship, the global auto-
bicoherence spectra associated with the ENSO time series
were first computed (Fig. 11). Then, the auto-bicoherence
of SSTs associated with a few select peaks (p1 and p2) in
Fig. 11 were computed at each grid point in the domain
bounded by 20◦ N and 20◦ S and by 146◦ E and 80◦W. The
peaks were selected based on the auto-bicoherence spectra
of the Niño 3.4 and Niño 1+ 2 indices. To select the peaks,
local maxima in the auto-bicoherence within the statistically
significance regions shown in Fig. 11 were identified, where
points associated with local maxima were chosen because
they were associated with the clearest patterns.

The spatial structure of global auto-bicoherence corre-
sponding to the peaks in the Niño 3.4 auto-bicoherence spec-
trum are shown in Fig. 12. The auto-bicoherence associated
with the pair (31, 31) is greatest across the central equatorial
Pacific, with the overall spatial pattern being reminiscent of
a central Pacific El Niño (Lee and McPhaden, 2010). This re-
sult suggests that the phase coupling between the 31 month
mode and the 15.5 month mode could be related to the occur-

Figure 10. (a) The 20-year sliding mean time series of the linear
wavelet coherence between AIR and the Niño 1 and 2 index, the
auto-bicoherence of the Niño 1 and 2 index, and the nonlinear co-
herence between the Niño 1 and 2 index and AIR after they have
been averaged in the band of 16 to 64 months. The red curve is the
20-year sliding correlation between the August–September Niño 1
and 2 index and AIR. (b) The same as (a) but for the Niño 4 in-
dex. The blue curve is the 20-year sliding correlation between the
August–September Niño 4 index and AIR.

Figure 11. Global auto-bicoherence spectra of the (a) Niño 1 and 2,
(b) Niño 3, (c) Niño 3.4, and (d) Niño 4 indices. Contours enclose
regions of 5 % cumulative area-wise significance.
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Figure 12. (a, b, c) Global auto-bicoherence corresponding to the
monthly pairs, namely (31, 31), (56, 56), and (105, 47), respectively.

rence of central Pacific El Niño events (Sect. 5). In contrast,
the auto-bicoherence pattern associated with the pair (56,
56) is more uniform, with auto-bicoherence slightly greater
across the extreme eastern equatorial Pacific than the central
equatorial Pacific. This pattern is reminiscent of an eastern
Pacific El Niño. Like the pattern corresponding to the pair
(31, 31), the auto-bicoherence for the pair (105, 57) tends to
be greater across the central equatorial Pacific. Our findings
suggest that different nonlinear modes contribute to differ-
ent ENSO flavors. Although An and Jin (2004) and Burgers
and Stephenson (1999) showed that the skewness is great-
est across the eastern equatorial Pacific, we determined that
such a time-domain approach is unable to capture frequency-
dependent patterns in nonlinearity.

The spatial auto-bicoherence plots associated with the
peaks in the Niño 1+2 auto-bicoherence spectrum are shown
in Fig. 13. The auto-bicoherence associated with the pairs
(148, 53) and (148, 105) is strong across the eastern equa-
torial Pacific but weak across the central equatorial Pa-
cific, suggesting that the quadratic-phase coupling between
the 148 and 105 month modes and between the 148 and
53 month modes is associated with the skewness of east-
ern equatorial Pacific SSTs. The pattern associated with the
pair (62, 44) is reminiscent of an eastern Pacific El Niño,
and the auto-bicoherence associated with the pair (88, 88) is

Figure 13. (a, b, c, d) Global auto-bicoherence corresponding to
the monthly pairs, namely (158, 43), (148, 105), (62, 44), and (88,
88), respectively.

relatively weak across the entire equatorial Pacific. A com-
parison of Figs. 12 and 13 shows that there is a tendency for
auto-bicoherence to be greater across the eastern equatorial
Pacific than the central equatorial Pacific, which is consistent
with how SSTs across the eastern equatorial Pacific are most
skewed (Burgers and Stephenson, 1999; An and Jin, 2004).

5 Discussion and conclusion

The nonlinear nature of ENSO was examined using higher-
order wavelet methods. The auto-bicoherence spectra of the
Niño 1+ 2 and Niño 4 indices time series revealed that
ENSO skewness arose from the quadratic-phase coupling
of modes with various periods. For the Niño 1+ 2 index,
the quadratic-phase coupling after the 1970s was especially
strong, which is consistent with how ENSO underwent a
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regime shift around the 1970s (Santoso et al., 2013) that
was marked by an increase in ENSO skewness. Although the
Niño 3.4 time series was not considered in detail in this study,
an auto-bicoherence analysis of the time series (not shown)
revealed phase coupling between modes with periods of 31
and 15.5 months in addition to coupling between modes with
periods of 61 and 30.5 months. The phase coupling between
the 31 and 15.5 modes was found to be especially strong af-
ter 1995, whereas the quadratic-phase coupling between the
61 and 30.5 month modes was found to intensify after the
1970s. These additional results suggest that nonlinear modes
vary in intensity and time of occurrence.

The evolution of SSTs across the Niño 4, Niño 3.4, Niño
3, and Niño 1+ 2 regions was found to be nonlinear, but
the degree to which the time series are nonlinear is different
(Fig. 11). Overall, the Niño 1+2 time series were found to be
the most nonlinear, while the Niño 4 index was found to be
the most linear. The spatial patterns associated with the non-
linearities depend on the frequency components contribut-
ing to the nonlinearities. For example, the quadratic-phase
coupling between the modes with periods of 31 and 15.5
months was found to be the strongest in the central equa-
torial Pacific and weakest across the eastern equatorial Pa-
cific. This finding suggests that the more frequent occurrence
of central Pacific El Niño events in recent decades (Lee and
McPhaden, 2010) could be linked to the strengthening of this
quadratic-phase coupling, which could explain the relation-
ship between ENSO nonlinearity and changes in the ENSO–
AIR relationship because central Pacific El Niño events have
been shown to be more effective at creating drought-inducing
subsidence over India (Kumar et al., 2006).

The results from the present and previous studies (Fan et
al., 2017) support the idea that changes in the ENSO–AIR
relationship are related to ENSO flavors because ENSO non-
linearity appears to be related to ENSO flavors (Figs. 12 and
13), which is in opposition to the findings of other work
showing that the changes are related to sampling variabil-
ity or to noise. According to Yun and Timmermann (2018),
the changes in the time-domain correlation between AIR
and ENSO are consistent with the assumption that AIR is
the sum of the ENSO signal and Gaussian white noise (i.e.,
AIR=ENSO and white noise). However, for this hypothesis
to hold, the difference in AIR–ENSO must be Gaussian white
noise. As shown in this study, the nonlinear wavelet coher-
ence between ENSO metrics and AIR is weak, and ENSO–
AIR contains periodicities (Fig. S2), which means that AIR
is not simply a stochastically perturbed ENSO signal as noise
does not contain periodicities. The retention of non-Gaussian
noise features was certainly the case for R(t)–F(t) in the ex-
ample in Sect. 3.5 because the difference retains the cosine
function with a period of 16.

The fact that nonlinear coherence between rainfall and
ENSO is determined by linear coherence between ENSO and
rainfall at two or three frequencies means that the changing
time-domain correlation could be more fully understood by
determining why linear coherence changes at the frequencies
that contribute to ENSO skewness. Such an analysis could
provide a more mechanistic perspective than the theoreti-
cal perspective adopted in this study. A preliminary analysis
showed that there was enhanced linear coherence between
the North Atlantic Oscillation index and AIR after 1995 in
the 16 to 64 month band associated with ENSO nonlinearity.
This result suggests that conditions across the North Atlantic
(Kakade and Dugam, 2000; Bhatla et al., 2016) could influ-
ence the nonlinear coherence between ENSO and AIR and,
thus, the corresponding time-domain correlation.

The tools used and developed in this study may have im-
portant applications for understanding how forecasting sys-
tems replicate Indian rainfall and its associated teleconnec-
tions. These methods, for example, could determine if fore-
casting systems can reproduce nonlinear characteristics of
climate time series. As such, an R software package has
been developed to implement these methods (available at:
http://justinschulte.com/wavelets/advbiwavelet.html; last ac-
cess: 22 November 2019). These methods could provide new
directions for improving current forecasting systems and, ul-
timately, predictions of Indian rainfall.
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Appendix A

The first step (Step 1) in assessing the cumulative-area sig-
nificance of a point was the calculation of the N = 12 sets as
follows:

P ipw =
{
(b, a) : ρpw (b, a) < αi

}
, (A1)

where each set is the subset of the wavelet domain consist-
ing of points for which the wavelet quantities are point-wise
significant at the αi level (i.e., the point-wise test p-value,
ρpw, is less than αi). In this paper, α1 = 0.02, α12 = 0.18,
and αi+1−αi = 0.02. In the second step (Step 2), a geometric
pathway about x was computed, where a geometric pathway
is a nested sequence, as follows:

P x1 ⊆ P
x
2 ⊆ . . .⊆ P

x
N , (A2)

such that, in the following:

P xi =
{
(b, a) : (b, a) ∈ P ipw, (b, a)∼ x

}
(A3)

are path-components of P ipw containing x. The equivalence
relation ∼ on P ipw makes two points in P ipw equivalent if
they can be connected by a continuous path in P ipw. The third
step (Step 3) involved the calculation of the normalized area
corresponding to P xi . The normalized area is defined as the
patch area divided by the square of the mean-scale coordi-
nate of the patch, whereAxi was assumed to be 0 if P xi = φ or
P xi = {x}. The critical area Acrit

i was obtained by computing
the (1−αc)th percentile of the null distribution of normal-
ized areas corresponding to the significance level αi , where
αc is the significance level of the cumulative area-wise test.
The null distributions were constructed by generating 1000
patches at the αi significance level under the null hypothe-
sis of red noise. The final step (Step 4) was to compute the
following:

rx =
1
N

∑N

j=1
λxj , (A4)

where λxi = 2 if Axi /A
crit
i >1 and λxi = 0 if Axi /A

crit
i <= 1.

The wavelet quantity at the point x was deemed statistically
significant at the αc cumulative area-wise level if rx>1.

Appendix B

For p>1, the (p+ 1)th-order poly-spectrum of a time series
X is given by the following:

BXn
(
s1, s2, . . ., sp

)
= ŴX

n

(
sp+1

)(∏p

k=1
WX
n (sk)

)
, (B1)

where

1
sp+1

=

∑p

k=1

1
sk
. (B2)

The third-order poly-spectrum is the bispectrum, and the
fourth-order poly-spectrum is the trispectrum (Collis et al.,
1998) which identifies the frequency components contribut-
ing to kurtosis. The (p+ 1)th-order coherence between two
time series is given as follows:

R2
n(s)= ∣∣∣Ss−1

smoothB
XY
n (s1, s2, . . . , sp)

∣∣∣2
S
(
s−1

smooth

∣∣BXn (s1, s2, . . . , sp)∣∣2)S (s−1
smooth

∣∣BYn (s1, s2, . . . , sp)∣∣2) , (B3)

where BXY
n (s1s2, . . . , sp) is the (p+ 1)th-order cross spec-

trum given by the following:

BXY
n

(
s1, s2, . . . , sp

)
= BXn (s1, s2, . . . , sp)B̂

Y
n (s1, s2, . . . , sp).

(B4)

When p = 2, Eq. (B3) measures the local cross-correlation
between skewness, and when p = 3, the equation measures
the local cross-correlation between kurtosis.
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Code and data availability. Data for the Indian rainfall can be ac-
cessed through https://www.tropmet.res.in/DataArchival-51-Page
(Indian Institute of Tropical Meteorology, 2019). The monthly
ENSO indices are available at https://www.psl.noaa.gov/gcos_
wgsp/Timeseries (NOAA/OAR/ESRL PSD, 2019). An R software
package used to implement the new methods can be found on the
author’s web page (available at: http://justinschulte.com/wavelets/
advbiwavelet.html; Schulte, 2019b).

Supplement. The supplement related to this article is available on-
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