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Abstract. This study evaluates the ability of different
gridded rainfall datasets to plausibly represent the spatio-
temporal patterns of multiple hydrological processes (i.e.
streamflow, actual evaporation, soil moisture and terrestrial
water storage) for large-scale hydrological modelling in the
predominantly semi-arid Volta River basin (VRB) in West
Africa. Seventeen precipitation products based essentially
on gauge-corrected satellite data (TAMSAT, CHIRPS, ARC,
RFE, MSWEP, GSMaP, PERSIANN-CDR, CMORPH-CRT,
TRMM 3B42 and TRMM 3B42RT) and on reanalysis
(ERA5, PGF, EWEMBI, WFDEI-GPCC, WFDEI-CRU,
MERRA-2 and JRA-55) are compared as input for the fully
distributed mesoscale Hydrologic Model (mHM). To assess
the model sensitivity to meteorological forcing during rain-
fall partitioning into evaporation and runoff, six different
temperature reanalysis datasets are used in combination with
the precipitation datasets, which results in evaluating 102
combinations of rainfall–temperature input data. The model
is recalibrated for each of the 102 input combinations, and
the model responses are evaluated by using in situ stream-
flow data and satellite remote-sensing datasets from GLEAM
evaporation, ESA CCI soil moisture and GRACE terrestrial
water storage. A bias-insensitive metric is used to assess
the impact of meteorological forcing on the simulation of
the spatial patterns of hydrological processes. The results of
the process-based evaluation show that the rainfall datasets
have contrasting performances across the four climatic zones
present in the VRB. The top three best-performing rainfall
datasets are TAMSAT, CHIRPS and PERSIANN-CDR for

streamflow; ARC, RFE and CMORPH-CRT for terrestrial
water storage; MERRA-2, EWEMBI/WFDEI-GPCC and
PGF for the temporal dynamics of soil moisture; MSWEP,
TAMSAT and ARC for the spatial patterns of soil moisture;
ARC, RFE and GSMaP-std for the temporal dynamics of ac-
tual evaporation; and MSWEP, TAMSAT and MERRA-2 for
the spatial patterns of actual evaporation. No single rainfall
or temperature dataset consistently ranks first in reproduc-
ing the spatio-temporal variability of all hydrological pro-
cesses. A dataset that is best in reproducing the temporal dy-
namics is not necessarily the best for the spatial patterns. In
addition, the results suggest that there is more uncertainty
in representing the spatial patterns of hydrological processes
than their temporal dynamics. Finally, some region-tailored
datasets outperform the global datasets, thereby stressing the
necessity and importance of regional evaluation studies for
satellite and reanalysis meteorological datasets, which are in-
creasingly becoming an alternative to in situ measurements
in data-scarce regions.

1 Introduction

Our understanding of environmental systems is underpinned
by observational data, whose unavailability and uncertain-
ties hinder research and operational applications. Among
other factors, atmospheric data quality is of prime impor-
tance for the reliability of hydro-meteorological and clima-
tological studies (Ledesma and Futter, 2017; Zandler et al.,
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2019). Precipitation is one of the major components of the
water cycle, which has led to numerous initiatives on under-
standing its generation, and estimating its amount and vari-
ability on Earth (Maidment et al., 2015; Cui et al., 2019). In
hydrological modelling (Singh, 2018; Beven, 2019), precip-
itation is the most important driver variable that determines
the spatio-temporal variability of other hydrological fluxes
and state variables (Thiemig et al., 2013; Bárdossy and Das,
2008).

With the development of distributed hydrological mod-
els that facilitate large-scale predictions (Clark et al., 2017;
Fatichi et al., 2016; Ocio et al., 2019), there is a grow-
ing need to inform and evaluate those models with dis-
tributed observational datasets to improve spatio-temporal
process representation (Baroni et al., 2019; Paniconi and
Putti, 2015; Hrachowitz and Clark, 2017). A key challenge
is the spatio-temporal intermittency of precipitation, which
is a major challenge for its measurement and its spatial inter-
polation (Tauro et al., 2018; Acharya et al., 2019; Bárdossy
and Pegram, 2013; P. D. Wagner et al., 2012), especially in
regions with particular features such as complex topogra-
phy, convection-driven precipitation or snowfall occurrence.
A comprehensive description of precipitation measurement
techniques can be found in previous studies (e.g. Tapiador et
al., 2012; Stephens and Kummerow, 2007; Kidd and Huff-
man, 2011; Levizzani et al., 2020). The drawbacks of in situ
measurements of precipitation include limited and uneven
areal coverage, deficiencies in instruments and costly main-
tenance (Kidd et al., 2017; Awange et al., 2019; Harrison et
al., 2019), and they have led to the advent of precipitation
estimation from space (Barrett and Martin, 1981). Precipi-
tation estimates from space are spatially homogeneous and
cover inaccessible regions with uninterrupted records over
time (Beck et al., 2019b; Funk et al., 2015).

The advent of satellite-based rainfall products (SRPs)
has opened up new avenues for water resources monitor-
ing and prediction, especially in data-scarce regions (Serrat-
Capdevila et al., 2014; Sheffield et al., 2018; Hrachowitz et
al., 2013). Although the use of SRPs in hydrology is increas-
ing (Xu et al., 2014; Chen and Wang, 2018), they have not
been fully adopted for operational purposes yet (Ciabatta et
al., 2016; Kidd and Levizzani, 2011). The limited uptake of
SRPs in hydrology is due to measurement bias, inadequate
spatio-temporal resolutions (e.g. for extreme-event simula-
tion) and shortness of the records for some applications (e.g.
climate change impact assessments), and the scepticism of
some potential users with regard to the data quality (Marra
et al., 2019). In the past decades, a large number of SRPs
have been developed with different objectives, spatial and
temporal resolutions, input sources, algorithms and acqui-
sition methods (Ciabatta et al., 2018; Ashouri et al., 2015;
Brocca et al., 2019). Several studies provide a review of SRPs
(e.g. Maidment et al., 2014; Sun et al., 2018; Maggioni et al.,
2016; Le Coz and van de Giesen, 2019).

In addition to SRPs, there are also atmospheric retrospec-
tive analysis (or reanalysis) datasets of precipitation. A re-
analysis system is composed of a forecast model and a data
assimilation scheme that integrates spatio-temporal observa-
tions of meteorological variables (i.e. temperature, humid-
ity, wind and pressure) to generate gridded atmospheric data
(Lorenz and Kunstmann, 2012; Schröder et al., 2018). Pre-
cipitation is one of the reanalysis model-generated fields
that generally has more uncertainties than the meteorologi-
cal state fields (Roca et al., 2019). Reanalysis datasets are of-
ten used in hydrological modelling (Tang et al., 2019; Duan
et al., 2019; Gründemann et al., 2018), and sometimes they
are preferred over SRPs because of their usually long-term
records suitable for climate change studies and because of
their higher performance in predictable large-scale stratiform
systems (Seyyedi et al., 2015; Potter et al., 2018).

Despite the progress in satellite instruments, which has
led to substantial advances in improving precipitation esti-
mates (Sorooshian et al., 2011; Tang et al., 2019), there are
known inconsistencies among the available SRPs (Sun et al.,
2018; Tapiador et al., 2017). SRPs are subject to inherent
errors originating mainly from precipitation retrieval instru-
ments and algorithms, sampling frequency, and inadequate
representation of cloud physics in some regions (Laiti et al.,
2018; Alazzy et al., 2017; Romilly and Gebremichael, 2011).
While on the one hand SRPs are subject to systematic biases,
reanalysis products on the other hand have uncertainties re-
sulting from their model forcing parameters, low spatial reso-
lution with poor representation of sub-grid processes and the
model physics (Bosilovich et al., 2008; Laiti et al., 2018).
Uncertainty quantification both in SRPs and reanalysis data
is subject to intense research (e.g. Maggioni et al., 2016;
Gebremichael, 2010; Awange et al., 2016; Westerberg and
Birkel, 2015). The error quantification of SRPs and reanaly-
sis products is usually done by comparing them with in situ
measurements (e.g. Dembélé and Zwart, 2016; Thiemig et
al., 2012; Beck et al., 2019a; Caroletti et al., 2019; Satgé et
al., 2020), or by assessing their reliability as forcing for hy-
drological models (e.g. Duethmann et al., 2013; Pan et al.,
2010; Nkiaka et al., 2017). Other evaluation approaches in-
clude triple collocation, which is a technique that estimates
the variance of unknown errors of three independent vari-
ables without a reference or observed variable (e.g. Massari
et al., 2017; Alemohammad et al., 2015; McColl et al., 2014;
Roebeling et al., 2012). Compared to the ground-truthing ap-
proach, the hydrological evaluation approach has received
limited attention (Camici et al., 2018; Poméon et al., 2017).

In rainfall–runoff modelling (Peel and McMahon, 2020),
the non-linearity of hydrological processes (Blöschl and
Zehe, 2005; Clark et al., 2009) can reduce or amplify the er-
rors in the input rainfall data used and result in a satisfactory
or poor representation of the hydrological responses (Mag-
gioni and Massari, 2018; Nijssen, 2004). Consequently, the
hydrological model can give a good representation of a hy-
drological state or flux variable for the wrong reasons (cf.
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Kirchner, 2006), thereby potentially leading to unfortunate
consequences for water resources management (Zambrano-
Bigiarini et al., 2017). When testing models as hypotheses
(Beven, 2018; Pfister and Kirchner, 2017), type I errors (i.e.
false positive model acceptability; Beven, 2010) should be
avoided to ensure a high predictive skill of the model and its
correctness for good decision-making. This sheds light on the
importance of assessing the reliability of hydrological pre-
dictions generated with the use of SRPs and reanalysis prod-
ucts (Behrangi et al., 2011; Kuczera et al., 2010). In this con-
text, knowing the adequacy and coherence of meteorological
data in reproducing hydrological processes is a prerequisite
to data selection for water resources management (Casse et
al., 2015; Laiti et al., 2018).

In the context of hydrological evaluation of precipitation
datasets, some limitations can be identified in previous stud-
ies. Some studies only evaluate a small number of precip-
itation datasets or do not consider reanalysis products (e.g.
Bitew and Gebremichael, 2011; Ma et al., 2018; Liu et al.,
2017; Bhattacharya et al., 2019). Usually, the influence of
temperature datasets in combination with rainfall datasets is
not tested (e.g. Satgé et al., 2019; Camici et al., 2018; Casse
et al., 2015; Qi et al., 2016; Zhang et al., 2019), with the ex-
ception of a few studies (e.g. Laiti et al., 2018; Lauri et al.,
2014), despite the importance of this interaction for evapora-
tion simulation. Most studies evaluate a single hydrological
state or flux variable, generally streamflow (e.g. Poméon et
al., 2017; Seyyedi et al., 2015; Shayeghi et al., 2020; X.-H. Li
et al., 2012) or soil moisture (e.g. Brocca et al., 2013). Some
studies use lumped or semi-distributed models, therefore av-
eraging the rainfall amount over large areas (e.g. Duan et al.,
2019; Tang et al., 2019; Tobin and Bennett, 2014; Gosset
et al., 2013; Shawul and Chakma, 2020), which reduces the
bias effect that could occur at the pixel level with a fully dis-
tributed model. Often, the model is not recalibrated for each
precipitation dataset (e.g. Voisin et al., 2008; Su et al., 2008;
L. Li et al., 2012; Tramblay et al., 2016), which is, however,
a prerequisite for reliable input field assessment (Stisen et al.,
2012). Moreover, some studies perform a global-scale anal-
ysis and ignore regionally tailored products (e.g. Beck et al.,
2017b; Mazzoleni et al., 2019; Fekete et al., 2004), which
can outperform global products (e.g. Thiemig et al., 2013).
Finally, to the best of our knowledge, no study has evaluated
the simultaneous impact of various precipitation and temper-
ature datasets on the spatial patterns of several hydrological
processes (i.e. soil moisture and evaporation).

In light of the above, we propose to study the adequacy of
different combinations of 17 precipitation datasets (10 SRPs
and 7 reanalysis products) and 6 temperature datasets from
reanalysis, when used as forcing data for a fully distributed
hydrological model, in reproducing the spatio-temporal vari-
ability of multiple hydrological processes (i.e. streamflow,
actual evaporation, soil moisture and terrestrial water stor-
age). In total, 102 rainfall–temperature input data combi-
nations are tested with the mesoscale Hydrologic Model

(mHM) by recalibrating the model for each of the input
data combinations. The experiment is carried out in the
poorly gauged and predominantly semi-arid Volta River
basin (VRB), located in West Africa, over the period 2003–
2012. It is noteworthy that the goal of this study is not to es-
timate the intrinsic quality of the meteorological forcing (i.e.
precipitation and temperature) but rather to understand the
impact of the propagation of associated uncertainties on the
simulation of hydrological processes (Bhuiyan et al., 2019;
Falck et al., 2015; Marthews et al., 2020).

The VRB case study is particularly interesting from both
scientific and societal perspectives. On the one hand, precip-
itation modelling in tropical monsoon climates is a challeng-
ing task due to strong seasonality and diurnal variations of
rainfall (Turner et al., 2011; Pfeifroth et al., 2016; Cook and
Vizy, 2019), and due to isolated convection systems in semi-
arid regions (Taylor et al., 2017; Mathon et al., 2002; Parker
and Diop-Kane, 2017). On the other hand, open-access and
good-quality datasets are needed for water resources man-
agement in West Africa (Roudier et al., 2014; Serdeczny et
al., 2017; Di Baldassarre et al., 2010; Dinku, 2019). The fol-
lowing research questions are addressed:

1. What is the impact of different gridded rainfall and
temperature datasets on the simulation of hydrological
fluxes and state variables?

2. How important is the choice of meteorological datasets
for the representation of spatial patterns versus temporal
dynamics?

Overall, the objective of this work aligns with the ef-
forts to solve the current scientific challenges in hydrology
(i.e. uncertainty in large-scale measurements and data, spa-
tial heterogeneity and modelling methods; Blöschl et al.,
2019; Wilby, 2019). Moreover, a growing interest in using
satellite remote-sensing data in hydrological modelling is
expected (McCabe et al., 2017; Peters-Lidard et al., 2017;
Wilkinson et al., 2016). Therefore, knowing the suitability
of the input data for hydrological modelling is a prerequi-
site for reliable spatio-temporal predictions, as the goal is
to increase model performance with minimum uncertainty
(Beven, 2016; McMillan et al., 2018; Savenije, 2009).

2 Methodology

2.1 Overview of the modelling experiment

The adequacy of the rainfall and temperature datasets to plau-
sibly reproduce various hydrological processes is tested with
all the 102 possible combinations of 17 rainfall and 6 temper-
ature datasets used as meteorological forcing (see Sect. 2.2).
Different temperature datasets are used to allow flexibility
in rainfall partitioning into evaporation and runoff because
temperature is a key variable for the calculation of potential
evaporation (Kirchner and Allen, 2020; Zheng et al., 2019;
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Van Stan et al., 2020). The hydrological model is recalibrated
for each of the 102 combinations of rainfall–temperature
datasets (Fig. 1).

The differences in the performance of model outputs are
assumed to result from the propagation of the input data un-
certainty through the model simulations (Nikolopoulos et al.,
2010; Fallah et al., 2020). In the case of uncertainties result-
ing from the hydrological model structure, these uncertain-
ties can be assumed to remain consistent for all the input
datasets, and therefore it should not hinder the interpreta-
tion of the results, because only the parameters change during
model calibration, not the model structure (Raimonet et al.,
2017).

2.2 Meteorological datasets

This study evaluates 17 rainfall products composed of
10 satellite-based products (TAMSAT, CHIRPS, ARC,
RFE, MSWEP, GSMaP, PERSIANN-CDR, CMORPH-CRT,
TRMM 3B42 and TRMM 3B42RT) and 7 reanalysis prod-
ucts (JRA-55, EWEMBI, WFDEI-GPCC, WFDEI-CRU,
MERRA-2, PGF and ERA5) (Table 1). Widely used global
and Africa-tailored datasets were selected based on their
availability in the period for which streamflow data are
available for the hydrological modelling (2000–2012). For
SRPs that have multiple versions, the gauge-corrected ver-
sion was selected to avoid the known systematic biases found
in the SRPs as compared to ground measurements (Jiang
and Wang, 2019; Pellarin et al., 2020). The selected rain-
fall datasets include single and multi-sensor, with various
merged and gauge-corrected products obtained from rain
gauges, microwave sensors in low Earth orbits and infrared
sensors on geostationary satellites (Maggioni and Massari,
2018; Thiemig et al., 2013; Golian et al., 2019). Moreover,
six different datasets of air temperature (at 2 m above ground)
are used for the calculation of potential evaporation, and they
are obtained from the following reanalysis products: JRA-55,
EWEMBI, WFDEI, MERRA-2, PGF and ERA5.

2.3 Modelling datasets

In addition to the meteorological datasets (Table 1), an en-
semble of datasets is required for the set-up and the calibra-
tion and evaluation of the hydrological model (Table 2). The
streamflow datasets obtained from different organizations
(see Acknowledgements) were pre-processed (i.e. gap-filling
and quality control) in the work of Dembélé et al. (2019).

Multiple satellite datasets are used to evaluate the mod-
elled hydrological fluxes and state variables. For the evalua-
tion of the modelled water storages, the GRACE-derived ter-
restrial water storage (St) anomaly data release RL05 (Lan-
derer and Swenson, 2012; Swenson, 2012) is used. The en-
semble mean of different products from three processing cen-
tres (i.e. Jet Propulsion Laboratory, Center for Space Re-
search at the University of Texas and Geoforschungszentrum

Potsdam) is preferred because it is more effective in reduc-
ing noise in the Earth’s gravity signal as compared to the
individual products (Sakumura et al., 2014). The surface soil
moisture (Su) data representing the first soil layer (i.e. 2–5 cm
depth) are obtained from ESA CCI (Dorigo et al., 2017) us-
ing the combination of both active and passive microwave
products (Gruber et al., 2017; W. Wagner et al., 2012). Ac-
tual evaporation (Ea) data are obtained from the GLEAM
land surface model that aggregates components of terrestrial
evaporation based on the fraction of land cover types per grid
cell (Martens et al., 2017). A full description of the datasets
is accessible through the references and web links provided
in Tables 1 and 2.

2.4 Study area

The transboundary Volta River basin (VRB) covers approx-
imately 415 600 km2 (Fig. 2) shared among six countries of
West Africa (i.e. Burkina Faso, Ghana, Togo, Mali, Benin
and Côte d’Ivoire). The relief is predominantly flat with 95 %
of the basin below 400 m a.s.l (De Condappa and Lemoalle,
2009). The Volta River flows over 1850 km with a drainage
system composed of four sub-basins known as Black Volta
(152 800 km2), White Volta (113 400 km2), Oti (74 500 km2)
and Lower Volta (74 900 km2). Before reaching the Atlantic
Ocean at the Gulf of Guinea, the Volta River transits through
Lake Volta (area: 8502 km2; volume: 148 km3), formed by
the Akosombo Dam (7.94× 106 m3) (Williams et al., 2016;
Dembélé et al., 2020b). The dominant land cover is savan-
nah composed of grassland interspersed with shrubs and trees
over 75 % of the basin area, followed by cropland (13 %),
forest (9 %), waterbodies (2 %) and bare land and settle-
ments (1 %). Climate in West Africa is unique and complex
(Berthou et al., 2019; Bichet and Diedhiou, 2018; Nichol-
son et al., 2018a). The seasonal and latitudinal oscillation
of the Intertropical Convergence Zone (ITCZ) is the pre-
dominant rainfall generation mechanism in West Africa (Bi-
asutti, 2019), thereby depicting a south–north gradient of in-
creasing aridity in the VRB. The ITCZ is a narrow belt of
clouds associated with intense convective activity resulting
from the near-surface convergence of warm and moist trade
winds (Schneider et al., 2014; Dezfuli, 2017). The warm
northeasterly Harmattan winds emanate from the Sahara, and
the moist southwest monsoon winds originate in the Atlantic
Ocean (Nicholson, 2013; Vizy and Cook, 2018). Rainfall in
West Africa is characterized by its interannual and multi-
decadal variability (Biasutti et al., 2018; Thorncroft et al.,
2011; Nicholson et al., 2018b). Four eco-climatic zones (i.e.
Sahelian, Sudano-Sahelian, Sudanian and Guinean; Fig. 2a)
are commonly identified based on the average annual precip-
itation and agricultural features (FAO/GIEWS, 1998; Mul et
al., 2015). The maps of spatial patterns of rainfall and tem-
perature in the VRB for different datasets are shown in Ap-
pendix Figs. A1 and A2. The climatology of rainfall and tem-
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Figure 1. Flowchart of the methodology used to evaluate the suitability of meteorological datasets in reproducing plausible hydrological
processes.

perature per climatic zones are provided in the Supplement
(Figs. S11–S14).

The VRB is a data-scarce region, not like places in Eu-
rope and USA where a large amount of ground measure-
ments are widely and freely accessible. The few datasets col-
lected by local organizations in the VRB are not easily acces-
sible due to the transboundary nature of the basin, which is
shared among six countries. Moreover, the VRB region has
a low density of meteorological stations (cf. Fig. 1 of Dem-
bélé and Zwart, 2016, and Fig. 1 of Satgé et al., 2020). A
thorough evaluation of satellite and reanalysis datasets with
ground measurements in the VRB cannot be limited to a few
stations because of the large size of the basin and the strong
spatial variability of rainfall. Moreover, a robust ground eval-
uation would require independent in situ measurements that
are not used in the development of the SRPs and reanalysis
datasets (Beck et al., 2019a), as they are a luxury in West
Africa. These limitations in in situ data availability further
motivate the hydrological evaluation of SRPs and reanalysis
datasets.

2.5 Hydrological model set-up

The fully distributed mesoscale Hydrologic Model (mHM,
version 5.9; Samaniego et al., 2010; Kumar et al., 2013)
is used in this study. It is a conceptual model that simu-
lates dominant hydrological processes (e.g. evaporation, soil
moisture, subsurface storage and discharge) per grid cell
in the modelling domain. The Muskingum–Cunge method
(Cunge, 1969) is used for routing the total grid-generated
runoff using a multiscale routing model (Thober et al., 2019).
A multiscale parameter regionalization technique (MPR;
Samaniego et al., 2017) is used to account for sub-grid vari-
ability of the basin physical characteristics (e.g. soil texture,

topography and land cover). For this study, 36 global param-
eters are determined through model calibration (Table S24).

In this study, the Hargreaves and Samani method (Harg-
reaves and Samani, 1985), solely based on air temperature
data, is used to calculate the reference evaporation (Eref).
Potential evaporation (Ep) is calculated by adjusting Eref to
vegetation cover (Allen et al., 1998; Birhanu et al., 2019). A
dynamical scaling function (FDS) (cf. Demirel et al., 2018)
is used to account for vegetation–climate interactions (Bai et
al., 2018; Jiao et al., 2017). Ep is formulated as follows:

Ep = FDS ·Eref, with (1)

FDS = a+ b
(

1− e(c•ILA)
)
, (2)

where ILA represents the leaf area index, a is the intercept
term, b represents the vegetation-dependent component and c
describes the degree of non-linearity in the ILA dependency.
The coefficients a, b and c are determined during model cal-
ibration.

Actual evaporation (i.e. all evaporative fluxes including
transpiration, Ea) depends on plant water availability, i.e. on
root distribution in the subsurface and soil moisture avail-
ability (Feddes et al., 1976); this is emulated in mHM by
computing Ea as a fraction of Ep at different soil layers. A
multi-layer infiltration capacity approach is used to calculate
soil moisture based on a three-layer soil scheme (5, 30 and
100 cm depths). As no snow occurs in the VRB, terrestrial
water storage is calculated per grid cell by summing up the
surface water storage on impervious areas and all subsurface
water storage (i.e. reservoirs generating soil moisture, base-
flow and interflow). The model is run at a daily time step with
a spatial discretization of 0.25◦ (∼ 28 km at the Equator).

The modelling experiment covers the period 2000–2012
with a 3-year model warm-up period (2000–2002), 6 years
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Table 1. Meteorological datasets with spatial resolution used; the table presents the characteristics of the datasets used in this study, although
different spatial and temporal resolutions can be available from the data providers. G: gauge; S: satellite; R: reanalysis; P: precipitation; T :
temperature; NP: near present.

Datasets Name/website Data
sources

Variables
used

Spatial coverage Spatial resolu-
tion

Temporal cov-
erage

Temporal reso-
lution

References

TAMSAT v3.0 Tropical Applications of
Meteorology using SATel-
lite (TAMSAT) African
Rainfall Climatology and
Time series (TARCAT);
https://www.tamsat.org.uk/data
(last access: 12 June 2017)

S, G P Africa 38◦ N–
36◦ S, 19◦W–
52◦ E

0.0375◦ 1983–NP daily Maidment et al. (2017),
Tarnavsky et al. (2014),
Maidment et al. (2014),
Maidment et al. (2020)

CHIRPS v2.0 Climate Hazards Group In-
fraRed Precipitation with Sta-
tions (CHIRPS) V2.0; https://
www.chc.ucsb.edu/data/chirps
(last access: 14 August 2018)

S, G, R P Land 50◦ N/S,
180◦ E/W

0.05◦ 1981–NP daily Funk et al. (2015)

ARC v2.0 Africa Rainfall Estimate Clima-
tology (ARC 2.0); https://www.
cpc.ncep.noaa.gov/products/
international/data.shtml (last
access: 18 December 2018)

S, G P Africa 40◦ N–
40◦ S, 20◦W–
55◦ E

0.1◦ 1983–NP daily Novella and Thiaw
(2013)

RFE v2.0 Climate Prediction Center
(CPC) African Rainfall Es-
timate (RFE); https://www.
cpc.ncep.noaa.gov/products/
international/data.shtml (last
access: 4 January 2019)

S, G P Africa 40◦ N–
40◦ S, 20◦W–
55◦ E

0.1◦ 2001–NP daily Xie and Arkin (1996),
Herman et al. (1997)

MSWEP v2.2 Multi-Source Weighted-
Ensemble Precipita-
tion (MSWEP) V2.2;
http://www.gloh2o.org/ (last
access: 25 March 2019)

S, G, R P Global 0.1◦ 1979–NP 3-hourly Beck et al. (2017a)

GSMaP-std v6 Global Satellite Mapping of
Precipitation (GSMaP) Moving
Vector with Kalman (MVK)
Standard V6;
https://sharaku.eorc.jaxa.
jp/GSMaP/ (last access:
8 May 2019)

R, G P 60◦ N/S,
180◦ E/W

0.1◦ 2001–2013 daily Ushio et al. (2009),
Ushio et al. (2019),
Kubota et al. (2020)

PERSIANN-CDR v1r1 Precipitation Estimation from
Remotely Sensed Information
using Artificial Neural Net-
works (PERSIANN) Climate
Data Record (CDR) V1R1;
http://chrsdata.eng.uci.edu/
(last access: 7 February 2019)

S, G P 60◦ N/S,
180◦ E/W

0.25◦ 1983–2016 6-hourly (daily) Ashouri et al. (2015)

CMORPH-CRT v1.0 Climate Prediction Center
(CPC) MORPHing tech-
nique (CMORPH) bias cor-
rected (CRT) V1.0; https:
//www.cpc.ncep.noaa.gov/ (last
access: 8 February 2019)

S, G P 60◦ N/S,
180◦ E/W

0.25◦ 1998–2015 daily Joyce et al. (2004), Xie
et al. (2017)

TRMM 3B42 v7 TRMM Multi-satellite
Precipitation Analy-
sis (TMPA) 3B42 V7;
https://mirador.gsfc.nasa.gov/
(last access: 19 February 2019)

S, G P 50◦ N/S,
180◦ E/W

0.25◦ 2000–2017 3-hourly Huffman et al. (2007)

TRMM 3B42 RT v7 TRMM Multi-satellite Precip-
itation Analysis (TMPA)
3B42 Real Time V7;
https://mirador.gsfc.nasa.gov/
(last access: 19 February 2019)

S P 50◦ N/S,
180◦ E/W

0.25◦ 2000–NP 3-hourly Huffman et al. (2007)

WFDEI-CRU WATCH Forcing Data
ERA-Interim (WFDEI)
corrected using Climatic
Research Unit (CRU) dataset;
http://www.eu-watch.org (last
access: 25 May 2018)

R, G P, T Global 0.5◦ 1979–2018 3-hourly Weedon et al. (2014)
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Table 1. Continued.

Datasets Name/website Data
sources

Variables
used

Spatial coverage Spatial
resolution

Temporal cov-
erage

Temporal
resolution

References

WFDEI-GPCC WATCH Forcing Data ERA-Interim
(WFDEI) corrected using Global
Precipitation Climatology Centre
(GPCC) dataset;
ftp://rfdata:forceDATA@ftp.iiasa.ac.
at/ (last access: 23 May 2018)

R, G P, T Global 0.5◦ 1979–2016 3-hourly Weedon et al. (2014)

PGF v3 Princeton University Global Meteo-
rological Forcing (PGF);
http://hydrology.princeton.edu/data/
pgf/ (last access: 15 August 2018)

R, G P, T Global 0.25◦ 1948–2012 3-hourly Sheffield et al. (2006)

ERA5 European Centre for Medium-range
Weather Forecasts Reanalysis 5
(ERA5) hourly data on single levels;
https://cds.climate.copernicus.eu/
(last access: 21 February 2019)

R P, T Global 0.25◦ 1979–NP hourly Hersbach et al. (2018,
2020)

MERRA-2 Modern-Era Retrospective
Analysis for Research and
Applications 2 (rainfall:
M2T1NXFLX_V5.12.4; temper-
ature: M2SDNXSLV_V5.12.4);
https://disc.gsfc.nasa.gov/datasets/
(last access: 9 February 2019)

S, G, R P, T Global 0.625◦× 0.5◦ 1980–NP hourly Gelaro et al. (2017),
Reichle et al. (2017)

EWEMBI v1.1 EartH2Observe, WFDEI and
ERA-Interim data Merged and Bias-
corrected for ISIMIP (EWEMBI);
https://doi.org/10.5880/pik.2016.004
(last access: 17 April 2019)

R, G P, T Global 0.5◦ 1976–2013 daily Lange (2016)

JRA-55 Japanese 55-year Reanalysis (JRA-
55) (rainfall: fcst_phy2m125; tem-
perature: anl_surf125); https://jra.
kishou.go.jp/JRA-55/index_en.html
(last access: 8 March 2019)

R P, T Global 1.25◦ 1959–NP 3-hourly Kobayashi et al. (2015)

Figure 2. Physical and hydroclimatic characteristics of the Volta River basin. (a) shows the hydrographic network and the climatic zones,
and (b) shows the digital elevation model. The mean aridity index (AI) of each eco-climatic zone is derived from the global aridity index
database (Trabucco and Zomer, 2018).
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Table 2. Modelling datasets. ESA CCI SM: European Space Agency Climate Change Initiative Soil Moisture; GIMMS: Global Inventory
Modeling and Mapping Studies; GLEAM: Global Land Evaporation Amsterdam Model; GLiM: Global Lithological Map; GMTED: Global
Multi-resolution Terrain Elevation Data; GRACE: Gravity Recovery and Climate Experiment; WFDEI: WATCH Forcing Data methodology
applied to ERA-Interim data.

Variables Products Spatial resolution Temporal resolution References

Morphological data

Terrain characteristics (elevation, slope,
aspect, flow direction and flow accumu-
lation)

GMTED 2010 225 m (0.0021◦) static Danielson and Gesch (2011);
https://topotools.cr.usgs.gov/
(last access: 4 December 2018)

Soil properties (horizon depth, bulk
density, sand and clay content,)

SoilGrids 250 m (0.0023◦ ) static Hengl et al. (2017); https://
www.isric.org/explore/soilgrids
(last access: 4 December 2018)

Geology GLiM v1.0 0.5◦ static Hartmann and Moosdorf
(2012); 10.1594/PAN-
GAEA.788537 (last access:
4 December 2018)

Land use/land cover Globcover 2009 300 m (0.0028◦) static Bontemps et al. (2011);
http://due.esrin.esa.int/page_
globcover.php (last access:
4 December 2018)

Phenology (leaf area index) GIMMS 8 km (0.0833◦) bimonthly Tucker et al. (2005), Zhu et
al. (2013); http://cliveg.bu.edu/
modismisr/lai3g-fpar3g.html
(last access: 4 December 2018)

Model calibration/evaluation

Streamflow – point daily Multiple organizations (see Ac-
knowledgements)

Terrestrial water storage anomaly (St) GRACE TellUS v5.0 1◦ monthly Tapley et al. (2004), Landerer
and Swenson (2012); https://
grace.jpl.nasa.gov/ (last access:
14 February 2019)

Surface soil moisture (Su) ESA CCI SM v4.2 0.25◦ daily Dorigo et al. (2017); https://
www.esa-soilmoisture-cci.org/
(last access: 14 February 2019)

Actual evaporation (Ea) GLEAM v3.2a 0.25◦ daily Martens et al. (2017),
Miralles et al. (2011);
https://www.gleam.eu/ (last
access: 10 December 2018)

for model calibration (2003–2008) and 4 years for model
evaluation (2009–2012). The model is calibrated and eval-
uated with the available daily in situ streamflow datasets
from 11 locations (Fig. 2a), while the evaluation with satel-
lite datasets of evaporation, soil moisture and terrestrial wa-
ter storage is done at a monthly time step to avoid the impact
of mismatches in the daily data retrieval periods among the
satellite data sources. An illustration of natural variability of
streamflow (Fig. S16), precipitation (Figs. S1 and S5) and
temperature (Figs. S3–S4 and S6–S8) is provided in the Sup-
plement.

2.6 Multisite model calibration on streamflow data

A multisite calibration strategy is adopted by simultaneously
constraining the model with the 11 streamflow (Q) gaug-
ing stations (Fig. 2) to infer a unique parameter set for the
whole basin. The objective function8Q combines the Nash–
Sutcliffe efficiency (Nash and Sutcliffe, 1970) of streamflow
(ENS) and the Nash–Sutcliffe efficiency of the logarithm of
streamflow (ENSlog), and it is formulated such that it has to
be minimized:

8Q =
1
g

∑g

1

√
(1−ENS)

2
+
(
1−ENSlog

)2
, with (3)
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ENS = 1−
∑t

1(Qmod (t)−Qobs (t))
2∑t

1
(
Qobs (t)−Qobs

)2 and (4)

ENSlog = 1−

∑t
1
[
log(Qmod (t))− log(Qobs (t))

]2∑t
1
[
log(Qobs (t))− log(Qobs)

]2 , (5)

where Qmod and Qobs are the modelled and the observed
streamflow, t is the number of time steps of the calibration
period, and g is the number of streamflow gauging stations
present within the modelling domain. 8Q is calculated with
all the streamflow gauging stations, and it ranges from its
ideal value of 0 to positive infinity.

The model is calibrated solely with Q data because it is
the only available in situ measurement, and to avoid poten-
tial trade-offs of a multivariate calibration that would result
in difficulties in identifying the source of variation in the
model performance (i.e. input data vs. model parametriza-
tion) (Dembélé et al., 2020b). The parameter estimation is
done with the dynamically dimensioned search algorithm
(Tolson and Shoemaker, 2007) using 4000 iterations for each
of the 102 rainfall–temperature dataset combinations.

2.7 Multivariable model evaluation with streamflow
and satellite data

In addition to ENS and ENSlog, the Kling–Gupta efficiency
(EKG) (Kling et al., 2012) is used to evaluate the model per-
formance for streamflow:

EKG = 1−
√
(rKG− 1)2+ (βKG− 1)2+ (γKG− 1)2, (6)

where rKG is the Pearson correlation coefficient, βKG is the
bias term (i.e. the ratio of the means), and γKG is the variabil-
ity term (i.e. the ratio of the coefficients of variation) between
Qobs andQmod. The EKG ranges from negative infinity to its
optimal value of unity. As a reference, EKG >−0.41 indi-
cates that the model is better than the mean observed flow
(Knoben et al., 2019).

In addition toQ, several non-commensurable and satellite-
based variables are used for model evaluation (Table 2). The
bias-insensitive Pearson’s correlation coefficient (r) is used
to assess the temporal dynamics of St, Su and Ea because the
model is not calibrated on these variables, and their evalu-
ation datasets are satellite-derived products that encompass
uncertainties and can be biased.

The spatial pattern representation of hydrological pro-
cesses is assessed by using a bias-insensitive and multi-
component metric developed by Dembélé et al. (2020b). The
proposed spatial pattern efficiency (ESP) metric is formulated
similarly to the EKG (Eq. 4), but it focuses only on the spa-
tial pattern of variables rather than on their absolute values
(like the SPAEF; Koch et al., 2018). ESP simultaneously as-
sesses the dynamics, the spatial variability, and the locational
matching of grid cells between the observed (Xobs) and mod-
elled (Xmod) variables. Considering two variables Xobs and
Xmod composed of n cells, ESP is defined as follows:

ESP = 1−
√
(rs− 1)2+ (γ − 1)2+ (α− 1)2, with (7)

rs = 1−
6
n∑
1
d2
i

n
(
n2− 1

) , (8)

γ =

σmod
µmod
σobs
µobs

and (9)

α = 1−ERMS
(
ZXmod ,ZXobs

)
, (10)

where rs is the Spearman rank-order correlation coefficient,
with di being the difference between the ranks of the ith cell
of Xmod and Xobs. γ is the variability ratio (i.e. the ratio of
the coefficients of variation) that assesses the similarity in
the dispersion of the probability distributions of Xmod and
Xobs, with µ and σ representing the mean and the standard
deviation, and α the spatial location matching term calcu-
lated as the root-mean-squared error (ERMS) of the standard-
ized values (z scores, ZX) of Xmod and Xobs (Dembélé et
al., 2020b). ESP ranges from negative infinity to 1, which is
its optimal value. ESP does not have an inherent benchmark,
also like EKG (Knoben et al., 2019). For ESP = 0, the ranks
of the observed and modelled variables are moderately re-
lated (i.e. rs = 0.55), while no association among the ranks
(i.e. rs = 0) results in ESP =−0.67 (cf. Supplement of Dem-
bélé et al., 2020b). However, the main point of using ESP
here is not to strictly conclude how well the modelled spa-
tial patterns reproduce the observed patterns – otherwise a
benchmark should be used (Schaefli and Gupta, 2007; Seib-
ert et al., 2018) – but rather to determine if a modelled spatial
pattern is better than another. The spatial pattern evaluation
is completed for Su and Ea, while only the temporal dynam-
ics of St are assessed due to the coarse spatial resolution of
the GRACE data.

The relative variation in model performance is assessed
with the second-order coefficient of variation (V2) (Kvålseth,
2017). V2 is an alternative to the classic Pearson’s coefficient
of variation (CV), which has significant limitations that are
comprehensively discussed by Kvålseth (2017). The limita-
tions of the CV include its difficult and non-intuitive inter-
pretation because of the lack of an upper bound, its high sen-
sitivity to outliers, its dependence on the sample mean and
problems with negative values. For all sample data x = (x1,
. . . , xn) ∈ Rn, with R = (-∞,∞), V2 is defined as follows:

V2 =

(
s2

s2+ x2

)1/2

, (11)

where s is the standard deviation and x is the mean of x. V2
varies from 0 to 1 or 0 % to 100 % and represents the distance
between x and x relative to the distance between x and the
origin zero.
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3 Results

The results are presented and discussed for the entire simula-
tion period (2003–2012, i.e. combined calibration and eval-
uation periods) because reliable meteorological datasets are
expected to produce a plausible representation of hydrolog-
ical processes independently of the modelling period (Bis-
selink et al., 2016). Separated results are provided for the
calibration and evaluation periods in the Supplement.

3.1 Model performance for streamflow

Similar model performance patterns are obtained with
EKG,ENS andENSlog of daily streamflow (Q) (Fig. 3). There-
fore, only EKG is retained for the description of the results.
All input dataset combinations show a median EKG >0.5, ex-
cept those having JRA-55 as rainfall input (Fig. 3), which can
be justified by the coarse spatial resolution of that product.
The ranking of the rainfall and temperature datasets based
on the model performance for Q is provided in Appendix
Table A1. The analysis of model performance for Q is done
for the entire VRB and not per climatic zone due to the lim-
ited number of stations. As expected, the discrepancies in
median EKG are more pronounced across rainfall datasets
than across temperature datasets, as visible in the colour-
coded ranking of the products in Fig. 3. For a given rain-
fall product, the ranking among all rainfall products hardly
varies with different temperature products. The ranking of
all the datasets for the model performance for Q is also
summarized in Table A1. The overall stronger impact of the
choice of the rainfall dataset on EKG of Q also becomes
clear from the V2 of the median EKG (Table S3). For rainfall
datasets, the V2 across temperature datasets varies between
0.5 % for GSMaP-std and 4 % for JRA-55, with an average
V2 of 2 %. For temperature datasets, the V2 of medianEKG of
Q across rainfall datasets varies between 10 % for MERRA-
2 and 12 % for ERA5, with an average V2 of 11 %. This re-
sult suggests that the choice of rainfall dataset has a stronger
impact on the EKG of Q than the choice of a temperature
dataset.

The analysis of the components of EKG (i.e. the Pear-
son correlation rKG, the bias βKG and the variation γKG) re-
veals that, when choosing a rainfall dataset, there is more
uncertainty in the bias of Q (V2 = 14 %) than in its vari-
ability (V2 = 6 %) and in its dynamics (V2 = 3 %), which is
in agreement with the work of Thiemig et al. (2013). De-
tailed results on the performance for Q (i.e. ENS, ENSlog,
EKG, rKG, βKG and γKG) and the ranking of the datasets with
separate results for the calibration and evaluation periods are
provided in the Supplement (Tables S1–S18, Figs. S17–S26).

3.2 Model performance for terrestrial water storage

The model performance for the temporal dynamics of
monthly terrestrial water storage (St) compared to the

GRACE product is shown in Fig. 4 (see the Supplement for
monthly time series, Figs. S38–S42). The average Pearson
correlation coefficient (r) of St for all datasets in the en-
tire VRB is 0.80, with discrepancies across climatic zones.
The driest and wettest climatic zones show the lowest per-
formances, i.e. Sahelian (r = 0.67) and Guinean (r = 0.60)
zones, compared to the intermediate climatic zones, i.e.
Sudano-Sahelian (r = 0.72) and Sudanian (r = 0.79) zones.
Table A1 provides the ranking of all the meteorological
datasets for the model performance for St.

The rainfall datasets show different performances across
climatic zones, with ARC showing the highest score for
all the climatic zones except the Guinean zone, where
CMORPH-CRT ranks first. The choice of the rainfall dataset
leads to an average V2 of 15 % for the r of St, while the av-
erage V2 is 5 % for the choice of the temperature dataset.
Detailed results are provided in the Supplement (Tables S19,
Figs. S27–S37).

3.3 Model performance for soil moisture

Figure 5 shows the model performance for the temporal dy-
namics of monthly soil moisture (Su) compared to the ESA
CCI product (see the Supplement for monthly time series,
Figs. S54–S58). The average r of Su for the entire VRB over
all datasets is 0.93. The r of Su decreases from the drier to the
wetter climatic zones: Sahelian (r = 0.94), Sudano-Sahelian
(r = 0.94), Sudanian (r = 0.92) and Guinean (r = 0.86). The
ranking of the meteorological datasets based on the model
performance for Su is provided in Table A1. EWEMBI and
WFDEI-GPCC show the highest performance in the Sahelian
and Sudano-Sahelian zones respectively, while MERRA-2
shows the highest performance in the Sudanian and Guinean
zones. The choice of the rainfall dataset leads to an average
V2 of 4 % for the temporal dynamics of Su, while the average
V2 is 2 % for the choice of the temperature dataset.

The spatial patterns of Su show considerable differences
when using different combinations of rainfall and temper-
ature input datasets, as illustrated in Fig. 6 (see similar
maps for all the meteorological datasets in the Supplement,
Figs. S59–S60). The south–north gradient of increasing arid-
ity is not similarly spread among the rainfall–temperature
dataset combinations. More interestingly, west–east differ-
ences in the spatial patterns of Su can be observed. These
differences in spatial pattern reproduction can also be seen in
the spatial pattern efficiency metric (ESP) of Su for the 102
rainfall–temperature dataset combinations (Fig. 7). The aver-
age ESP of Su in the VRB over all datasets is −0.11.

For the entire VRB, the choice of the rainfall dataset leads
to an average variation of 61 % for the ESP of Su, while
the choice of the temperature dataset involves a variation of
45 %. Lower impacts of data choices are observed in the cli-
matic zones where the climate is homogeneous as compared
to the entire VRB. The choice of rainfall dataset is more crit-
ical for the ESP of Su in the driest and wettest climatic zones,
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Figure 3. Kling–Gupta efficiency (EKG), Nash–Sutcliffe efficiency (ENS) and Nash–Sutcliffe efficiency of the logarithm (ENSlog) of daily
streamflow (Q) over the simulation period (2003–2012) for 102 combinations of 17 rainfall datasets (y axis) and 6 temperature datasets
(x axis) used as forcing for the hydrological model.

Figure 4. Pearson correlation coefficient (r) of modelled terrestrial water storage compared to GRACE data in four climatic zones in the Volta
River basin over the simulation period (2003–2012) considering 102 combinations of rainfall (y axis) and temperature datasets (subplots on
the x axis) used as forcing for the hydrological model.

i.e. Sahelian (ESP =−0.47, V2 = 25 %) and Guinean (ESP =

−0.40, V2 = 26 %) zones, than the intermediate zones, i.e.
Sudano-Sahelian (ESP =−0.37, V2 = 11 %) and Sudanian
(ESP =−0.39, V2 = 17 %) zones. A smaller impact on the
ESP of Su is observed for the choice of the temperature

dataset: Sahelian (V2 = 8 %), Guinean (V2 = 19 %), Sudano-
Sahelian (V2 = 5 %) and Sudanian (V2 = 9 %) zones. De-
tailed results on the model performance for Su and the rank-
ing of the datasets for the calibration and evaluation periods
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Figure 5. Pearson correlation coefficient (r) of modelled soil moisture (Su) compared to ESA CCI data over the simulation period (2003–
2012) considering 102 combinations of rainfall (y axis) and temperature datasets (subplots on the x axis) used as forcing for the hydrological
model.

Figure 6. Maps of long-term (2003–2012) average of annual soil moisture (Su) obtained with different forcing of rainfall (y axis, blue font)
and temperature (x axis, red font) datasets. The values are normalized between 0 and 1 to emphasize spatial patterns and to use a unique
colour scale.

are provided in the Supplement (Tables S20–S21, Figs. S43–
S53).

3.4 Model performance for actual evaporation

The model performance for the temporal dynamics of
monthly actual evaporation (Ea) compared to the GLEAM
product is shown in Fig. 8 (see the Supplement for monthly
time series, Figs. S72–S76). The average r of Ea for the
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Figure 7. Spatial pattern efficiency (ESP) of soil moisture (Su) over the entire simulation period (2003–2012) for the Volta River basin
(VRB) using different combinations of precipitation and temperature datasets as input for hydrological modelling. Each boxplot has 120
values, corresponding to the number of months. The boxplots are coloured from the best (blue) to the worst performance (red) based on the
median value.

Figure 8. Pearson correlation coefficient (r) of modelled actual evaporation (Ea) compared to GLEAM data over the simulation period
(2003–2012) considering 102 combinations of rainfall (y axis) and temperature datasets (subplots on the x axis) used as forcing for the
hydrological model.

entire VRB over all datasets is 0.93. Similarly to Su, the
r of Ea is higher in the driest climatic zones: Sahelian
(r = 0.94), Sudano-Sahelian (r = 0.94), Sudanian (r = 0.89)
and Guinean (r = 0.81). However, the predictive skill of the
model for the temporal dynamics of Ea is higher than its pre-
dictive skill for Ea in the wetter climatic zones. Table A1
shows the ranking of all the meteorological datasets for the

model performance for Ea. The rainfall datasets show dif-
ferent performances across climatic zones, with the follow-
ing best datasets: PERSIANN-CDR in the Sahelian zone,
EWEMBI and WFDEI-GPCC in the Sudano-Sahelian zone,
and ARC in the Sudanian and Guinean zones. The choice
of the rainfall dataset leads to an average V2 of 4 % for the
temporal dynamics of Ea, while the average V2 is 1.5 % for
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Figure 9. Maps of long-term (2003–2012) average of annual actual evaporation (Ea) obtained with different forcing of rainfall (y axis, blue
font) and temperature (x axis, red font) datasets. The values are normalized between 0 and 1 to emphasize spatial patterns and to use a unique
colour scale.

the choice of the temperature dataset, which aligns with the
findings of Jung et al. (2019).

As for Su, the choice of input datasets has a consider-
able impact on the reproduction of the spatial patterns of Ea
(Fig. 9). Similar maps for all the meteorological datasets are
provided in the Supplement (Figs. S77–S78). It can be ob-
served that different rainfall–temperature combinations used
to force the model result in large discrepancies in the spa-
tial pattern of Ea, especially in the southern region. The
south–north gradient of increasing aridity with west–east
differences is represented differently among the rainfall–
temperature dataset combinations (see e.g. the difference be-
tween the first two columns of the first row in Fig. 9)

The ESP of Ea for the 102 rainfall–temperature dataset
combinations in the VRB is given in Fig. 10. The average
ESP of Ea in the VRB over all datasets is 0.07, which is
higher than for Su(ESP =−0.11). The choice of the rain-
fall dataset for the VRB affects the ESP of Ea on aver-
age by 93 %, while the choice of the temperature dataset
involves a variation 33 %. However, lower impacts of data
choices are observed in the climatic zones. The choice of
rainfall dataset is more critical for the ESP of Ea in the dri-
est and wettest climatic zones, i.e. Sahelian (ESP =−0.99,
V2 = 49 %) and Guinean (ESP =−0.79, V2 = 37 %) zones,
than the intermediate zones, i.e. Sudano-Sahelian (ESP =

−0.35, V2 = 36 %) and Sudanian (ESP =−0.42, V2 = 49 %)
zones. A smaller impact on the ESP of Ea is observed for
the choice of the temperature dataset: Sahelian (V2 = 21 %),

Guinean (V2 = 10 %), Sudano-Sahelian (V2 = 17 %) and Su-
danian (V2 = 21%) zones. Detailed results on the model per-
formance for Ea and the ranking of the datasets for the cal-
ibration and evaluation periods are provided in the Supple-
ment (Tables S22–S23, Figs. S61–S71).

4 Discussion

This study builds upon and expands existing research studies
on the evaluation of meteorological datasets in several ways:

i. the evaluation of the spatial patterns of multiple hydro-
logical processes (i.e. streamflow, actual evaporation,
soil moisture and terrestrial water storage) in addition
to the more classically evaluated temporal dynamic,

ii. the evaluation of a high number of both satellite-based
and reanalysis rainfall datasets considered in combina-
tion with different temperature datasets,

iii. the assessment of the model performance across four
considerably different climatic zones from semi-arid to
sub-humid.

The overall outcome of this analysis is the ranking of all
the meteorological datasets based on their ability to simu-
late various hydrological processes across different climatic
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Figure 10. Spatial pattern efficiency (ESP) of actual evaporation (Ea) over the entire simulation period (2003–2012) for the Volta River
basin (VRB) using different combinations of precipitation and temperature datasets as input for hydrological modelling. Each boxplot has
120 values, corresponding to the number of months. The boxplots are coloured from the best (blue) to the worst performance (red) based on
the median value.

zones in the VRB (Table A1). It is worth noting that the over-
all ranking shows which product is best or worst at simulat-
ing a given hydrological flux or state variable. However, the
ranking does not systematically tell whether a dataset is good
or bad. Only the skill scores can be used to make a judge-
ment on the adequacy of a given dataset to produce plausible
model outputs.

The results show that there is no single rainfall dataset out-
performing the others in reproducing all hydrological pro-
cesses across different climatic zones. These findings align
with previous studies in the sense that there is no rainfall
dataset that is the best everywhere (Beck et al., 2017b; Sylla
et al., 2013). For datasets providing both rainfall and temper-
ature data, the combination of the two variables as model in-
put is not necessarily the best option for obtaining the highest
performance in modelling a given hydrological state or flux
variable. The best rainfall–temperature combinations for the
spatio-temporal representation of each hydrological flux and
state variable are provided in the Supplement (Fig. S15).

The results are primarily valid for the study region in West
Africa, while a wider generalization of the findings should
be made with caution and after repeating similar evaluation
studies at other places. Nevertheless, the key message is that
there is no rainfall dataset of all hydrological processes and
that the best rainfall dataset for temporal dynamics might not
be the best for spatial patterns. Therefore, different rainfall
datasets should be evaluated before choosing the most suit-
able one for hydrological modelling in large catchments.

Moreover, when comparing the results of this study to the
findings of Satgé et al. (2020) based on a point-to-pixel eval-

uation of gridded rainfall datasets in West Africa, it is notice-
able that the ground evaluation might lead to different results
as compared to the hydrological evaluation adopted in the
current study. The skill of a rainfall product in reproducing
ground measurements well under a point-to-pixel evaluation
does not necessarily correlate with its performance for hy-
drological modelling, particularly in large and complex hy-
droclimatic environments such as the VRB.

Despite the efforts to produce a comprehensive evaluation
of the meteorological datasets, the results obtained might
be subject to uncertainties related to the potential model
structural deficiencies as well as errors in the observational
datasets used for the model evaluation (McMillan et al.,
2010; Renard et al., 2010; Gupta and Govindaraju, 2019).
The distribution of the final model parameters (Figs. S79–
S80) highlights the possibility of obtaining equally good
model performances for different parameter sets (i.e. equi-
finality), which can be a justification for model recalibra-
tion. Moreover, it can be noticed that most of the model pa-
rameters are sensitive to the change in meteorological input
datasets (Fig. S79). A detailed analysis of parameter variabil-
ity as a function of input data is beyond the scope of the cur-
rent study but could build the basis of future research, namely
to identify data errors by analysing parameter patterns (e.g.
rooting depth) and resolve potential structural deficiencies of
the mHM model. However, the mHM is chosen because of
its adequacy for the experiment of this study (for model se-
lection, see Addor and Melsen, 2019). The structure of mHM
allows the representation of seamless spatial patterns of hy-
drological processes through the MPR scheme (Samaniego et
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al., 2017). In addition, mHM facilitates parameter regional-
ization and is therefore convenient for large-scale modelling,
and it harnesses the full potential of the forcing datasets as it
is a fully distributed model that has performed well in previ-
ous studies including those in the VRB (e.g. Poméon et al.,
2018; Dembélé et al., 2020b). Regarding the model evalua-
tion, the comparison between the observed and modelled hy-
drological processes is made only with regard to their tempo-
ral dynamics and spatial patterns using bias-insensitive met-
rics, except for streamflow, which limits the potential impact
of satellite data uncertainty.

The model is calibrated only on Q data despite the
known limitations of the Q-only calibration (Demirel et al.,
2018). However, calibrating the model on additional vari-
ables would result in additional model performance improve-
ment that would not be separable from the contribution of the
input datasets to the model performance. Therefore, regard-
ing the goal of this study, theQ-only calibration was the best
option to obtain the impact of various meteorological forcing
datasets on the plausibility of hydrological processes. As no
rainfall dataset ranks first in simulating all the hydrological
processes, this study confirms that model calibration on mul-
tiple variables is a way forward in improving the overall rep-
resentation of the hydrological system and increasing the pre-
dictive skill of hydrological models (Dembélé et al., 2020b;
Dembélé et al., 2020a). The domain-wide calibration strategy
adopted in this study generates a unique parameter set for the
simulation of multiple hydrological processes across several
catchments with different hydroclimatic features, which has
the consequence of having local differences in model perfor-
mance. However, domain-wide calibration has proved to per-
form similarly to domain-split calibration in previous studies
(Mizukami et al., 2017), and it was ideal for this study be-
cause of the interest in simulating seamless spatial patterns,
which might have not been possible with separately simu-
lated portions of the basin. Moreover, the main goal of this
study is to assess the adequacy of the meteorological datasets
for large-scale hydrological modelling, knowing that these
datasets usually have a coarse spatial resolution with pixels
often averaged over regions with strong sub-grid variability.

Finally, the importance of regional evaluation is empha-
sized by this study because some region-tailored datasets
(e.g. TAMSAT and ARC) which are not included in global-
scale studies (e.g. Beck et al., 2017b; Mazzoleni et al., 2019;
Essou et al., 2016) outperform global datasets. The decision
to use a given dataset is motivated not only by the availability
or the accuracy of the data but also by data accessibility (e.g.
storage platforms, openness, format and pre-processing re-
quirement). The findings of this study provide further aware-
ness for the data users and improvement avenues for data
producers in their quest of the most accurate products (e.g.
Massari et al., 2020; Contractor et al., 2020; Berg et al., 2018;
Brocca et al., 2014; Cucchi et al., 2020; Beck et al., 2017a).

5 Conclusion

This modelling study evaluates the ability of multiple com-
binations of rainfall–temperature datasets to reproduce plau-
sible hydrological processes and patterns. The experiment
is done in the Volta River basin with the fully distributed
mesoscale Hydrologic Model (mHM) over a 10-year period
(2003–2012), using 17 rainfall and 6 temperature datasets
from satellite and reanalysis sources. The spatial and tempo-
ral representation of streamflow, terrestrial water storage, soil
moisture and actual evaporation are evaluated using in situ
and satellite remote-sensing observational datasets. The key
findings are as follows:

– No rainfall dataset consistently outperforms all the oth-
ers in reproducing the highest model performance for all
hydrological processes, and the best dataset for the tem-
poral dynamics is not necessarily the best for the spatial
patterns.

– Rainfall datasets have a higher impact on the spatio-
temporal representation of hydrological processes than
temperature datasets, but the latter have a greater influ-
ence on the spatial patterns of soil moisture.

– The large-scale performance for the meteorological
datasets is not always valid for sub-regions in the same
basin.

The findings of this study give a critical insight on the per-
formance for several meteorological datasets in the chal-
lenging hydroclimatic environment of West Africa. They are
expected to foster further research initiatives on improving
the gridded meteorological datasets and further draw users’
attention to the contrasting performances of these datasets
in modelling hydrological fluxes and state variables. Efforts
should be devoted to reporting on the impact of data uncer-
tainties on process representation in hydrological modelling,
especially when model outputs are used for decision-making.

Future studies can test the transferability of the model’s
global parameters across different input datasets, i.e. how re-
liable a parameter set obtained with a given input dataset is
for running the same model with a different input dataset.
The answer to this research question will shed light on the
necessity of model recalibration when using different mete-
orological forcing. Furthermore, the predictive skill of the
model can be improved with a parameter sensitivity analysis
to determine parameters that affect the spatio-temporal rep-
resentation of each hydrological flux and state variable.
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Appendix A: Figures

Figure A1. Mean annual rainfall totals over the period 2003–2012 for 17 rainfall datasets in the Volta River basin.

Figure A2. Mean annual air temperature (average a, maximum b and minimum c) over the period 2003–2012 for six temperature datasets in
the Volta River basin.
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Table A1. Model performance for streamflow (Q), terrestrial water storage (St), soil moisture (Su) and actual evaporation (Ea) using various
rainfall–temperature dataset combinations as model inputs. Each score for a given rainfall product represents the average over individual
combinations with 6 temperature datasets, while the score is the average over combinations with 17 rainfall datasets for each temperature
dataset. The skill scores of the temporal dynamics are obtained with the Kling–Gupta efficiency (EKG), the Nash–Sutcliffe efficiency (ENS)
and the Nash–Sutcliffe efficiency of the logarithm (ENSlog) forQ, and the Pearson’s correlation coefficient (r) for St, Su and Ea. The spatial
pattern efficiency (ESP) is used to assess the spatial representation of Su and Ea. The skill scores are ranked from the best (blue) to the worst
(red). The results are shown for the four climatic zones in the Volta River basin (VRB) over the simulation period (2003–2012).
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