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Abstract. Assimilating observations of shallow soil mois-
ture content into land models is an important step in esti-
mating soil moisture content. In this study, several modifi-
cations of an ensemble Kalman filter (EnKF) are proposed
for improving this assimilation. It was found that a fore-
cast error inflation-based approach improves the soil mois-
ture content in shallow layers, but it can increase the analysis
error in deep layers. To mitigate the problem in deep layers
while maintaining the improvement in shallow layers, a verti-
cal localization-based approach was introduced in this study.
During the data assimilation process, although updating the
forecast state using observations can reduce the analysis er-
ror, the water balance based on the physics in the model could
be destroyed. To alleviate the imbalance in the water budget,
a weak water balance constrain filter is adopted.

The proposed weakly constrained EnKF that includes
forecast error inflation and vertical localization was applied
to a synthetic experiment. An additional bias-aware assimi-
lation for reducing the analysis bias is also investigated. The
results of the assimilation process suggest that the inflation
approach effectively reduces the analysis error from 6.70 %
to 2.00 % in shallow layers but increases from 6.38 % to
12.49 % in deep layers. The vertical localization approach
leads to 6.59 % of the analysis error in deep layers, and
the bias-aware assimilation scheme further reduces this to
6.05 %. The spatial average of the water balance residual
is 0.0487 mm of weakly constrained EnKF scheme, and
0.0737 mm of a weakly constrained EnKF scheme with in-

flation and localization, which are much smaller than the
0.1389 mm of the EnKF scheme.

1 Introduction

Soil moisture content is one of the most important variables
that affect the water cycle and energy balance through land–
atmosphere interactions, especially evaporation and precipi-
tation (Han et al., 2014; Kumar et al., 2014; McColl et al.,
2019; Pinnington et al., 2018). Adequate knowledge of the
horizontal and vertical distributions of soil moisture at sub-
seasonal to seasonal timescales could improve weather and
climate predictions (Delworth and Manabe, 1988; Pielke,
2001). Alongside snow cover, soil moisture content is an im-
portant component of the meteorological memory of the cli-
mate system over land (McColl et al., 2019; Robock et al.,
2000; Zhao and Yang, 2018). It is also a primary water re-
source for the terrestrial ecosystem and affects runoff (Gusev
and Novak, 2007).

There are several ways to estimate the soil moisture con-
tent. Land surface models can provide temporally and spa-
tially continuous estimates of the soil moisture content but
are limited by the uncertainty in the models’ parameters, er-
rors in the forcing data and imperfect physical parameteriza-
tions (Bonan, 1996; Dai et al., 2003; Dickinson et al., 1993;
Oleson et al., 2010; Yang et al., 2009). Compared with the re-
sults of models, in situ observations of the soil moisture con-
tent provide more accurate profiles (Bosilovich and Lawford,
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2002; Dorigo et al., 2011; Robock et al., 2000); however,
networks of in situ observations are usually too sparse to es-
timate the soil moisture content on a regional scale (Gruber
et al., 2018; Loizu et al., 2018). Satellite remote sensing re-
trievals could provide soil moisture content data on regional
scales (Bartalis et al., 2007; Crow et al., 2017; Entekhabi et
al., 2010; Kerr et al., 2010; Lu et al., 2015; Njoku et al.,
2003), but they are only available for the shallow layer of
the soil and the quality is poor in vegetated areas (Pinnington
et al., 2018; Yang et al., 2009).

Many studies indicated that a better approach to improv-
ing the estimates of soil moisture contents on regional scales
is to constrain land model predictions by assimilating surface
soil moisture data (Crow and Loon, 2006; Crow and Wood,
2003; Reichle and Koster, 2005). It can provide better esti-
mates of the true soil moisture content column states than
the model forecasts (Crow et al., 2017; Lu et al., 2012; Lu et
al., 2015) and can further improve land surface model initial
conditions for coupled short-term weather prediction (Chen
et al., 2014; Santanello et al., 2016; Yang et al., 2016). In par-
ticular, surface soil moisture data can be provided by in situ
observations and passive microwave measurements (bright-
ness temperatures) observed by remote sensing.

A good estimate of the forecast error covariance matrix is
crucial for the compromise between uncertain observations
and imperfect model predictions in data assimilation (An-
derson and Anderson, 1999; Miyoshi, 2011; Miyoshi et al.,
2012; Wang and Bishop, 2003). For the ensemble Kalman
filter (EnKF) assimilation method, the forecast error covari-
ance matrix is estimated using the sample covariance ma-
trix of the ensemble forecasts (Dumedah and Walker, 2014;
Evensen, 1994; Han et al., 2014). However, it is usually un-
derestimated due to sampling and model errors, which can
eventually result in filter divergence (Anderson and Ander-
son, 1999; Constantinescu et al., 2007; Yang et al., 2015).
To address this problem, it is suggested that the forecast co-
variance matrix be multiplied by a factor (Dee and Da Silva,
1999; Dee et al., 1999; Li et al., 2012; Zheng, 2009). This ap-
proach is referred to as inflation, and it becomes particularly
important when the error in the model is large (Bauser et al.,
2018; El Gharamti et al., 2019; Liang et al., 2012; Raanes
et al., 2019; Wu et al., 2013). Therefore, it could work well
in this situation because of the enormous errors in the land
model.

In this study, a scheme for assimilating synthetic observa-
tions of the soil moisture content into land models was devel-
oped based on the EnKF method, which can provide a foun-
dation for further satellite data assimilation. For the synthetic
experiment, the Version 4.0 of the Community Land Model
(CLM 4.0, Lawrence et al., 2011; Oleson et al., 2010) was
used to generate the “true values” and the Common Land
Model (CoLM, Dai et al., 2003) was selected as the fore-
cast operator. The differences in these two models are re-
ferred to the model error in an imperfect land surface model.
The inflation factors are estimated at every observation time

step during the assimilation process by maximizing the like-
lihood function of the difference between the forecast and
the observation (Liang et al., 2012; Zheng, 2009). For as-
similating observations near the surface only, such an infla-
tion approach can improve the estimates of the forecast error
statistics in shallow soil layers but may artificially enlarge
the forecast error statistics in deep soil layers. To avoid the
possibility of decreasing the quality of the estimates in deep
soil layers, a vertical localization with weighting of obser-
vations is adopted (Janjić et al., 2011). In this approach, a
localization function multiplies the weights on the compo-
nents of the state vector according to the distance from the
state layer to the observation. Moreover, the method based
on the maximum likelihood estimation was proposed to esti-
mate the optimal localization scale factor.

A major objective of soil moisture data assimilation is
to address biases in models and observations (Koster et al.,
2009; Reichle and Koster, 2004). In this study, we only as-
sume that models could be biased, while the soil moisture
observations are assumed to be unbiased. Moreover, the soil
moisture observations are restricted in shallow layers, so
there is no observation available to directly correct the mod-
eled soil moisture biases in deep layers. However, bias can be
detected by monitoring observation-minus-forecast statistics
in the assimilation system (Dee and Todling, 2000). Then a
bias-aware assimilation method can be designed to estimate
and correct the systematic errors sequentially with the model
state variables (Dee, 2005). Such a bias correction method is
adopted in this study to detect the performance among differ-
ent assimilation schemes. Furthermore, the analysis error is
decomposed to a short-lived error (random error) and a bias
(system error). It demonstrates that the proposed scheme can
reduce both errors for soil moisture in shallow layers. These
improvement steps can also result in reasonable estimates of
the soil moisture content in the deep layers.

In addition to improving assimilation accuracy, this study
also focuses on the imbalance in the water budget that occurs
during the process of assimilating the soil moisture data. The
terrestrial water budget is a key part of the global hydrologic
cycle. A better understanding of the budget can help us to
improve our knowledge of land–atmosphere water exchange
and related physical mechanisms and, therefore, can improve
our ability to develop models (Pan and Wood, 2006). Gener-
ally speaking, analyses do not conserve the water budget due
to inconsistencies between predictions made by models and
observations (Li et al., 2012; Pan and Wood, 2006; Wei et
al., 2010; Yilmaz et al., 2011; Yilmaz et al., 2012). It is re-
ally a problem if the water balance is violated in a systematic
manner (for example, the model is biased), which suggests a
trouble in data assimilation. Pan and Wood (2006) proposed
a method based on a strong constraint to reincorporate the
water balance. However, this method redistributes the error
among the different terms in the water budget, which could
result in unrealistic estimates (Pan and Wood, 2006; Yilmaz
et al., 2011).
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To overcome this shortcoming, Yilmaz et al. (2011) pro-
posed using a weakly constrained ensemble Kalman filter
(WCEnKF) to reduce the imbalance in the water budget.
In a synthetic study, they concluded that the accuracy of a
WCEnKF-based analysis is close to that of an EnKF-based
analysis but the water budget balance residuals are much
smaller than those of an unconstrained filter. Nevertheless,
the observations of the soil moisture content cover the entire
column and a perfect model was used in their studies. This
is not generally true, especially when only satellite obser-
vations are assimilated. In this study, the experiments were
further designed to assimilate surface observations into an
imperfect land model.

The structure of this paper is arranged as follows: the data
and models used in this study are described in Sect. 2. The
details of the WCEnKF-based methods that incorporate in-
flation, vertical localization and bias-aware assimilation are
provided in Sect. 3. The experimental designs and evalua-
tions of synthetic experiments are set in Sect. 4. The primary
results are given in Sect. 5. The discussion and conclusion
comprise Sects. 6 and 7.

2 Models and data

2.1 Study area

The study area is located in the Mongolian Plateau and com-
prises approximately 9352 square kilometers between 46 and
46.5◦ N and between 106.125 and 107◦ E. The dominant
biome is grassland, and no river flows through the area (see
Fig. 1).

The soil moisture content and related meteorological and
hydrological parameters are monitored by automatic sta-
tions maintained by the Coordinated Enhanced Observing
Period Asian Monsoon Project (CEOP_ AP) (Bosilovich
and Lawford, 2002; Lawford et al., 2004). The CEOP_AP
was launched by the World Climate Research Programme
(WCRP) to develop an integrated global dataset that can
be used to address issues relating to water and energy
budget simulations and predictions, monsoon processes,
and the prediction of river flows. More details can be
found at https://archive.eol.ucar.edu/projects/ceop/dm/insitu/
sites/ceop_ap/ (last access: 15 June 2018; Koike, 2004).

2.2 Forcing data

In this study, synthetic experiments were conducted to ex-
plore the accuracy of the assimilation schemes. The simula-
tions were driven by forcing data (including radiation, wind,
pressure, humidity, precipitation and temperature) from the
0.125◦× 0.125◦ ERA-Interim dataset (Dee et al., 2011) that
had been scaled down to provide a temporal resolution of 1 h.

2.3 Models

The Common Land Model (CoLM) developed by Dai et
al. (2003) is a third-generation land surface model. It com-
bines the best features of three successful models, the
Land Surface Model (LSM, Bonan, 1996), the Biosphere-
Atmosphere Transfer Scheme (BATS, Dickinson et al., 1993)
and the 1994 version of the Chinese Academy of Sci-
ences/Institute of Atmospheric Physics model (IAP94, Dai
et al., 2003), and is being further developed. The primary
characteristics of the model include 10 unevenly spaced soil
layers (see Table 1), 1 vegetation layer, 5 snow layers (de-
pending on the snow depth), explicit treatment of the mass of
liquid water, ice and phase changes within the system of the
snow and soil, runoff parameterization following the TOP-
MODEL concept, a tiled treatment of the subgrid fraction of
the energy and water budget balance (Dai et al., 2003), and
a canopy photosynthesis–conductance mode that describes
the simultaneous transfer of CO2 and water vapor into and
out of the vegetation. The model parameters include data on
the global terrain, elevation, land use, vegetation, land–water
mask and hybrid FAO/STATSGO soil types from the USGS,
which are available at a resolution of 30 arcsec.

Version 4.0 of the Community Land Model (CLM 4.0)
(Lawrence et al., 2011; Oleson et al., 2010) is the land sur-
face parameterization used with the Community Atmosphere
Model (CAM 4.0) and the Community Climate System
Model (CCSM 4.0). The CLM 4.0 includes bio-geophysics,
the hydrologic cycle, biogeochemistry and the dynamic veg-
etation. CLM 4.0 simulates the bio-geophysical processes in
each subgrid unit independently and maintains its own prog-
nostic variables. The parameters used in the CLM4.0 differ
from those used in the CoLM. For example, the soil tex-
ture data are derived from the IGBP soil data, and the land
use data are derived from the UNH Transient Land Use and
Land Cover Change Dataset (http://luh.umd.edu/, last access:
15 June 2018).

In addition to using different parameters, the two mod-
els have different structures. For example, a model of
groundwater–soil-water interactions (Niu et al., 2007; Niu
et al., 2005) has been incorporated into the CLM 4.0, while
zero water flux at the bottom of a soil column is assumed in
the CoLM. Besides, the CLM 4.0 has the same vertical dis-
cretization scheme as the CoLM (see Table 1), which makes
comparing the results of the two models convenient.

3 Methods

3.1 Forecast and observation systems

Using notation similar to that used by Yilmaz et al. (2011),
the forecast system can be written as

y
f
n,t =Mn,t−1

(
yan,t−1

)
, (1)
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Figure 1. The topography and river distribution (a) and the geographical location of the synthetic study area (b).

Table 1. The node depths (cm) of the 10 soil layers in the CoLM model.

Layer 1 2 3 4 5 6 7 8 9 10

Depth (cm) 0.7 2.8 6.2 11.9 21.2 36.6 62.0 103.8 172.8 286.5

where t = 1, . . . , T is the time index, n= 1, . . . , N repre-
sents an ensemble member (in this study, the ensemble size
is set to 100), Mn,t−1 is a CoLM forced by the nth perturbed
atmospheric forcing, and y is a state vector containing 126
variables. The superscript “f ” and “a” specify the forecast
and analysis, respectively.

Let x be the state variables related to the water budget,
which comprises SM, SIC (the soil moisture content and the
soil ice content in percentage at the 10 vertical levels listed
in Table 1), CWC and SWE (the canopy’s water content and
the snow water equivalent in kilograms per square meter,
kg m−2). In this study, only x is updated by data assimila-
tion, while the model propagates changes to the other vari-
ables over time.

For the traditional EnKF, the forecast error covariance ma-
trix Pt is obtained from the ensemble of their anomalies,

Pt =
1

N − 1

N∑
n=1

(
x
f
n,t − x

f
t

)(
x
f
n,t − x

f
t

)T
, (2)

where xfn,t is the component of yfn,t related to the water bud-
get, and xft is the ensemble mean of xfn,t . To avoid over-
estimation of the co-variability between shallow observa-
tions and soil moisture deeper than a threshold layer s (see
Sect. 3.2 for the estimation of s), the following vertical local-
ization function with weighting of observations ρs (Janjić et
al., 2011) will be applied on Pt , i.e.,

ρs (l)= exp(−µs |dl − do|) , (3)

where l represents for the l-level soil layer, and dl and do rep-
resent the depths of l-level soil layer and observation, respec-
tively. |dl − do| is the Euclidian distance between the two lay-
ers.µs is estimated by minimizing the following mean square
error between vertical localization function Eq. (3) and a step
function with threshold layer s,

M(µ)=
∑
l≤s

[
exp(−µ |dl − do|)− 1

]2
+

∑
l>s

[
exp(−µ |dl − do|)

]2
. (4)

The estimated µs is listed in Table 2.
The observations of the soil moisture content are collected

at a depth of 3 cm at 06:00 LT (local time) every day (denoted
by ot ). The observation system is defined as

ot = hxt + εt , (5)

where observational operator h is a 22-dimensional vector
which linearly interpolates the soil moisture at depths of 2.8
and 6.2 cm to a depth of 3 cm, xt represents the true values of
the state variables related to the water budget at the time step
t , and εt is the observational error with mean zero and vari-
ance Rt . Since the main objective of this study is for method-
ology related to linear observational operators, choosing the
linear interpolation as the observational operator is only for
convenience.
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Table 2. Estimated localization scale factor for different cases.

Layer 2 3 4 5 6 7 8 9 10

µs 0.2824 0.1256 0.0587 0.0300 0.0163 0.0093 0.0053 0.0025 0.0001

3.2 Assimilation with water budget constraint

Assimilating data on the soil moisture content usually results
in an imbalance in the water budget. To reduce this imbal-
ance, a weak constraint on the water budget (Yilmaz et al.,
2011) is adopted in this study. The ensemble water budget
residual at time step t can be expressed as

rn,t ≡ βn,t − c
T xan,t , (6)

where

βn,t = c
T xan,t−1+Prt −Evfn,t −Rnfn,t , (7)

where c is a 22-dimensional vector that converts the units to
millimeters (mm) and adds up the states in x, and the diag-
nostic variables Prt , Evfn,t and Rnfn,t (mm) are scalars spec-
ifying the states of the precipitation, evapotranspiration and
runoff, respectively, in each pixel.

The cost function used to estimate the state variables with
the weak water budget constraint (Eq. 6) is

Jn,t (x)= (ot −hx)
TR−1

t (ot −hx)+
(
x− x

f
n,t

)T
P−1
s,t

(
x− x

f
n,t

)
+

(
βn,t − c

T x
)T
φ−1
t

(
βn,t − c

T x
)
, (8)

where

φt =
1

N − 1

N∑
n=1

(
βn,t −

1
N

N∑
j=1

βj,t

)
×

(
βn,t −

1
N

N∑
j=1

βj,t

)T
(9)

is an estimate of the variance of βn,t , and Ps,t represents a
forecast error covariance matrix defined by

Ps,t =
[√
λt

][
ρs
]

Pt
[
ρs
][√

λt

]
, (10)

where Pt is defined as Eq. (2);
[
ρs
]

is a diagonal matrix
which localizes the soil moisture error (i.e., it is ρs defined
by Eq. (3) for the soil moisture contents and 1 for other vari-
ables).

[√
λt
]

is also a diagonal matrix which inflates the
forecast soil moisture error (i.e., it is a scalar λt for the soil
moisture contents and 1 for other variables). λt is estimated
by minimizing −2 times the log-likelihood function of the
difference between the forecast and the observation (Dee and
Da Silva, 1999; Liang et al., 2012; Zheng, 2009),

−2Ls,t (λt )= ln
(
hP s,th

T
+Rt

)
+

(
ot −hx

f
t

)T
(
hP s,th

T
+Rt

)−1(
ot −hx

f
t

)
. (11)

The estimated forecast error inflation factor is denoted as λ̂t .
The perturbed analysis states of the variables related to water
budget can be derived by minimizing Eq. (8), which has the
analytic form

xan,t = x
f
n,t +Pat h

TR−1
t

(
ot + εn,t −hx

f
n,t

)
+Pat cφ

−1
t

(
βn,t − c

T x
f
n,t

)
, (12)

where εn,t is generated from a normal distribution with mean
zero and variance Rt , and

Pat =
(
hTR−1

t h+P−1
s,t + cφ

−1
t cT

)−1
, (13)

its analysis error covariance matrix.
To estimate the optimal threshold layer, define −2 times

the log-likelihood function of the total difference between
the forecasts and the observations,

Ls ≡

T∑
t=1
(−2Ls,t(λ̂t )). (14)

The optimal threshold layer ŝ is selected as the smallest num-
ber s such that Ls is the minimum of {L2,L3, · · ·,Ls+1}. The
final analysis state is the selected corresponding to the opti-
mal threshold layer ŝ. The complete assimilation procedure
with water budget constraint is shown in Fig. 2.

3.3 Bias-aware assimilation

The bias-aware data assimilation proposed by Dee (2005) is
adopted to correct the analysis bias.

Let bt be the estimated bias at time step t and set b1 = 0.
For t > 1,

bt = bt−1− γ P̃s,thT
(
hP̃s,th

T
+Rt

)−1

(
ot −h

(
x̃
f
t − bt−1

))
, (15)

where the scalar parameter γ that controls the magni-
tude of the forecast bias is estimated following Dee and
Todling (2000) (see Eqs. A5–A6 of Appendix A), x̃ft is the
ensemble mean of the perturbed forecast states x̃fn,t from the
analysis state x̃an,t−1, and P̃s,t is the corresponding adjusted
forecast error covariance (see Eq. A2 of Appendix A).

Then the perturbed assimilated states are

x̃an,t= x̃
f
n,t − bt−1+ P̃at h

TR−1
t

(
ot + εn,t −h

(
x̃
f
n,t − bt−1

))
+ P̃at cϕ̃

−1
t

(
β̃n,t − c

T
(
x̃
f
n,t − bt−1

))
, (16)
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Figure 2. The assimilation procedure and localization scale factor
estimation in the experiments. All of the equations are in accordance
with that described in the text.

where β̃n,t , φ̃−1
t and P̃at are defined by Eqs. (A7)–(A9) in

Appendix A, respectively.

4 Synthetic experiments

4.1 Experimental design

To investigate the performance of the WCEnKF-based meth-
ods that incorporate inflation, vertical local localization and
bias-aware assimilation, synthetic experiments were per-
formed using the CoLM. Unlike the “perfect model” assump-
tion used in Yilmaz et al. (2011), the assumptions of this
study account for the error in the model, especially the struc-
tural error. Because there were structural differences in the
models of the water cycle (see Sect. 2.3) used in the two mod-
els, CLM 4.0 was used to generate the “true values” (i.e., to
perform a reference run) for the synthetic experiments and
CoLM was selected as the forecast operator (i.e., to perform
an open-loop run). Therefore, the CLM 4.0 and the CoLM
were both integrated on a 0.125◦ grid (see Fig. 1 for the loca-
tions) with a time step of 1 h. The assimilation time was set to
06:00 LT every day. The assimilation experiments were con-
ducted with five scenarios: the traditional ensemble Kalman
filter (EnKF), a weakly constrained ensemble Kalman filter
(WCEnKF), a weakly constrained ensemble Kalman filter
with inflation (WCEnKF-Inf), a weakly constrained ensem-

ble Kalman filter with inflation and localization (WCEnKF-
Inf-Loc), and a weakly constrained ensemble Kalman fil-
ter with inflation, localization and bias-aware assimilation
(WCEnKF-Inf-Loc-BA).

Synthetic observations were obtained by interpolating
ˆSMt to a depth of 3 cm and adding noise with a normal

distribution (N(µ= 0,σ = 0.5 %)). The initial state x0 was
generated by running the CoLM from 1 October 2002 to
1 June 2003. Each component of the initial state was per-
turbed using an independent standard Gaussian random vari-
able times 5 % of magnitude of the component. The forcing
data were perturbed in the manner described in Yilmaz et
al. (2011). The synthetic experiments were conducted from
1 June to 1 October 2003. The state variables for each pixel
were updated independently.

4.2 Validation statistics

4.2.1 Model error and bias

The model errors are defined as the difference between the
actual values and the model’s predictions based on true initial
values, and the bias is the average of the error in the model
during the relevant period. Let xt denote the true values of the
soil moisture content at time t for a location and vertical soil
layer. xMt denotes the model-predicted soil moisture from the
true state at the previous time step t−1. The model’s bias and
error variance for one step can be written as

bM =
1
ats

ats∑
t=1

(
xMt − xt

)
, (17)

vM =
1
ats

ats∑
t=1

(
xMt − xt

)2
, (18)

where ats is the number of time steps over which the obser-
vations made at 06:00 LT each day are assimilated.

4.2.2 Validation of analysis soil moisture

The true soil moisture content values from 07:00 to 05:00 LT
the next day are used to validate analysis states. For a loca-
tion and vertical soil layer, let xt,h be the true soil moisture
content at hour h on day t , and let xft,h represent the fore-
casted soil moisture content at hour h from analysis state xat
at 06:00 LT on day t . The analysis bias is defined as

ba =
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h

)
. (19)

The analysis error variance is defined as
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va =
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h

)2

=
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h− ba

)2
+ b2

a . (20)

(See Appendix B for the proof.)

4.2.3 Water balance

Following Yilmaz (2011), the water budget imbalance at the
location is evaluated using the water balance residual,

R =
1

Nats

ats∑
t=1

N∑
n=1

rn,t , (21)

where N is the ensemble size, ats is the number of assimila-
tion time steps, and rn,t is the ensemble water budget residual
at time step t as defined in Eq. (6).

5 Results

In the synthetic experiments, the magnitudes of the model’s
bias and error were calculated using Eqs. (17) and (18), re-
spectively, and are shown in Fig. 3. It shows that the model’s
bias was almost negative from Fig. 3a. The negative bias in
the surface layer was the result of a combination of a lower
surface roughness and a larger leaf area index in the CoLM;
these values led to more soil evaporation and more canopy in-
terception and could result in a smaller amount of water infil-
trating the soil than the amount modeled using the CLM 4.0.
In the CoLM, the porosity of each layer was less than it was
in the CLM 4.0, which retained less water and contributed
to the negative bias of the upper nine layers. However, the
magnitude of the bias increased to 2 % in the bottom layer.
The significant difference between the two models at the bot-
tom layer could be ascribed to their different boundary condi-
tions. Interactions between the soil moisture content and the
ground water at the bottom of the soil column were modeled
in the CLM 4.0 (Oleson et al., 2010) but not in the CoLM.
The error in each model (Fig. 3b) fluctuated in a manner sim-
ilar to that of the model’s bias. Unbiased observations are
necessary for correcting bias in a model, which is not possi-
ble in many realistic applications, especially in assimilating
remote sensing retrievals. Since satellite observations of the
soil moisture content of deep layers are unavailable, only re-
moving the bias in shallow layers would introduce error in
model dynamics.

5.1 Forecast error inflation and vertical localization

In the synthetic experiments, the study domain comprised
40 pixels. At each point in the grid-scale threshold layer, the

Figure 3. The areal average of the model’s bias (a) and error (b) for
one step in the soil moisture content between the CoLM and the
CLM 4.0. The horizontal axis represents the layer depth.

localization scale factor µs was determined independently.
Therefore, in total nine sets of experiments with different lo-
calization scale factors (see Table 2) were conducted sepa-
rately. Among these experiments, the “optimal” case for each
pixel was defined as the case in which the column- averaged
analysis error (Eq. 20) was minimized (shown in Fig. 4). Ac-
cording to Fig. 4a, the corresponding threshold layer s of µs
was generally between 5 and 6 in both cases, which could
be ascribed to the homogeneous soil texture and land cover.
In the WCEnKF-Inf-Loc, there were 19 pixels in which the
threshold layers were “optimal,” and the layers selected in the
other pixels were suboptimal (most were roughly one layer
away from the “optimal” case). As shown in Fig. 4b, the spa-
tial average of the root analysis error variance (Eq. 20) of
the WCEnKF-Inf-Loc (4.09 %) was comparable with the op-
timal value (3.84 %) even though s was not selected on the
basis of minimizing the analysis error.

The spatial average of the root analysis error variance
in each layer in the schemes with (WCEnKF-Inf-Loc and
WCEnKF-Inf) and without (WCEnKF) inflation are dis-
played in Fig. 5a. Above 36.6 cm, the analysis errors of the
schemes without inflation (6.70 %) were substantially larger
than those of the schemes with inflation (2.00 %) for the syn-
thetic experiments. This suggested that inflation provided a
better estimate in the layers close to the observation. When
no inflation was performed, the accuracy of the soil moisture
content was barely improved over that of the open loop (not
shown here).

By comparing the schemes with (WCEnKF-Inf-Loc) and
without (WCEnKF-Inf) vertical localization, the impact of
this approach on the assimilation accuracy in each layer is
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Figure 4. The threshold layers and analysis error for each pixel
in the synthetic experiment. Graph (a) illustrates the optimal and
WCEnKF-Inf-Loc threshold layers of each pixel. Graph (b) shows
the column RSME of each pixel in different schemes with water
balance constraint (Optimal, WCEnKF-Inf-Loc, WCEnKF-Inf and
WCEnKF). The horizontal axes of (a) and (b) represent the 40 pix-
els in the study domain.

shown in Fig. 5a. Because the threshold layer of the local-
ization function ρs was layer 6 (36.6 cm) for 28 of the pixels
(see Fig. 4a), the spatial average of root analysis error vari-
ance of the results of the WCEnKF-Inf-Loc is almost identi-
cal to that of the results of the WCEnKF-Inf for depths above
36.6 cm. In contrast, inflation increased the analysis error in
the soil moisture content of the deep layers in the WCEnKF-
Inf from 6.38 % to 12.49 %. In this model, the sample error
covariances of the moisture contents of shallow and deep soil
were inflated by a factor greater than 6 (the average inflation
factor was 6.25). This could lead to larger assimilation errors
for deep soil moisture profiles in the WCEnKF-Inf. There-
fore, inflation should be used with vertical localization to re-
duce the spurious covariance resulting from the covariance
inflation-based approach.

As it was in the synthetic experiments, vertical localiza-
tion (WCEnKF-Inf-Loc) was helpful in avoiding erroneous
estimates of the soil moisture contents at lower levels (in the
WCEnKF-Inf). A comparison of the analysis error at a depth
of 3 cm (i.e., the depth of the assimilated observations was
3 cm) in the models with (WCEnKF-Inf and WCEnKF-Inf-
Loc) and without (WCEnKF) inflation showed that the infla-
tion technique significantly reduces the analysis error at the
depth at which observations are made.

To investigate the role of bias correction, the spatial aver-
aged root analysis error variances (Eq. 20) of WCEnKF-Inf-
Loc-BA and WCEnKF-Inf-Loc were compared. According
to Fig. 5a, the spatial averaged root analysis error variances
of the two schemes were comparable with each other (2.12 %

Figure 5. The assimilation results in each layer for the five schemes:
a weakly constrained bias-aware ensemble Kalman filter with fore-
cast error inflation and vertical localization (WCEnKF-Inf-Loc-
BA), a weakly constrained ensemble Kalman filter with fore-
cast error inflation and vertical localization (WCEnKF-Inf-Loc), a
weakly constrained ensemble Kalman filter with forecast error infla-
tion (WCEnKF-Inf), a weakly constrained ensemble Kalman filter
(WCEnKF), and the traditional assimilation (EnKF). Graphic (a) is
for spatial averaged analysis error of the soil moisture content, (b)
is for the short-lived error and (c) is for the analysis bias.

for the WCEnKF-Inf-Loc-BA and 2.16 % for the WCEnKF-
Inf-Loc) in the layers that were shallower than 36.6 cm. This
could be due to the observations being closer to the shallow
layers and the vertical localization approach being reason-
ably effective at reducing the bias. However, for the layers
that were deeper than 62.0 cm, the averaged root analysis er-
ror of the WCEnKF-Inf-Loc-BA (6.05 %) was less than that
of the WCEnKF-Inf-Loc (6.59 %).
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Figure 6. The box plot of the water balance residual in all 40
pixels for the WCEnKF-Inf-Loc-BA, WCEnKF-Inf-Loc,WCEnKF-
Inf, WCEnKF and EnKF assimilation schemes.

5.2 The water budget constraint

In the synthetic experiment, the weak constraint on the wa-
ter budget reduced the water balance residual significantly
in each pixel and the results are shown in Fig. 6. It shows
that the spatial average of the water balance residual of the
WCEnKF scheme was 0.0487 mm, which was much smaller
than that of the EnKF scheme (0.1389 mm). Therefore, the
assimilation scheme with a water budget constraint can in-
deed reduce the water balance residuals relative to the as-
similation scheme without a water budget constraint, which
is consistent with the results of previous studies (Yilmaz et
al., 2011; Yilmaz et al., 2012). The interquartile range of the
water balance residuals in the 40 pixels for the WCEnKF
scheme was 0.0042 mm, which was less than half of that for
the EnKF scheme (0.0098 mm). The reduced spread of the
water balance residuals signals a more stable water balance
budget with the water budget constraint.

The spatial averages of the water balance residual for
WCEnKF-Inf, WCEnKF-Inf-Loc and WCEnKF-Inf-Loc-
BA were 0.0834, 0.0737 and 0.0723 mm, respectively. The
corresponding interquartile range was 0.0079, 0.0051 and
0.0072 mm, respectively. They are still much smaller than
those for the EnKF scheme, despite a greater increase com-
pared to WCEnKF. This demonstrates the weak water bud-
get constraint is still effective in reducing the magnitude and
spread of the water imbalance, despite the association of
more complicated assimilation approaches.

6 Discussion

6.1 Covariance inflation and vertical localization

In this study, the cost function used to estimate the state vari-
ables with the weak water budget constraint (Eq. 8) consists
of three parts, which are related with observations, model

forecasts and water residuals (Yilmaz et al., 2012). It is repre-
sented as a summation of three scalars, no matter how many
observations are assimilated. Therefore, inflating one scalar
(e.g., model forecasts) seems to have a similar impact to de-
flating another one (e.g., water residual), and in particular
the weights associated with this problem can be shown as
a function of the ratio of these three scalars. Specifically,
inflation of forecast error covariance has a somewhat simi-
lar impact to deflation of the water balance residual covari-
ance. If the focus of a study or experiment is reducing water
balance, WCEnKF could be a better choice and computa-
tionally faster than the WCEnKF-Inf and WCEnKF-Inf-Loc
schemes. Accordingly, it is plainly obvious that the water bal-
ance residual of the WCEnKF-Inf scheme is larger than that
of the WCEnKF scheme. However, the objective in this study
is to reduce water balance without significantly increasing
the analysis error. Since the analysis errors for WCEnKF in
the layers shallower than 36.6 cm are significantly larger than
those for the schemes with inflation, WCEnKF is not pre-
ferred.

According to Fig. 5a, the covariance inflation improved the
estimates of the soil moisture content in the shallow layers
independently of whether vertical localization was used. This
is primarily because the observation operator, h, is the linear
operator that was used to interpolate the soil moisture content
at depths of 2.8 and 6.2 cm to a depth of 3 cm. Then, the
likelihood function for the inflation factor (Eq. 11) depends
only on the observations and predictions of the soil moisture
content in the second and third layers. The mean value of
the inflation factor is 6.25 for WCEnKF-Inf, indicating that
the initial forecast spread is not large enough. This leads to
an improvement in the forecast error statistics in the shallow
layers, and to further improvements in the assimilated soil
moisture contents of those layers.

However, the soil moisture contents of the deep layers are
not directly related to the inflation factor. Inflating the fore-
cast errors in the deep layers leads to an overestimation of
the corresponding forecast error covariance and could lead
to larger analysis errors in the deep layers (see WCEnKF-Inf
in Fig. 5a). Therefore, in this study, the vertical localization
approach was developed to prevent soil moisture over-fitting
for deep layers. Using all observations for threshold s is only
for model selection (from the 10 layers), not for fitting pa-
rameters. When vertical localization is used, the soil mois-
ture contents of the deep layers are not significantly updated.
Consequently, larger errors are avoided in the deep layers
(see WCEnKF-Inf-Loc in Fig. 5a).

Compared to traditional EnKF without inflation and local-
ization, although mainly the soil moisture contents of lay-
ers above the threshold layer (usually the fifth or sixth layer)
were updated at each time step during the assimilation pro-
cess when the WCEnKF-Inf-Loc was used, Fig. 5a shows
that the soil moisture contents of the layers below the thresh-
old layer, especially the sixth and seventh layers, are also im-
proved. This may be because the model propagates changes
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in the shallow layers downward, adjusting the soil moisture
contents of the deep layers. Because the soil moisture content
of layers above the threshold layer was improved during the
previous time step, this process results in better predictions of
the soil moisture contents of layers below the threshold layer
and, therefore, reduces the analysis error in layers below the
threshold layer.

6.2 Bias correction

Geophysical models are never perfect and usually produce
estimates with biases that vary in time and in space (Reichle,
2008). Therefore, bias correction is important for assimi-
lating data into models. In this study, only soil moisture in
shallow layers can be observed (in order to mimic the satel-
lite observation), so the bias for the soil moisture in deeper
layers cannot be entirely removed using only the observa-
tions. However, bias can be detected by monitoring statis-
tics of observation-minus-forecast residuals in the assimila-
tion systems. Therefore the bias-aware assimilation proposed
by Dee (2005) was further applied to reduce the bias of soil
moisture in all layers.

For further evaluating the efficacy of the bias-aware as-
similation scheme, the analysis error variance was decom-
posed to a short-lived component (Fig. 5b) and a bias com-
ponent (Fig. 5c) for the synthetic experiment. It shows that
for the bias-blind data assimilation scheme (WCEnKF-Inf-
Loc), both short-lived errors and biases are reduced in the
layers close to observation, while maintaining similar levels
to those for EnKF for the deeper layers. The covariance in-
flation can play an important role in bias reduction. Bias can
only be seen during long assimilation periods. At an instant
time, bias and error are mixed. For the traditional EnKF, the
forecast error covariance matrix obtained from the ensem-
ble of their anomalies (Eq. 2) mainly represents short-lived
error, so it has to be inflated to include error related to bias.
Moreover, the bias could be further reduced by the additional
bias-aware assimilation.

There are other bias estimation approaches in data assim-
ilation, for example, treading bias as model variables and
estimate in assimilation (De Lannoy et al., 2007; Dee and
Da Silva, 1998), adjusting the state variable of the forecast
model (not only their covariance matrix) in each forecast
step (Zhang et al., 2014, 2015), and addressing the biases in
the model and observations by rescaling their cumulative dis-
tribution functions (Koster et al., 2009; Reichle and Koster,
2004). The scheme proposed here can provide a baseline to
validate the efficacy of these approaches and could be further
improved after these bias corrections.

6.3 Broader implications

In our schemes, the canopy’s water content was directly up-
dated by the soil moisture observations, following the ap-
proach of previous studies (Yilmaz et al., 2011; Yilmaz et

al., 2012). The canopy’s water content (CWC) and snow wa-
ter equivalent (SWE) are related to the water budget. If the
water budget constraint is absent, they are normally not up-
dated, and the vegetation module transports the water into
the vegetation layer. However, the present study focused on
the assimilation with the water budget constraint, so updat-
ing CWC and SWE would help to reduce the water budget
residuals.

For the assimilation with the water budget constraint but
without updates of CWC and SWE, the state variables re-
lated to the water budget are decomposed as x = (1x,2x),
where 1x comprises SM and SIC, and 2x comprises CWC
and SWE. c = (1c,2c) converts the units of x = (1x,2x) to
millimeters (mm). The assimilation for the non-updated 2x

can be achieved by substituting x and βn,t in Sect. 3.2 with
1x and 1βn,t , respectively, that is

1βn,t=1c
T
1 x

a
n,t−1+2c

T
2 x

f

n,t−1+Prt −Evfn,t −Rnfn,t , (22)

where Prt , Evfn,t and Rnfn,t are diagnostic variables speci-
fying the states of the precipitation, evapotranspiration and
runoff, respectively. In this way, the canopy’s water content
are not updated and the vegetation module transports the wa-
ter into the vegetation layer. In this study, the range of the es-
timated CWCs for all assimilations with or without an update
of 2x is only about 0.005 mm. Considering the estimated wa-
ter budget residuals are between 0.05 mm and 0.14 mm and
there is no SWE in the summer period, we conclude that an
update of CWC has a little impact on water balance in this
study.

The highest computational cost in the assimilation system
is computing the localization function at each model grid
cell. For the synthetic experiments with the CoLM model and
40 grids, it takes about 24 h runtime on the personal worksta-
tion. For global data assimilation with 2◦ resolution it could
take about 3 months. However, the super-server and paral-
lel computation can significantly shorten the computational
time. A regional scale using soil texture or climate regimes
can also be used to delineate different regions. In this way,
the computational time of global data assimilation can be fur-
ther reduced.

In the near future, we plan to validate the major con-
clusions under different soil conditions and land cover
types. Vertical localization, which uses adjacent observa-
tions, should also be tested in future work. More detailed
analyses of the bias correction for assimilating remote sens-
ing retrievals should be performed. The response of the ana-
lytic soil moisture content to weather predictions also needs
to be investigated. Completing these studies should improve
the state of research into land-atmosphere interactions.

7 Conclusions

In this study, observations of the soil moisture content at a
depth of 3 cm were assimilated using an ensemble Kalman
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filter with several improvements. Firstly, an adaptive forecast
error inflation based on maximum-likelihood estimation was
adopted to reduce the analysis error. This study supports the
idea that the proper form of the forecast error covariance ma-
trix is crucial for reducing the analysis error near the layers in
which observations are made. Secondly, an adequate vertical
localization for the ensemble-based filter was proposed, as-
sociated with the forecast error covariance inflation, to avoid
misestimates of the soil moisture contents of deep layers.
Lastly, a constraint on the water balance was used in this
study to reduce the water budget residual substantially with-
out significantly changing the assimilation accuracy. The ex-
periment results of synthetic study show that the WCEnKF-
Inf-Loc assimilation scheme can reduce the analysis error
from 6.70 % to 2.00 % in the shallow layers, with both the
short-lived analysis error and the analysis bias reduced. It
also leads to a rational water budget residual with spatial
average 0.0737 mm, which is much smaller than 0.1389 mm
of the EnKF scheme. The bias-aware assimilation scheme is
potentially useful to further reduce the analysis error arising
from model bias.
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Appendix A: A bias-aware assimilation scheme

For correcting the bias of the analysis states xan,t in Eq. (12),
the bias-aware assimilation (Dee, 2005) is applied.

Let bt is the forecast bias at time step t , and set b1 = 0.
Then

bt = bt−1− γ P̃s,thT
(
hP̃s,th

T
+Rt

)−1

(
ot −h

(
x̃
f
t − bt−1

))
. (A1)

where x̃ft is the ensemble mean of the perturbed forecast
states x̃fn,t predicted from the perturbed analysis state at pre-
vious time step x̃an,t−1, the forecast error covariance matrix
is in the form

P̃s,t =
[√
λ̃t

][
ρs
]

P̃t
[
ρs
][√

λ̃t

]
, (A2)

where the localization threshold s is adopted from the bias-
blind scheme documented in Sect. 3.2,

P̃t =
1

N − 1

N∑
n=1

(
x̃
f
n,t − x̃

f
t

)(
x̃
f
n,t − x̃

f
t

)T
, (A3)

and the inflation factor λ̃t is estimated by minimizing

−2L̃s,t (λ̃t )= ln
(
hP̃s,th

T
+Rt

)
+

(
ot −hx̃

f
t

)T
(
hP̃s,th

T
+Rt

)−1(
ot −hx̃

f
t

)
. (A4)

The scalar parameter γ in Eq. (A1) that controls the mag-
nitude of the forecast bias estimates, is derived by

γ =
µ

1−µ

(
Rt +hP th

T
)(
hP th

T
)−1

, (A5)

where µ is estimated by minimizing the following objective
function (Dee and Todling, 2000)

f (µ)=
∑
n

n2
{∣∣∣[1−µ/(1− (1−µ)e−2πi1t/n

)]
[∑

t

(ot −hx
f
t )e
−2πi1t/n

]2(
Rt +hP th

T
)−1
| − 1

}2
(A6)

Then the perturbed analysis states is calculated as

x̃an,t= x̃
f
n,t − bt−1+ P̃at h

TR−1
t

(
ot + εn,t −h

(
x̃
f
n,t − bt−1

))
+ P̃at cϕ̃

−1
t

(
β̃n,t − c

T
(
x̃
f
n,t − bt−1

))
. (A7)

where

β̃n,t = c
T x̃an,t−1+Prt −Ev

f
n,t −Rn

f
n,t , (A8)

φ̃t =
1

N − 1

N∑
n=1

(
β̃n,t −

1
N

N∑
j=1

β̃j,t

)

×

(
β̃n,t −

1
N

N∑
j=1

β̃j,t

)T
(A9)

and

P̃at =
(
hTR−1

t h+ P̃−1
s,t + cφ̃

−1
t cT

)−1
, (A10)

Appendix B: Proof of Eq. (21)

For a location and vertical soil layer, the analysis error vari-
ance in the synthetic experiment is defined as

va =
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h

)2

=
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h− ba + ba

)2

=
1

23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h− ba

)2

+ b2
a +

2ba
23ats

ats∑
t=1

29∑
h=7

(
x
f
t,h− xt,h− ba

)
(B1)

From the definition of analysis bias (Eq. 19), the last term
on the right hand side of is zero, so Eq. (21) is proved.
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