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Abstract. There is a growing interest globally in the spatial
distribution and temporal dynamics of intermittently flowing
streams and rivers, and how this varies in relation to climatic
and other environmental factors. However, biases in the dis-
tribution of stream gauges may give a misleading impression
of spatial-temporal variations in streamflow intermittency
within river networks. Here, we developed an approach to
quantify catchment-wide streamflow intermittency over long
time frames and in a spatially explicit manner, using readily
accessible and spatially contiguous daily runoff data from a
national-scale water balance model. We examined the abil-
ity of the water balance model to simulate streamflow in two
hydro-climatically distinctive (subtropical and temperate) re-
gions in Australia, with a particular focus on low-flow simu-
lations. We also evaluated the effect of model time step (daily
vs. monthly) on flow intermittency estimation to inform fu-
ture model selection. The water balance model showed better
performance in the temperate region characterised by steady
baseflow than in the subtropical region with flashy hydro-
graphs and frequent cease-to-flow periods. The model tended
to overestimate low-flow magnitude mainly due to overesti-
mation of gains (e.g. groundwater release to baseflow) during
low-flow periods. Modelled patterns of flow intermittency
revealed highly dynamic behaviour in space and time, with
cease-to-flow events affecting between 29 and 80 % of the

river network over the period of 1911-2016, using a daily
streamflow model. The daily flow model did not perform bet-
ter than the monthly flow model in quantifying flow intermit-
tency at a monthly time step, and model selection should de-
pend on the intended application of the model outputs. Our
general approach to quantifying spatio-temporal patterns of
flow intermittency is transferable to other parts of the world,
and it can inform hydro-ecological understanding and man-
agement of intermittent streams where limited gauging data
are available.

1 Introduction

Intermittent streams that cease to flow for some period
of most years are prevalent within river networks globally
(Acuna et al., 2014; Datry et al., 2014). Their spatial ex-
tent is projected to increase in regions experiencing drying
trends related to climate change and water extraction for hu-
man uses (Larned et al., 2010). Intermittent streams have
seen increasing research interest over the past decade (e.g.
Costigan et al., 2016; Fritz et al., 2013; Gallart et al., 2017;
Leigh et al., 2016), and there is a growing interest in con-
serving these unique ecosystems. The scarcity of spatially
explicit information on flow intermittency has been identi-
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fied as one of the key issues confronting intermittent stream
management (Acufia et al., 2017). Flow intermittency exerts
primary control on the transfer of energy, materials and or-
ganisms by surface water through river networks (Jaeger et
al., 2019) and is a key driver of riverine ecosystems (Stanley
et al., 1997; Datry et al., 2017; Poff et al., 1997). Therefore,
improved understanding of temporal and spatial patterns in
flow intermittency is fundamentally important for effective
river management.

Previous studies have predominantly relied on the use of
gauged streamflow data to make inferences about the dis-
tribution of intermittent streams in many regions, includ-
ing France (Snelder et al., 2013), Australia (Kennard et al.,
2010b; Bond and Kennard, 2017), Spain, and North America
(de Vries et al., 2015). However, spatial biases in the dis-
tribution of stream gauges used in such studies may give
misleading impressions of spatial patterns and the extent
of streamflow intermittency (Snelder et al., 2013). Alterna-
tive methods for quantifying the extent of intermittent flow
include citizen observation networks supported by regular
reports from trained volunteers (Datry et al., 2016; Turner
and Richter, 2011), the use of electrical arrays by mea-
suring the electrical conductivity of the streambed (Jaeger
and Olden, 2012), development of predictive models for in-
termittent streams (Gonzdlez-Ferreras and Barquin, 2017),
and deployment of unmanned aerial systems (Spence and
Mengistu, 2016). These alternatives are generally appropri-
ate over small spatial extents and short time frames but are
difficult to scale up to larger areas to quantify flow inter-
mittency in space and time. Satellite remote-sensing-based
quantification of flow intermittency (Hou et al., 2019) can
cover larger spatial extents but, for now, remains applicable
only to relatively large rivers (> 30 m in the case of Landsat
imagery) and can be affected by factors such as vegetation
and cloud obstruction.

Spatially contiguous runoff data derived from water bal-
ance models provide another potential alternative to quantify
spatio-temporal variations in flow intermittency. For exam-
ple, Yu et al. (2018) used runoff simulations obtained from
a water balance model, WaterDyn (Raupach et al., 2009),
to generate spatially explicit and catchment-wide estimates
of streamflow intermittency, but only at a relatively coarse
monthly time step. Depending on the application, flow simu-
lations at a finer temporal scale (e.g. daily) may be necessary
to capture the dynamic aspects of hydrological processes.
These kinds of simulations are important to better understand
the causes of flow intermittency at multiple spatial scales and
enable ecologically relevant characterisation of streamflow
properties such as the magnitude, frequency, duration, and
rate of change in high- or low-flow events. However, there
are few examples of studies quantifying spatial and temporal
variation in flow intermittency across river networks using
spatially contiguous daily flow data. That is partly because
streamflow simulation is more challenging at a daily versus
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monthly time step due to higher uncertainties in input data at
this finer temporal scale (Wang et al., 2011).

Water balance models at a daily time step have been in-
creasingly developed around the world (Lin et al., 2019;
Bierkens et al., 2015). One prominent regional example is the
Australian Water Resource Assessment Landscape (AWRA-
L) model (van Dijk, 2010). The AWRA-L model has been de-
veloped by the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO) and the Australian Bureau of
Meteorology (BoM) to simulate the terrestrial water balance
across Australia at a daily time step (van Dijk, 2010; Frost
et al., 2016). The model yields spatially contiguous daily
water availability values gridded at a spatial resolution of
0.05 arcdeg spatial resolution (approximately 5km x 5km)
(Frost et al., 2016). The development of such water balance
models in Australia and other parts of the world provides the
potential to quantify spatial and temporal variation in runoff,
and hence flow intermittency, at a daily time step. However,
this requires an effective and efficient conversion process to
translate gridded runoff estimates to accumulated streamflow
estimates down the river network. This is especially chal-
lenging for large study areas due to lags in runoff, which
can influence the timing of flow peaks and rates of reces-
sion. Additionally, many national-scale water balance mod-
els, including AWRA-L, were calibrated on a large domain
that covers multiple climate conditions (Viney et al., 2015),
providing a best “average” response but potentially inconsis-
tent accuracy of runoff simulations within particular climate
domains. As the predictive performance for ungauged basins
strongly depends on climate settings, this compromise raises
the question as to whether such models can be used to quan-
tify flow intermittency over multiple climate conditions. Al-
though substantial efforts have been made in evaluating hy-
drological models in different climate conditions (Do et al.,
2020; Gudmundsson et al., 2012; Zaherpour et al., 2018; Lin
et al., 2019), a limited number of such studies have focused
particularly on model performance during low-flow condi-
tions, which is particularly important for flow intermittency
quantification.

In this study, we sought to apply spatially contiguous daily
runoff outputs from the AWRA-L water balance model to
quantify the spatial extent and temporal patterns of flow in-
termittency. To assess the accuracy of the AWRA-L model
for daily flow simulations, we first developed a simple
but effective technique to convert runoff to streamflow for
two hydro-climatically distinctive regions. The translation of
gridded runoff to aggregated streamflow/discharge on vec-
tor river flow lines makes AWRA-L outputs more accessible
to fluvial geomorphologists and ecologists, who may intend
to relate daily hydrologic characteristics of rivers to a broad
range of physical and ecological phenomena. We further as-
sessed the uncertainty of the AWRA-L model in capturing
patterns of flow intermittency. Lastly, we evaluated the effect
of time step (daily vs. monthly) on the relative performance
of the model in replicating observed patterns of cease-to-flow
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periods at reference gauges. A previous study conducted at
the monthly time step (Yu et al., 2018) was used to bench-
mark flow intermittency estimated from the AWRA-L model.

2 Study areas

This research was conducted in two hydro-climatically dis-
tinctive regions: south-east Queensland and the Tamar River
catchment in Tasmania (Fig. 1). The south-east Queens-
land (SEQ) region is located in the eastern part of Australia
(Fig. 1a) and comprises five major coastal river basins with
a total area of 21331km? (Fig. 1b). SEQ has 7229 stream
segments and their corresponding sub-catchments according
to the Australian Hydrologic Geospatial Fabric (Geofabric),
with a minimum upstream drainage area of 1.5km?. SEQ
is a region of transitional temperate to subtropical climate
(Fig. 1a) with substantial inter- and intra-annual variation
in rainfall. The majority of rainfall and streamflow usually
occurs in the summer months of January to March, often
followed by a second minor discharge peak between April
and June, but high and low flows may occur at any time of
year (Kennard et al., 2007). Thus, there are a range of flow
regimes, with many streams being intermittent to varying de-
grees. The Tamar River catchment (Tamar) is located in Tas-
mania, an island state off Australia’s south coast (Fig. 1la,
¢). It drains a catchment area of approximately 11215km?,
comprising over one-fifth of Tasmania’s land mass and is lo-
cated in north-east and central Tasmania. According to cli-
mate data from BoM (http://www.bom.gov.au/climate/data,
last access: 10 November 2020), Tamar is characterised by
a temperate climate condition, with rainfall relatively evenly
distributed throughout the year.

3 Data and methodology
3.1 Streamflow gauge data

Gauged daily streamflow data were sourced from the BoM
water data website (http://www.bom.gov.au/waterdata, last
access: 10 November 2020) and were used to assess accuracy
of AWRA-L-modelled streamflow (Sect. 3.3) and to estimate
an appropriate zero-flow threshold of modelled streamflow
data for quantifying patterns of streamflow intermittency
(Sect. 3.4). A total of 25 gauges in SEQ and 15 gauges in
Tamar were selected (Fig. 1b, c) to assess modelled stream-
flow accuracy. These gauges had less than 0.5 % missing val-
ues over the period from 1 January 2005 to 31 December
2017 and had minimal hydrologic modification due to hu-
man activities. A larger set of 43 gauges in SEQ (including
21 of the 25 gauges used by us for streamflow validation) was
used to estimate the zero-flow threshold for this region (see
Yu et al., 2018, for details of stream gauges). The gauges
were widely dispersed throughout each study area and en-
compassed a range of stream sizes, catchment areas (22—
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3881 km? in SEQ; 33-3294 km? in Tamar), and flow regime
types, ranging from highly intermittent to perennial streams
(see results). However, the set of stream gauges used in our
analyses under-represented the frequency of small low-order
streams in both regions. Therefore, we regard the selected
gauges to be representative of the range of environmental
and hydrological conditions in the regions, except for ex-
tremely small catchments with an area < 22km? that likely
have higher cease-to-flow occurrence.

3.2 Conversion from spatially contiguous runoff to
streamflow

AWRA-L is a daily 0.05° grid-based distributed water bal-
ance model that is conceptualised as a small catchment. It
simulates the water flow through the landscape from the
rainfall entering the grid cell through the vegetation and
soil and then out of the grid cell through evapotranspira-
tion, surface water flow, or lateral flow of groundwater to
the neighbouring grid cells (Viney et al., 2015). AWRA-
L was calibrated and validated at the national scale dur-
ing its development by CSIRO and BoM, with 301 gauges
used for calibration and a different set of 304 gauges used
for validation (Zhang et al., 2013). Simulated daily runoff
from the AWRA-L model (version 5) was downloaded from
BoM (http://www.bom.gov.au/water/landscape, last access:
28 November 2018). These data are in gridded format and
require conversion to streamflow for each sub-catchment by
aggregating the gridded runoff data with a hierarchically
nested catchment to simulate streamflow throughout river
networks. The conversion process may or may not need to
use a river routing model to propagate streamflow through
river networks, partly depending on the size of the catchment
of interest (Robinson et al., 1995). If streamflow simulated
with a routing model shows little difference to that without a
routing model, then the conversion process is more efficient
without a routing model, and the readily available runoff data
can be more accessible for potential applications, such as
flow characterisation for ungauged stream segments. In addi-
tion, a conversion process involving a routing model can be
computationally intensive and usually requires parallel com-
puting to speed up the calculations (David et al., 2011b).
Therefore, in this study, we applied two approaches to de-
termine an effective and efficient runoff—streamflow conver-
sion. The first approach coupled a river routing model to
the water balance model, and its effects on flow simula-
tions are compared to the model performance of a lumped
model, which was operated without any river routing (Fig. 2).
As the conversion process was achieved using the “catch-
stats” package (https://github.com/nickbond/catchstats, last
access: 10 November 2020) in the R programming language
(R Development Core Team, 2017), the second approach
was to speed up the conversion process by incorporating a
parallel algorithm to exiting functions of that package. The
conversion process was run on a Griffith University high-
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Figure 1. Locations of the two climatically and hydrologically distinctive regions in Australia (a), south-east Queensland (SEQ) (b) and
the Tamar River catchment (Tamar) (¢), with Geofabric river networks and selected stream gauges (25 and 15 gauges for SEQ and Tamar,
respectively). The climate classification in panel (a) is based on the Koppen classification system (Australian Bureau of Meteorology, 2014).

performance computing node with 12 cores and 12 GB of
RAM.

The hierarchically nested catchment dataset used in this
study was sourced from the Geofabric dataset (Stein et al.,
2014), which provides a fully connected and directed stream
network derived from the national 9 arcsec DEM and flow
direction grid (~250m resolution), and associated catch-
ment hierarchy at the national scale. The routing model ap-
plied in this study was the Routing Application for Paral-
lel computatlon of Discharge (RAPID) model (David et al.,
2011b). RAPID solves the matrix-based Muskingum equa-
tion to route flow through each stream of the river network
and performs streamflow computation for every stream seg-
ment of a river network, including ungauged streams. Var-
ious water balance models have been used in combination
with RAPID (Follum et al., 2017; Lawrence et al., 2011; Lin
etal., 2019).

To test the effects of river routing, we first calculated a se-
ries of flow metrics (Table 1) for flow simulations from both
the lumped and coupled models. The calculated flow met-
rics are commonly used to describe the critical components
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of flow regimes across average-, high-, and low-flow condi-
tions, including flow magnitude and variability; the timing,
frequency, and duration of high and low flows; and rates of
changes in flow events (Poff et al., 1997; Olden and Poff,
2003). Calculation of these streamflow characteristics allows
a comprehensive assessment of the effects of river routing on
streamflow simulations in the two regions. We then applied
the Wilcoxon rank sum test for each flow metric to determine
whether the inclusion of river routing can improve model
accuracy based on a significance level of 5 %. We used the
10th and 90th percentiles of daily flows to respectively de-
scribe low-flow and high-flow thresholds (Leigh and Datry,
2016; Gudmundsson et al., 2019). The calculation process
was conducted with the “hydrostats” package in the R lan-
guage (Bond, 2019).

3.3 Accuracy assessment of modelled streamflow

To evaluate overall model performance in streamflow simu-
lations, we calculated the modified Kling—Gupta efficiency
(KGE; Kling et al., 2012) between the observed and mod-
elled streamflow for all gauges in SEQ and Tamar (Eq. 1).
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Figure 2. Model configurations and their applications in this study. AWRA-L runoff outputs are translated to accumulated streamflow
estimates with the river routing algorithm (coupled model) and without (lumped model). These two model configurations are applied to test
the effect of river routing on streamflow simulation accuracy. Based on the lumped model, we simulate daily streamflow throughout river
networks (daily AWRA-L) and further convert the daily stimulations to monthly outputs (monthly AWRA-L). Both simulations are used
to quantify streamflow intermittency, while results from a different monthly model (monthly WaterDyn) are used to benchmark the flow

intermittency estimates from monthly AWRA-L.

Table 1. Flow metrics used to describe average-, high-, and low-flow conditions across key components of hydrological variation. Note that
a spell independence criterion of 5 d was applied to regard periods between spells of less than 5d as “in spell”.

Conditions Component  Abbreviation Definition Units
Average flow  Magnitude  Avg.magnitude Mean daily flow for entire period m3s!
Variability Avg.magnitude.cv  Coefficient of variation in mean daily flow %
High flow Magnitude  H.magnitude The average annual maximum flow m3s~!
Timing H.timing The mean Julian date of annual maximum unitless
Variability =~ H.timing.cv Coefficient of variation in Julian date of annual maximum flow %
Frequency H.frequency Mean of annual count of spells above the 90th-percentile flow unitless
Duration H.duration Mean duration of all spells above the 90th-percentile flow days
Rate of rise  H.rise Mean rate of positive changes in flow from one day to the next m3s—2
Rate of fall  H.fall Mean rate of negative changes in flow from one day to the next m3 572
Low flow Magnitude  L.magnitude The average annual minimum flow m3 s~
Timing L.timing The mean Julian date of annual minimum unitless
Variability L.timing.cv Coefficient of variation in Julian date of annual minimum flow %
Frequency L.frequency Mean of annual count of spells below the 10th-percentile flow  unitless
Duration L.duration Mean duration of all spells below the 10th-percentile flow days

KGE is an integrated skill metric which measures the Eu-
clidean distance between a point and the optimal point that
has the maximum correlation coefficient, zero variability
error, and zero bias error between the simulated and ob-
served streamflow (Kling et al., 2012; Gupta et al., 2009).
KGE takes values from —1 to 1: KGE=1 indicates per-
fect agreement between simulations and observations, and
KGE < —0.41 indicates that the mean of observations pro-
vides better estimates than simulations (Knoben et al., 2019).
To evaluate model performance in different components of
flow regimes, we also calculated each summary flow met-
ric (Table 1) for observed and modelled streamflow data at
all gauges in SEQ and Tamar and visually compared their
frequency distributions. The use of KGE provides an over-
all assessment of AWRA-L model performance, and the flow
metrics in Table 1 are used to comprehensively evaluate the
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model accuracy for various components of flow regimes, in-
cluding the flow metrics related to low flows. Only six of the
25 gauges in SEQ and three of the 15 gauges in Tamar were
the same as those used to calibrate the AWRA-L water bal-
ance model. This small overlap between the AWRA-L cali-
bration gauge set (n = 301) and the streamflow model valida-
tion gauge set (n =25 in SEQ and 15 in Tamar) means that
potential overestimation of streamflow model performance is
likely to be minimal.

KGE:1—\/(r—1)2+(ﬂ—1)2+(y—1)2
ﬂ_& _CVS_US/PLS
/Jvo’ CV, O'O/Mo’

6]

where KGE is the modified KGE statistic (dimensionless); r
is the correlation coefficient between simulated and observed
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runoff (dimensionless); 8 is the bias ratio (dimensionless); y
is the variability ratio (dimensionless); u is the mean runoff
in cubic metres per second (m3s~1); CV is the coefficient
of variation (dimensionless); o is the standard deviation of
runoff in cubic metres per second (m> s~!); and subscripts s
and o refer to simulated and observed runoff values, respec-
tively.

Furthermore, considering that this study aims to apply
flow simulations to quantify flow intermittency, the model
accuracy of low-flow simulation is particularly important.
The study period (1 January 2005-31 December 2017) was
considered sufficient to assess low flows. The 13-year study
period is close to a discharge record length of 15 years, which
Kennard et al. (2010a) concluded is sufficient to enable ac-
curate estimation of low-flow metrics. In addition, our study
period begins in the middle of the Australian Millennium
drought (2001-2009) and includes a significant low-flow pe-
riod. A preliminary analysis showed that AWRA-L-modelled
streamflow was sensitive to rainfall events, relative to the re-
sponse of observed flow (Fig. 3). This finding indicates that
over-responsiveness of AWRA-L to rainfall may potentially
contribute to overestimation of low flow. We hypothesised
that this over-responsiveness is partly due to overestimation
of in situ gains to low-flow discharge (e.g. groundwater re-
lease to baseflow) as well as underestimation of transmis-
sion losses (e.g. depression filling and evapotranspiration)
during water movement through various flow paths in the
stream network (Davison and van der Kamp, 2008). Given
that we do not have access to the AWRA-L model to di-
rectly adjust model parameters, we instead compared the ob-
served and modelled low-flow magnitude at all gauges in the
two study areas along the gradient of their catchment areas
(22-3881km? in SEQ; 33-3294 km? in Tamar) to test this
hypothesis. We expect that (1) if the difference in low-flow
magnitude occurs at all gauges, then low-flow overestima-
tion can be at least attributed to the overestimation of gains
to low-flow discharge. Alternatively, (2) if the difference in
low-flow magnitude occurs towards the downstream of the
catchment, then low-flow overestimation may be related to
underestimation of transmission losses.

3.4 Quantifying flow intermittency using spatially
contiguous flow simulations

Given the fact that water balance models often over-predict
the magnitude of very low flows due to the difficulties of
quantifying hydrological processes influencing low-flow dis-
charge (Ye et al., 1997; Smakhtin, 2001; Staudinger et al.,
2011), we adopted the same method used in Yu et al. (2018)
to estimate a threshold of zero flow from the model that re-
lated measured zero-flow duration at each gauge to catch-
ment environment variables. We used linear regression to
model the mean annual zero-flow duration (daily time step) at
each gauge as a function of catchment environment variables.
This regression analysis was only conducted in SEQ as most
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gauges in the Tamar catchment had perennial flow. The envi-
ronmental variables were the same as those in Yu et al. (2018)
and included variables related to climate (annual daily max-
imum temperature), catchment geology topography (catch-
ment area, catchment average slope, and catchment average
elevation), and catchment soil properties (catchment average
saturated hydraulic conductivity). Regression models were
developed using all possible predictor variable combinations,
and we selected the “best” model for predicting zero-flow
duration based on the corrected Akaike’s information crite-
rion (AICc) (Hurvich and Tsai, 1989). To estimate the pre-
diction error of the selected model, we applied leave-one-out
cross-validation on the selected 43 gauges and reported pre-
diction error (R?) to estimate the model prediction perfor-
mance. Regression model development and cross-validation
were conducted with the MuMIn and boot packages in R (R
Development Core Team, 2017). Regression analyses were
performed on all combinations of predictor variables, and
the best model with the lowest AICc (—54.2) retained five
covariates, including annual daily maximum temperature,
catchment area, slope, average elevation, and average satu-
rated hydraulic conductivity. The developed predictive model
showed a good model fit with an adjusted R? of 0.71, and
the leave-one-out cross-validation on the regression model
showed relatively good model performance with an average
R? of 0.64. We checked for spatial autocorrelation of the re-
gression model residuals (as recommended by Dormann et
al., 2007) and found they were not significantly autocorre-
lated (Moran’s I = —0.06, p =0.69). Examination of spatial
residual maps further supported this conclusion, with no spa-
tial trends in model residuals apparent.

Next, we used the predictive models to extrapolate esti-
mates of overall flow intermittency (in terms of the propor-
tion of days with zero flow) to each segment throughout the
river network. Finally, for each segment, the time series of
daily runoff was truncated (flows below the threshold were
set to “0”) by adopting an appropriate threshold of “zero
flow” that preserved the proportion of days with flow as es-
timated in the previous step. The adopted thresholds ranged
from 0 to 1.668 m3 s—!, with a median value of 0.002 m3s~!.
We recognise several sources of uncertainty in our approach
to estimating the zero-flow thresholds. The unexplained vari-
ation in the predictive model may be due to the limited num-
ber of environmental attribute covariates used in the model
and hence ability to adequately represent the range of envi-
ronmental processes that influence streamflow intermittency.
Additional uncertainty in model predictions may arise be-
cause the distribution of stream gauges used for model cal-
ibration under-represented the frequency of extremely small
catchments that likely had higher cease-to-flow occurrence.

Based on the modelled daily streamflow from AWRA-L,
we calculated annual flow intermittency as the number of
zero-flow days per year over the period of 2005-2016. To
evaluate the effect of time step (daily vs. monthly) on the rel-
ative performance of AWRA-L in replicating observed pat-
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Figure 3. Comparison of the observed and modelled hydrograph with the rainfall time series at gauges 143010 in SEQ and 181.1 in Tamar.
The over-responsiveness of the model to rainfall is illustrated in the noticeable increase in modelled streamflow when a rainfall event occurred,
while there is no obvious increase in observed streamflow. Rainfall data were sourced from the AWRA-L input.

terns of cease-to-flow periods, we compared model outputs
with those derived from a monthly water balance model —
the WaterDyn model (Fig. 2). Monthly flow intermittency es-
timated from WaterDyn was thus used to benchmark results
from the monthly AWRA-L. To do this, we aggregated daily
outputs to a monthly time step (termed “monthly AWRA-L”
hereafter, Fig. 2). We tried two different aggregation meth-
ods. One considered that the flows for a month were zero
when at least one day in that month had zero flow (termed
“monthly AWRA-L_01" hereafter), and the other considered
that all days in a month must have zero flow for that month
to be zero (termed “monthly AWRA-L_30" hereafter). These
two methods together should provide both upper and lower
bounds of comparing daily and monthly models in estimat-
ing flow intermittency. The WaterDyn model was developed
to provide monthly spatially contiguous water balance data
at the Australian continental scale by CSIRO and BoM with
a similar model structure to AWRA-L (Raupach et al., 2018),
and it has been used to quantify the spatial and temporal pat-
terns of flow intermittency in SEQ following similar meth-
ods to this study (Yu et al., 2018). Modelled flow intermit-
tency from all three sources (i.e. daily and monthly AWRA-
L, and monthly WaterDyn) was also tested against the mea-
sured flow intermittency derived respectively from daily and
monthly observed streamflow data at gauged locations in
SEQ.

Taking advantage of the modelled long-term runoff data
from AWRA-L over the period of 1911-2016, we further
quantified spatial and temporal dynamics of flow intermit-
tency for every stream segment within SEQ, and compared
the results with those from the WaterDyn model over the
same period (Yu et al., 2018). The spatial pattern of flow in-
termittency was represented by the mean annual number of
zero-flow days across the period of 1911-2016 for AWRA-L
and by the mean annual number of calendar months for Wa-
terDyn. The temporal pattern of flow intermittency was ex-
pressed as the proportion of streams with flow intermittency
> 30d and 1 month (termed “intermittent streams’ hereafter)
for AWRA-L and WaterDyn, respectively.
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4 Results

4.1 Negligible effects of river routing on daily flow
simulations

The lumped and coupled (i.e. with routing) models using
AWRA-L-simulated runoff were run in both SEQ and Tamar,
and produced similar values for various flow metrics between
the lumped and coupled models in both regions (Fig. 4; p val-
ues were greater than 0.50 for most flow metrics based on the
Wilcoxon test results). There were noticeable but not statis-
tically significant differences for two flow metrics related to
low flows (the variability in timing and the frequency of low-
flow spells), and only the duration of low-flow spells was sta-
tistically significant (p = 0.03). These results suggested that
the routing algorithm has nearly negligible effects on flow
simulations in our study areas, which is reasonable because
of the small size of the two watersheds. Therefore, in the sub-
sequent analysis, we only used the results from the AWRA-L
lumped model as it is relatively less computationally inten-
sive and was able to maintain a comparable model perfor-
mance to that of the coupled model taking into account the
routing effect.

4.2 Accuracy assessment of modelled streamflow in
SEQ and Tamar

The overall accuracy of streamflow estimated by the AWRA-
L lumped model (referred to as “modelled streamflow” in this
section) was evaluated for 25 gauges in SEQ and 15 gauges
in Tamar. Results suggested a fair to good explanatory value
across all gauges (Fig. 5). The KGE values varied across the
25 gauges in SEQ, ranging from —0.19 (gauge no. 145103)
to 0.76 (gauge no. 143901), with a median value of 0.42,
while the model generally performed better in Tamar and the
KGE values ranged from 0.11 (gauge no. 18219.1) to 0.71
(gauge no. 852.1) across 15 gauges, with a median value of
0.47 (Fig. 5). However, no significant difference was found
in the overall model performance between the two hydro-
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Figure 4. Comparison of hydrological characteristics between the lumped and coupled models in SEQ and Tamar. Refer to Table 1 for
measurement description for each flow metric. Metrics are grouped according to average (Avg), high (H) and low (L) flow conditions. The
values of w statistic and associated p values are also shown to indicate whether there is any significant difference between the coupled and

lumped simulations.

climatically distinctive regions, according to the Wilcoxon
test (w =247, p=0.10).

Concerning model performance in simulating different
components of flow regimes, the modelled streamflow in
SEQ revealed a generally good match with the observed
streamflow across all high-flow metrics and the magnitude
of average flow, but the model tended to overestimate the
variation in the magnitude of average flow (almost 2 times
higher on average), report earlier timing of low flows, over-
estimate the frequency (48 % higher), and underestimate the
duration (74 % lower) of low flows (Fig. 6). Compared to the
model performance in SEQ, the flow simulations in Tamar
showed slightly better performance, predicting well not only
for the high-flow metrics but also for the metrics related to
average flows (Fig. 6). However, flow simulations in Tamar
also exhibited slightly earlier estimations for the timing of
low-flow spells (13 % earlier), overestimations for low-flow
spell frequency (92 % lower on average), and underestima-
tion for low-flow spell duration (58 % lower) (Fig. 6).

Varying degrees of difference in the magnitude of low flow
between the observed and simulation were found among the
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gauges. There appeared to be a tendency toward larger dif-
ferences with increasing catchment area in SEQ but not in
Tamar (Fig. 7). The models appeared to overestimate in situ
gains to low flow in some reaches in both regions, while
underestimating transmission losses in SEQ, suggesting that
overestimation of in situ gains in AWRA-L likely contributes
to the overall overestimation of low flow in downstream
catchments.

4.3 Quantifying flow intermittency using flow
simulations

We calculated annual flow intermittency at gauged locations
in SEQ using three sources of modelled flow (daily and
monthly AWRA-L, and monthly WaterDyn). Annual flow
intermittency calculated using daily AWRA-L flow (i.e. the
average number of cease-to-flow days per year) was tested
against annual flow intermittency estimated using observed
data (Fig. 8a). The AWRA-L model displayed the poten-
tial to be used to estimate flow intermittency at a daily time
step, with a fair match with the observed flow intermittency
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(R2=0.56) in SEQ. Nonetheless, the model tended to over-
estimate flow intermittency for gauges located in relatively
wet areas (e.g. <40d of flow intermittency per year) while
underestimating it for gauges located in relatively dry areas
(e.g. >40d of flow intermittency per year).

Figure 8b shows annual flow intermittency calculated us-
ing monthly AWRA-L flow and monthly WaterDyn flow. In
this case, annual flow intermittency was defined as the av-
erage number of months characterised with zero flow. The
WaterDyn model showed much more accuracy than the two
aggregation methods based on the monthly AWRA-L model

https://doi.org/10.5194/hess-24-5279-2020

in estimating flow intermittency (R2 =0.53, 0.43, and 0.32
respectively for monthly WaterDyn, monthly AWRA-L_01,
and monthly AWRA-L_30). More specifically, the Water-
Dyn model displayed a similar estimation pattern to the daily
AWRA-L model: overestimation in relatively wet areas and
underestimation in relatively dry areas. By contrast, not sur-
prisingly, the two aggregation methods showed the upper
and lower bounds of flow intermittency estimates from the
monthly AWRA-L model: monthly AWRA-L_01 overesti-
mated flow intermittency and monthly AWRA-L_30 under-
estimated flow intermittency at nearly all gauges (Fig. 8b).
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The spatial patterns of flow intermittency derived from
the daily AWRA-L and monthly WaterDyn flow simulations
aligned well for the main stems and some coastal streams,
which were predicted to flow for most of the time (Fig. 9a,
b). There were noticeable spatial differences between model
predictions of streamflow intermittency for low-order in-
land streams. For example, in the western Brisbane River
catchment and the South Coast River catchment, most in-
land streams were predicted by the daily model to flow for a
longer period than by the monthly model; while in the Pine
River catchment and the Logan—Albert River catchment,
many inland streams were predicted by the daily model to
flow for a shorter period (Fig. 9a). Compared to the monthly
WaterDyn model, fewer streams were predicted by the daily
AWRA-L to experience extremely long dry events as well
as less than 1 month of zero flows (Fig. 9c, d). However,
more streams on average (60 and 49 % for the AWRA-L and
WaterDyn model, respectively) were predicted to flow inter-
mittently (> 30d or > 1 month) to varying degrees in SEQ,
which suggests that flow intermittency was prevalent in SEQ,
irrespective of the water balance model used.

https://doi.org/10.5194/hess-24-5279-2020



S. Yu et al.: Evaluating a daily water balance model to represent streamflow intermittency 5289

-
)
S

© AWRA-L (daily) ° (a)

-
Q
=]
\
N
o

=)
(=}

Modelled flow intermittency (days)
[=)]
(=]

o [+
y=0.33x+ 24,74
40 R?=0.56
” o :
20 .8
o 0.7 o
0o -~ o
0 40 80 120 160 200

Observed flow intermittency (days)

10 (b)
- ® WaterDyn (monthly)
= )
= 2 AWRA-L (monthly_01) e coe
o g =
E © AWRA-L (monthly_30} N
g 7/ e
£ -
P e
g’ ="y =0.51x +0.56
€ P )
3 408 et =053
2, - o T .
= )
2
< p
B . y = 0.04x + 5E-05
= o 0 o RE=022

0 Qo o X1

0 1 2 3 4 5 6

Observed flow intermittency (months)

Figure 8. Scatter plots of the observed and modelled flow inter-
mittency by the two models (AWRA-L and WaterDyn model) for
SEQ. Daily AWRA-L and monthly WaterDyn are derived from the
original data from the two models, while AWRA-L monthly_01 and
monthly_30 are flow intermittency estimates using the two different
aggregation methods with different thresholds (1 and 30d, respec-
tively) to classify a month as zero-flowing. The solid line represents
the regression line for each model. The 1:1 line (dashed line) is
plotted for reference.

Temporally, the daily model estimated that the proportion
of intermittent streams in SEQ varied from 29 to 80 % over
the study period (1911-2016), while the monthly model es-
timated the range to be from 3 to 80 % estimated during the
same time span (Fig. 10). The two temporal patterns were
temporally correlated (r =0.71), and similar predictions with
higher proportions of intermittent streams were estimated for
the dry years by both models. Compared to dry years, the two
models exhibited greater differences in predictions for the
wet years, where the daily model tended to predict a higher
proportion of intermittent streams. Overall, the daily model
suggested a drier history in SEQ in terms of flow intermit-
tency than the monthly model. The models successfully iden-
tified the extensive drying associated with severe drought pe-
riods. Notably, the Widespread drought (1914-1920), WWII
drought (1939-1946), and Millennium drought (2001-2009)
were all visible in both two sets of model predictions.
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5 Discussion

The scarcity of information on the spatial and temporal ex-
tent of flow intermittency has been identified as a major bar-
rier for ecologists and managers to understand and protect in-
termittent stream ecosystems (Acuiia et al., 2017). This bar-
rier has been partly overcome in previous studies by using
statistical models relating flow intermittency to surrounding
environmental variables (Snelder et al., 2013; Jaeger et al.,
2019; Gonzalez-Ferreras and Barquin, 2017; Bond and Ken-
nard, 2017), but most of these studies focused on only the
spatial variations in flow intermittency, except for Jaeger et
al. (2019), overlooking its temporal aspects. This issue be-
comes particularly urgent in a time when flow regimes of
streams are changing worldwide, mainly in response to cli-
mate change and water extraction for human uses (Jaeger et
al., 2014; Chiu et al., 2017). Monthly runoff data have been
recently used to quantify flow intermittency for entire river
networks (Yu et al., 2018), and the current study takes one
step further to use daily runoff data in flow intermittency
estimation, which is especially needed for studies aimed at
quantifying ecological responses to short-term flow events
(e.g. frequent zero-flow events within a month). In this study,
we comprehensively examined the ability of a daily water
balance model to simulate streamflow, with a particular fo-
cus on low-flow simulations. We also investigated how to
better choose water balance models to estimate flow inter-
mittency by answering the question of whether daily flow
models outperform monthly flow models at both daily and
monthly scales. Our study can not only inform the estimation
of the spatial distribution of intermittent flow but also reveal
the temporal dynamics of intermittent streams over long time
frames.

5.1 Efficient runoff-streamflow conversion for
eco-hydrological research

Effects of river routing on daily flow simulations were found
to be negligible in SEQ and Tamar, most probably due to the
relatively small size of the two catchments and the relatively
short length of even the longest streams (Cunha et al., 2012).
This can be verified with the concept of time of concentra-
tion, which is commonly used to measure the time needed
for water to flow from the most remote point in a catchment
to the catchment outlet. By following the formula for cal-
culating the time of concentration proposed by Pilgrim and
McDermott (1982) that has been widely used in Australia,
we found the time of concentration in SEQ is around 33 h,
only slightly more than a daily time step (24 h). This illus-
trates why it is difficult for a daily time-step routing model to
effectively capture routing lags in our study domain. A neg-
ligible effect of river routing on flow simulations was also
observed in previous studies (David et al., 2011a). Robinson
et al. (1995) found that catchment size is a primary factor in
determining which process, the hillslope or the channel net-
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work transport component, characterises lags in catchment
runoff down the river network. In areas such as SEQ and
Tamar that have a relatively small catchment size, the inclu-
sion of channel network transport contributes little to the im-
provement of flow simulations. The negligible effect of river
routing in SEQ and Tamar allowed us to simplify the sim-
ulation of daily flows without coupling with a river routing
model. Hence we were able to use existing runoff outputs
from the daily AWRA-L model. Arguably, similar opportu-
nities exist in other small catchments.

5.2 Accuracy assessment of modelled daily streamflow
in two hydro-climatically distinctive regions

Daily streamflow estimates showed a fair to good overall
alignment with the observed flows in both SEQ and Tamar,
with all gauges showing that flow simulations were better
estimates than the mean of observations (KGE > —0.41 at
all gauges). Interestingly, although streamflow was more ac-
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curately simulated in the Tamar than in SEQ (the median
values of KGE were 0.47 and 0.42, respectively), the dif-
ferences between the two hydro-climatically distinctive re-
gions were relatively small. Despite ongoing efforts to cali-
brate AWRA-L against a set of reference scales distributed
across the continent (Viney et al., 2015), this finding was re-
assuring given the much higher variability in rainfall and soil
moisture in SEQ, factors that typically can lead to a more
non-linear streamflow response to rainfall (Poncelet et al.,
2017), which possibly undermines the ability of water bal-
ance models to reliably predict runoff (Sheng et al., 2017).
These results hence bode well for the application of AWRA-
L outputs across diverse hydroclimatic regions.

When looking into the model performance for specific
components of the flow regime, average- and high-flow met-
rics were both modelled well in Tamar, while only high-
flow metrics were modelled well in SEQ. However, in both
regions, the AWRA-L model showed poor performance in
low-flow metrics: overestimating the frequency and under-

https://doi.org/10.5194/hess-24-5279-2020



S. Yu et al.: Evaluating a daily water balance model to represent streamflow intermittency

Widespread
drought

WWiIl

drought
1.0

0.8

prepmp—

0.6

=

0.4

s

0.2

Proportion of intermittent streams in length

-

0.0

1911 1921 1931 1941 1951 1961

5291

Precipitation

Daily model (AWRA-L) Millennium
Monthly model (WaterDyn) drought
0
500
A il
; (il | L Al {1y 2o
i Y ! i\ 3
'y H r v W\ £
! h¥h R 8 1500 =
N s np ] [ HIN <
I v H H/EEEAY ] ! HI 2
(] H A AV AT N ] i HE =
] : : 1 'I ||: 1 I.‘ I : ,IHI :g
b oy i e 1 14 4 2000 S
1o ! (0] S R TR | ] | v ]
] oo b e gl 1 " 3
] oagte v g o gh ' 1 2
o oy (T T ! i &
N T T T N A Vool 2500
| VoY TR B B \ i
H vy [ LI o \ H
H vl v b L T ' 1
y i ) L Y L] \ 1
i i V! [ Voo 3000
H ! \
i ] ] Vol
! 1 \ "
\ \/
v
3500

1971 1981 1991 2001 2011

Figure 10. Comparison of intra-annual variation of the proportion of intermittent streams in length from 1911 to 2016 across SEQ, derived
from streamflow simulations from the daily flow model (lumped, solid grey line) and monthly flow model (dashed grey line). Three severe
droughts in Australia were also presented as transparent grey rectangles: Widespread drought (1914-1920), WWII drought (1939-1946),
and Millennium drought (2001-2009). The time series of annual mean precipitation is shown for reference.

estimating the duration of low flows, consistent with pre-
vious studies (Costelloe et al., 2005; Ivkovic et al., 2014,
Ye et al., 1997; Staudinger et al., 2011). This suggests that
the AWRA-L model is a generally robust model in predict-
ing average and high flows but still needs some improve-
ment to better simulate low flows. Runoff generation pro-
cesses can vary substantially through space and time due
to such factors as variations in soil depth, antecedent soil
moisture, and groundwater connectivity, and this can influ-
ence spatio-temporal variations in low-flow characteristics,
including streamflow intermittency (Zimmer and McGlynn,
2017). However, it is unknown to what extent this contributed
to uncertainty in the simulation of low flows and estimation
in streamflow intermittency in this study. The uncertainty of
AWRA-L in low-flow simulations can be linked to its over-
responsiveness to rainfall, partly caused by overestimation
of in situ gains and underestimation of transmission losses
to low-flow discharge, as shown in SEQ. Previous studies
found that lateral flow exchange between grid cells of land
surface models (e.g. AWRA-L) plays a significant role in re-
distributing soil water (Kim and Mohanty, 2016), and thus
may improve in situ surface/subsurface runoff simulations
(Lee and Choi, 2017). On the other hand, hydrological pro-
cesses involved in transmission losses have been extensively
discussed (Jarihani et al., 2015; Konrad, 2006), and studies
have developed methods to calculate transmission losses for
better flow simulations (Lange, 2005; Costa et al., 2012).
Therefore, low-flow simulations by AWRA-L can possibly
be improved by incorporating lateral flow exchange algo-
rithms and better accounting for hydrological process such as
evapotranspiration from riparian vegetation and infiltration
into channel beds. This improvement is made more likely
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as AWRA-L has been released as a community modelling
system (https://github.com/awracms/awra_cms, last access:
10 November 2020), which allows co-development by the
research community.

5.3 Choose appropriate water balance model to
quantify spatio-temporal dynamics of flow
intermittency

Our results suggest that the temporal resolution of analy-
sis should be dictated by the resolution of input stream-
flow data. More specifically, the daily AWRA-L flow showed
promise for estimating flow intermittency at a daily time
step, while the monthly WaterDyn model was better than the
monthly AWRA-L model in flow intermittency estimation at
a monthly time step. This suggests that monthly flow mod-
els can sometimes outperform daily flow models in quanti-
fying flow intermittency, depending on the intended tempo-
ral resolution of the analysis. For example, daily flow mod-
els may be appropriate for studies aimed at quantifying eco-
logical responses to short-term flow events, while monthly
flow models are more suitable for research requiring the av-
erage degree of flow intermittency at a large spatial or tem-
poral scale, such as examining the effect of flow intermit-
tency on aquatic/streamside vegetation or species distribu-
tions (Stromberg et al., 2005). In addition, our study also
suggested that the suitability of a monthly model (WaterDyn)
for monthly resolution of analysis was not challenged by a
daily model (AWRA-L) simply through aggregating daily
streamflow simulations to a monthly time step. The aggrega-
tion methods used here applied 1 or 30d as a threshold and,
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respectively, either substantially overestimated or underesti-
mated flow intermittency.

Spatially contiguous runoff data were used in this study
to quantify spatial and temporal dynamics of flow intermit-
tency, shedding light on the temporal aspect of flow inter-
mittency that has been often overlooked in previous studies.
Annual flow intermittency in SEQ was shown to vary signif-
icantly from year to year, ranging from 29 to 80 % of total
stream length for the AWRA-L model. However, given the
limited spatial resolution of the Geofabric stream network
data (9 arcsec longitude—latitude resolution, with a minimum
upstream drainage area of 1.5km?) and hence ability to re-
solve the smallest streams, and that small streams are more
likely to be intermittent, the proportion of predicted inter-
mittent streams in SEQ may be underestimated in our study.
Although there are differences in the temporal patterns of es-
timated flow intermittency between the AWRA-L and Water-
Dyn models, neither model estimated intermittency to have
a clear trend over the past century. However, there is still the
concern about the potential shift of some perennial streams
to intermittent streams due to climate change and intense
human activities, as it has been evident in several regions
where the number of low-flow and/or no-flow days is in-
creasing (King et al., 2015; Ruhf et al., 2016; Sabo, 2014).
Jaeger et al. (2014) investigated the effect of climate change
on flow intermittency patterns and found that annual zero-
flow days frequency were projected to increase by 27 % by
mid-century in the Lower Colorado River basin of the United
States. Research looking into projected changes in regional
climate regimes can provide insights into future scenarios
people may face, but such research is still scarce.

The approach developed here to generate spatially contin-
uous estimates of streamflow characteristics (including flow
intermittency) throughout stream networks has potential ap-
plicability to other regions of Australia and globally. All the
data used in this study are available for the Australian na-
tional scale, and similar datasets also exist in other coun-
tries. For example, similar to the Geofabric data (Stein et
al., 2014) used here, the National Hydrography Dataset Plus
(NHDPlus) and HydroATLAS (Linke et al., 2019) provide
hydrographic datasets and hydro-environmental attributes for
national (USA) and global scales, respectively. In addition,
similar to the daily flow model AWRA-L used in this study,
other global- and national-scale hydrologic models are also
available, such as the global WaterGAP model (Dol et al.,
2003), the community Noah land surface model (Noah-MP)
(Niu et al., 2011) in the USA, and the HYPE model (Lind-
strom et al., 2010) in Sweden.

6 Conclusions
In this study, we presented an approach to quantifying spa-

tially explicit and catchment-wide flow intermittency over
long time frames based on spatially contiguous daily runoff
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data from a readily accessible water balance simulation. This
research builds upon previous studies using monthly runoff
data, and paves the way for ecological research looking for
metrics of flow intermittency at a daily time step. By testing
this approach in eastern Australia, we not only confirmed our
previous finding that intermittent flow conditions prevailed in
the majority of streams, but also provided more detailed in-
formation on their spatio-temporal variability at a daily time
step. The proposed approach has potential applicability to
other catchments globally, but our results also highlighted
some complexities that future research should address to help
improve the reliability of model outputs.
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