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Abstract. The setup of a rainfall-runoff model in a river sec-
tion where no streamflow measurements are available for its
calibration is one of the key research activities for the Pre-
diction in Ungauged Basins (PUB): in order to do so it is
possible to estimate the model parameters based on the hy-
drometric information available in the region. The informa-
tive content of the dataset (i.e. which and how many gauged
river stations are available) plays an essential role in the as-
sessment of the best regionalisation method. This study anal-
yses how the performances of regionalisation approaches are
influenced by the “information richness” of the available re-
gional dataset, i.e. the availability of potential donors, and
in particular by the gauging density and by the presence of
nested donor catchments, which are expected to be hydrolog-
ically very similar to the target section.

The research is carried out over a densely gauged dataset
covering the Austrian country, applying two rainfall-runoff
models and different regionalisation approaches.

The regionalisation techniques are first implemented us-
ing all the gauged basins in the dataset as potential donors
and then re-applied, decreasing the informative content of
the dataset. The effect of excluding nested basins and the sta-
tus of “nestedness” is identified based on the position of the
closing section along the river or the percentage of shared
drainage area. Moreover, the impact of reducing station den-
sity on regionalisation performance is analysed.

The results show that the predictive accuracy of parame-
ter regionalisation techniques strongly depends on the infor-
mative content of the dataset of available donor catchments.
The “output-averaging” approaches, which exploit the infor-

mation of more than one donor basin and preserve the cor-
relation structure of the parameter, seem to be preferable for
regionalisation purposes in both data-poor and data-rich re-
gions. Moreover, with the use of an optimised set of catch-
ment descriptors as a similarity measure, rather than the sim-
ple geographical distance, results are more robust to the de-
terioration of the informative content of the set of donors.

1 Introduction

In hydrological practice, there is often a need to gain in-
formation on ungauged river sections, and one of the most
informative ways to do so is to implement a rainfall-runoff
model, when, as is often the case, the meteorological input
variables are retrievable in reference to its drainage area. In
such cases, however, the model parameters may not be ob-
tained through a calibration procedure and it is necessary
to regionalise them, exploiting the information of hydrologi-
cally similar catchments in the study area.

Regionalisation approaches for model parameterisation
can be classified into two broad categories (He et al., 2011),
“regression-based” and “distance-based” methods.

1. Regression-based methods define relationships between
each model parameter and geomorpho-climatic catch-
ment attributes (see e.g. Seibert, 1999) and apply these
relationships to estimate model parameters at ungauged
sites.
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2. Distance-based methods, instead, identify a set of sim-
ilar donor catchments and transfer their calibrated pa-
rameters to the ungauged (“target”) catchment. This
type of approach includes

i “output-averaging” methods which transfer the en-
tire set of model parameters from donor catch-
ments, thus maintaining correlation among param-
eters (which run the model multiple times and av-
erage the simulations), and

ii “parameter-averaging” methods which derive each
target parameter independently, as a function
(generally a weighted average) of the calibrated
donors. To this class (distance-based group of the
parameter-averaging type) also belong the kriging
methods, where the parameters are regionalised
based on their spatial correlation and independently
of each other (Merz and Blöschl, 2004; Parajka et
al., 2005).

In the last 2 decades, hydrologic scientists from all around
the world have focused on the determination of the more ac-
curate regionalisation techniques for different case studies
and rainfall-runoff models (see e.g. the reviews of Merz et
al., 2006; He et al., 2011; Peel and Blöschl, 2011; Parajka
et al., 2013; Hrachowitz et al., 2013; Razavi and Coulibaly,
2013).

Synthesis of existing studies presented in Parajka et
al. (2013) has shown that different groups of regionalisation
approaches have similar efficiency. Still, the regionalisation
performance is related to data availability and the number of
catchments used for the analysis. So, a very important aspect
for choosing the most adequate regionalisation technique is
the informative content of the study region, i.e. how many
gauged stations are available for inferring the hydrological
behaviour at the target, ungauged section. In particular, in
very densely gauged areas, spatial proximity is expected to
be a good similarity measure, as demonstrated by Merz and
Blöschl (2004) and Parajka et al. (2005), who tested different
regionalisation approaches on a dense dataset of more than
300 watersheds across Austria. Similar results are presented
in Oudin et al. (2008), who examined spatial proximity on a
set of 913 French catchments without snow impact, but dif-
ferent outcomes may be obtained when the gauged stations
are less dense and less interconnected (that is, with less avail-
ability of stations along the same river). For example, Samuel
et al. (2011) regionalised the parameters of the HBV model
for a sparsely gauged dataset (135 watersheds in the wide
area of Ontario, Canada) and found that the best approach
for such a study area was an inverse-distance parameter aver-
aging of a pre-selected set of physically similar catchments.

The availability in the dataset of gauged river stations
representative of hydrological conditions similar to the un-
gauged ones plays an essential role in the assessment of
the best regionalisation method. This availability can be, in

some way, estimated with the station density (i.e. number
of stations per km2) and with the topological relationship
between catchments. In particular, the presence of several
nested catchments (i.e. gauged river sections on the same
river) in the study region can strongly influence the per-
formance of some regionalisation techniques. If for an un-
gauged basin model parameter sets are available for down-
stream/upstream gauged river sections, then donor and target
watersheds share part of their drainage area, and thus they
may also be hydrologically very similar. Such similarity may
lead to very good regionalisation performances for a given
approach but may not represent the accuracy that would be
obtained in different conditions. Therefore, regionalisation
performances obtained for datasets with a high degree of
“nestedness” may be not transferrable to study regions poor
in nested basins.

So far, very few studies have examined the impact of the
presence of nested catchments on the performances of pa-
rameter regionalisation techniques. Merz and Blöschl (2004),
Parajka et al. (2005) and Oudin et al. (2008) tested the effect
of the removal of nested catchments from the available donor
catchments, but only for one or two regionalisation tech-
niques, without analysing in detail the differences between
different types of approaches. Additionally, the contribution
of the immediate downstream and/or upstream gauged sta-
tions has never been compared to that of the other nested
catchments that share significant portions of drainage area
with the ungauged one.

Also, the influence of gauging density on the regionalisa-
tion of rainfall-runoff model parameters has been little ex-
plored, with two notable exceptions. Oudin et al. (2008) ap-
plied the spatial proximity and physical similarity output-
averaging techniques for decreasing values of station den-
sity in France and Lebecherel et al. (2016) tested the robust-
ness of the spatial proximity output-averaging approach to
an increasing sparse hydrometric network in the same study
region. In Austria, the effect of station density has been in-
vestigated by Parajka et al. (2015), but in reference to the
interpolation of streamflow time series and not to the param-
eterisation of rainfall-runoff models.

The purpose of the present paper is to analyse the role
of the informative content of the available regional dataset,
that is, which and how many gauged catchments are avail-
able to be used as donors for the regionalisation in a target,
ungauged section. This will be done by comparing first the
impact of the presence of nested donors and then the effect
of the reduction of station density on the performances of
different parameter regionalisation techniques for a dataset
of 209 catchments across Austria.

The tested regionalisation approaches include a set of con-
solidated techniques, applied to two different continuous-
simulation daily rainfall-runoff models, for generalisation
purposes: the first is the TUW model (semi-distributed ver-
sion of HBV, used by Parajka et al., 2005), and the second
model, never used so far for regionalisation in the Austrian
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region, is the GR6J model implemented with the CemaNeige
snow routine (Coron et al., 2017).

We believe that the present analysis may provide further
insights for assessing the performances and selecting the pa-
rameter regionalisation approaches most suitable to a spe-
cific study region, keeping in consideration the impact of data
availability, and in particular of gauging density and of the
presence of nested catchments.

The paper is organised as follows: Sect. 2 introduces the
case study and data. Section 3 first describes the rainfall-
runoff models, the tested regionalisation schemes and the
methodology for assessing the impact of nested catchments
and station density. The results are presented in Sect. 4. Fi-
nally, Sect. 5 reports the discussion and conclusions.

2 Study region and data

The case study is composed of 209 catchments (see Fig. 1a)
covering a large portion of Austria. Their size varies consid-
erably, mainly under 1000 km2 (90 % of the basins), and just
three watersheds extend over more than 3000 km2. The to-
pography of the country varies significantly from the flat and
hilly area in the north-east to the Alps in the centre and the
south-west, and it is particularly steep in the extreme west.
The annual precipitation ranges from about 600 mm in the
east, where the evaporation plays an important role in the wa-
ter balance, to more than 2000 mm in the west, mainly due to
orographic lifting of north-westerly airflows at the rim of the
Alps (Viglione et al., 2013). Land use is mainly agricultural
in the lowlands and forest in the medium-elevation ranges.
Alpine vegetation and rocks prevail in the highest catchment
(Parajka et al., 2005). The aridity index varies from 0.2 to
1, meaning that the watersheds are mostly wet or weakly
arid (annual evapotranspiration is never higher than precip-
itation).

Data have been provided by the Institute of Hydraulic En-
gineering and Water Resources Management (Vienna Uni-
versity of Technology), which previously screened the runoff
data for errors and removed all stations with significant an-
thropogenic effects. Hydro-meteorological data include daily
streamflow and daily inputs to the rainfall-runoff models
for the 33-year period 1976–2008: daily average precipita-
tion, temperature and potential evapotranspiration defined for
200 m elevation zones for all the study catchments. The po-
tential evapotranspiration is estimated by a modified Blaney–
Criddle method (Parajka et al., 2003) using interpolated daily
air temperature and grid maps of potential sunshine duration
(Mészároš et al., 2002).

To implement some of the parameter regionalisation ap-
proaches, we make use of several geomorpho-climatic catch-
ment attributes, briefly described in Table 1. Topographic
characteristics such as mean catchment elevation and mean
slope are derived from a 1× 1 km digital elevation model.
Climatic characteristics such as mean annual precipitation

and aridity index are derived from climate input time se-
ries. Figure 1b, c and d show the spatial pattern of mean
annual precipitation, snow depth and aridity index across
the study area. Mean annual solar irradiance is computed
trough GRASS GIS software (http://grass.osgeo.org, last ac-
cess: 26 October 2020). Stream network density was cal-
culated from the digital river network map at the 1 : 50000
scale for each catchment (Merz and Blöschl, 2004) as the
ratio between the channel length and the catchment area.
FARL (flood attenuation by reservoir and lakes), boundaries
of porous aquifers, areal portions of regional soil types and
main geological formation were the same used and described
in detail in Parajka et al. (2005). Finally, land use cover-
age is derived from CORINE Land Cover maps updated
to the year 2012 (https://land.copernicus.eu/pan-european/
corine-land-cover/clc-2012, last access: 26 October 2020).
For land cover classes as well as for geology and soil type
classes, each basin is described by the portions of the total
catchment area corresponding to each class. For this reason,
the catchments are not associated with one single attribute,
and Table 1 does not report the min/median/max values of
such descriptors.

3 Materials and methods

3.1 Rainfall-runoff model structure and calibration

Two models for simulating daily streamflow were applied in
this study. This choice is made to analyse the effect of nested
catchments and station density on the performance of param-
eter regionalisation methods for different model structures.

3.1.1 TUW model

The first is the TUW model, a semi-distributed version of
the HBV model (Bergström, 1976; Lindström et al., 1997)
developed by Viglione and Parajka (2019). It consists of a
snow module, a soil moisture module and a flow response
and routing module. The model processes the elevation zones
as autonomous entities that contribute separately to the total
outlet flow. The inputs are daily air temperature, precipitation
and potential evapotranspiration over the different elevation
zones (Fig. 2). Finally, the different outputs from the eleva-
tion zones are averaged based on the sub-catchment areas.

The snow module is based on a simple degree-day con-
cept, and it is governed by five parameters: two threshold
temperature parameters distinguishing rain and snow, Tr and
Ts, a melting temperature Tm, a snow correction factor SCF
and the degree-day factor DDF. The soil moisture module
represents soil moisture state changes and runoff genera-
tion. It involves three parameters: the maximum soil mois-
ture storage FC, a parameter representing the soil moisture
state above which evapotranspiration is at its potential rate,
LP, and a parameter β governing the non-linear function of
runoff generation. Finally, an upper soil reservoir and a lower
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Figure 1. (a) Study area: blue points refer to stream gauges and black lines to catchment boundaries. (b, c, d) Spatial patterns of some
climatic catchment attributes across the study area.

Table 1. Available catchment attributes.

Code Unit Min Median Max Description

Elev m a.s.l. 287 915 2964 Mean elevation
Area km2 14 168 6214 Drainage area
Slope m m−1 0.9 12.4 28.5 Mean slope
meanP mm 675 1230 2310 Mean annual total precipitation
maxP mm 35 49 84 Mean annual maximum daily precipitation
meanPET mm 281 608 715 Mean annual total evapotranspiration
SnowF – 0.06 0.17 0.60 Fraction of precipitation falling as snow

(i.e. precipitation fallen on days below 0◦)
SnowD mm 1 14 68 Mean annual snow depth
Aridity – 0.21 0.46 0.96 Aridity index (meanPET/meanP)
Irrad kWh m−2 d−1 1750 1899 2274 Mean annual solar irradiance
RiverD m km−2 0 830 1256 Stream network density
FARL – 0.56 1 1 Flood attenuation index by reservoir and lakes
CORINE % – – – Portions of land use coverage
Geology % – – – Portions of geological formations
Soils % – – – Portions of regional soil types
Forest – 0 0.47 0.93 Fraction of catchment covered in forest
AcqPort – 0 0.01 0.83 Fraction of catchment with porous aquifers

soil reservoir and a triangular transfer function compose the
runoff response and routing module, involving seven addi-
tional parameters. The sum of excess rainfall and snowmelt
enters the upper zone reservoir and leaves this reservoir
through three paths: (i) outflow from the reservoir based on a
fast storage coefficient k1; (ii) percolation to the lower zone
with a constant percolation rate CPERC (iii) if a threshold of
the upper storage state LUZ is exceeded, through an addi-
tional outlet based on a very fast storage coefficient k0. Wa-

ter leaves the lower zone based on a slow storage coefficient
k2. The outflows from both reservoirs are then routed by a
triangular transfer function representing runoff routing in the
streams, where the base of the transfer function, BQ, is es-
timated with the scaling of the outflow by the CROUTE and
BMAX parameters. More details about the model structure
and application in R can be found in Parajka et al. (2007)
and Ceola et al. (2015), respectively.
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The model is run for all the study catchments, with the
semi-distributed model structure obtained by dividing them
into 200 m elevation zones. While model daily inputs (pre-
cipitation, temperature and potential evapotranspiration) and
model states are defined over such zones, model parameters
are assumed to be the same for the entire catchment.

Following the work by Parajka et al. (2005) on the same
study area, 4 out of the 15 total parameters are pre-set, and
11 are calibrated: threshold temperatures Tr and Ts are fixed,
respectively, to 2 and 0 ◦C, Tm to 0 ◦C and the maximum base
of the transfer function at low flows BMAX to 10 d. Table 2
presents the parameters to be calibrated and the correspond-
ing ranges.

3.1.2 CemaNeige–GR6J model

The second model is the French CemaNeige–GR6J (Coron
et al., 2017). It is the combination of the CemaNeige snow
accounting routine (Valéry et al., 2014) with the GR6J
model (Pushpalatha et al., 2011), a daily lumped continuous
rainfall-runoff model, developed at INRAE (Antony, France)
by the Équipe Hydrologie des Bassins versants. The soft-
ware is freely available in the airGR R package (Coron et
al., 2020).

The inputs of the model are spatially averaged catchment
daily air temperature, precipitation and potential evapotran-
spiration. The catchment hypsometric curve is also required.

The CemaNeige snow accounting routine is based on a
degree-day concept, where the thermal inertia of the snow-
pack is also taken into account. It involves two parameters,
a snowmelt factor, θG1, and a cold-content factor, θG2. Al-
though the module requires daily lumped inputs, to better
simulate snow accumulation and melting, it allows one to di-
vide the catchment into more elevation zones of equal area
through the use of the hypsometric curve. Inputs for each el-
evation zone are extracted through interpolation of the mean
catchment values using precipitation and temperature gradi-
ents (Valéry et al., 2010) and not from “clipping” of the ac-
tual spatial fields like for the TUW elevation zones. The mod-
ule functions are applied with a lumped set of calibrated pa-
rameters. Internal states are instead allowed to vary over each
elevation layer according to the different extrapolated inputs.
On each elevation layer, two outputs are computed: rain and
snowmelt, which are summed in order to find the total water
quantity feeding the hydrological model. At every time step,
the total liquid output of CemaNeige at the catchment scale
is the average of every elevation zone output. Here we decide
to maintain, as a default, the number of elevation layers equal
to five. For a detailed description of CemaNeige routines, the
readers may refer to Valéry et al. (2014).

The total liquid output of the CemaNeige module and po-
tential evapotranspiration provide the inputs of the GR6J
rainfall-runoff model. In the model, the water balance is con-
trolled by a soil moisture reservoir and a conceptual ground-
water exchange function. The routing procedure of the mod-

ule includes two flow components routed by two unit hydro-
graphs, a non-linear store and an exponential store, with a
total of six parameters. The structure of the model is rep-
resented in Fig. 3, and a detailed description of the model
routines is given in Pushpalatha et al. (2011).

The CemaNeige–GR6J model is fed by mean catchment
daily precipitation, air temperature and potential evapotran-
spiration. All eight parameters of the combined model (two
for CemaNeige, six for GR6J) are calibrated. Lower and up-
per bounds of the parameter space are kept as the default
(note that the parameters are normalised in the calibration
procedure). Table 3 reports brief parameter description and
boundaries. For the sake of brevity, we will refer to this
model just with the acronym GR6J, even if it will always
include the CemaNeige snow module.

3.1.3 Model calibration

The sets of parameters for both rainfall-runoff models are es-
timated for all the study catchments with an automatic model
calibration procedure, using the dynamically dimensioned
search algorithm (DDS, Tolson et al., 2007).

The objective function to be maximised is the Kling–
Gupta efficiency (Gupta et al., 2009) between observed and
simulated streamflow, defined as

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (1)

where r is the Pearson product-moment correlation coeffi-
cient, α is the ratio between the standard deviations of the
simulated and observed values and β is the ratio between the
means of the simulated and observed values.

The 33 years of observation (1976–2008) are split into two
sub-periods: the first one, from 1 November 1976 to 31 Octo-
ber 1992, is used for model calibration, and the second one,
from 1 November 1991 to 31 October 2008, for model vali-
dation. Warm-up periods of 1 year are used in all cases. Cal-
ibration and validation performances for both models are re-
ported in Sect. 4.1.

3.2 Regionalisation approaches

In order to assess the impact of the presence of nested catch-
ments and station density on the performance of the parame-
ter regionalisation methods, a set of consolidated approaches
for the study area is implemented. Three types of techniques
are tested. All belong to the distance-based group, since re-
cent studies have demonstrated that they are generally to be
preferred to regression-based techniques (see e.g. Kokkonen
et al., 2003; Merz and Blöschl, 2004; Oudin et al., 2008; Re-
ichl et al., 2009; Bao et al., 2012; Steinschneider et al., 2015;
Yang et al., 2018; Cislaghi et al., 2020).

3.2.1 Ordinary kriging (KR)

The first is a parameter-averaging technique, based on an or-
dinary kriging approach (termed in the following KR), where
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Table 2. TUW model parameters and their ranges.

Parameter Units Range Description

SCF – 0.9–1.5 Snow correction factor
DDF mm (◦C d)−1 0–5 Degree-day factor
LP – 0–1 Parameter related to the limit of evaporation
FC mm 0–600 Field capacity, i.e. max soil moisture storage
β – 0–20 Non-linear parameter for runoff production
k0 days 0–2 Storage coefficient for very fast response
k1 days 2–30 Storage coefficient for fast response
k2 days 30–250 Storage coefficient for slow response
LUZ mm 0–100 Threshold storage state; very fast response starts if exceeded
CPERC mm d−1 0–8 Constant percolation rate
CROUTE d2 mm−1 0–50 Scaling parameter

Figure 2. TUW model scheme – lumped version.
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Table 3. CemaNeige–GR6J model parameters and their transformed real value ranges.

Parameter Units Range Description

θG1 mm (◦C d)−1 0–109 Snowmelt (degree-day) factor
θG2 – 0–1 Cold-content factor
X1 mm 0–21 807 Non-linear production storage capacity
X2 mm d−1

−1903–1903 Groundwater exchange coefficient
X3 mm 0–21 807 Non-linear routing store capacity
X4 days 0–22 Time parameter for unit hydrograph routing
X5 – 0–1 Threshold parameter for water exchange with groundwater
X6 mm 0–21 807 Exponential routing store capacity

Figure 3. GR6J model scheme (Pushpalatha et al., 2011).

each model parameter is regionalised independently of an-
other, based on their spatial correlation. Catchment position
is defined by the coordinates of the catchment centroid and
the ordinary kriging is based on an exponential variogram
with a nugget of 10 % of the observed variance, a sill equal
to the variance, and a range of 60 km for both TUW and
CemaNeige–GR6J model parameters.

3.2.2 Nearest neighbour (one donor, NN-1)

The second approach is the nearest neighbour method (NN-
1), where the entire set of model parameters is transposed
from the geographically nearest donor catchment.

3.2.3 Most similar (one donor, MS-1)

In the third technique, termed the “most similar” approach
(MS-1), a single donor catchment is again identified for
transposing the entire parameter set. Instead of choosing the
catchment that is geographically the closest, the “hydrologi-
cally most similar” donor is identified based on a set of geo-
morphological and climatic descriptors. Five descriptors are
used for assessing such similarity: mean catchment elevation,
long-term mean annual precipitation, stream network den-
sity, land cover classes, and geology classes. Such a set of de-
scriptors was selected by preliminary tests: since it is not the
focus of the work, the analysis for the assessment of the best
catchment descriptors is reported in Appendix A. The donor
catchment is identified as the catchment with the smallest
dissimilarity index 8 (e.g. Burn and Boorman, 1992):

8=
∑5

j=1

dj (D, U)

max
(
dj
) , (2)

which represents the sum of the differences dj of the five
descriptors of the donor catchment D and of the ungauged
catchment U , normalised by their maximum. For the at-
tributes described by a single value (mean catchment ele-
vation, long-term mean annual precipitation and stream net-
work density), dj is expressed by the absolute difference be-
tween the descriptors XDj and XUj of the donor and target
catchments, respectively (Eq. 3). For land cover and geology,
whose attributesXj are the vectors containing the portions of
the total catchment area Xj, c corresponding to each class c,
the difference dj is calculated as the Euclidean distance be-
tween such vectors (Eq. 4).

dj (D, U)=

∣∣∣XDj −XUj ∣∣∣ (3)

dj (D, U)=

√∑
c
(XDj, c−X

U
j, c)

2 (4)
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3.2.4 Output-averaging version of NN and MS
techniques (NN-OA and MS-OA)

The NN and MS approaches allow one to maintain corre-
lation among model parameters and to overcome the well-
known limitation of the regression approach due to inter-
action between them. In the regression-based methods as
well as in the parameter-averaging approaches (e.g. KR tech-
nique), parameters are regionalised independently of each
other, possibly affecting simulation performances. On the
other hand, one single donor catchment (as in the NN-1
and MS-1 approaches) is often not fully representative of
the hydrological behaviour of the target watershed. Recent
studies have been demonstrating that averaging the outputs
of the simulations (rather than model parameters) obtained
with different donor parameter sets may be preferred (see
e.g. Oudin et al., 2008; Viviroli et al., 2009). For this rea-
son, NN and MS techniques are also tested with an output-
averaging approach (introduced by McIntyre et al., 2005) in
which n donor catchments are identified based on their spa-
tial proximity (for the nearest neighbour method) or on their
similarity (for the most similar method) to the target. The
regionalised streamflow for the ungauged catchment is cal-
culated from all the simulations Q(d, Pi) obtained by run-
ning the model (fed by the meteorological input of the target
catchment) with each one of the n parameter sets (Pi , with
i in [1 : n]) corresponding to each of the donor catchments.
Streamflow for day d, Q(d), is computed as the weighted
average of the simulated outputs:

Q(d)=
∑n

i=1
wiQ(d, Pi), (5)

where wi is the weight associated with each donor catch-
ment i, computed as a function of a measure of dissimilar-
ity between the donor and target catchments. Such versions
of the methods are here termed NN-OA and MS-OA. In the
NN-OA case, the dissimilarity is defined by the spatial dis-
tance Di between the centroids of donor i and target catch-
ments (Eq. 6), while in the MS-OA method it corresponds to
the dissimilarity index 8i (see Eq. 2), and the corresponding
weights are computed according to Eqs. (6) and (7), respec-
tively.

wi =

1
Di∑n
i=1

1
Di

(6)

wi =

1
8i∑n
i=1

1
8i

(7)

3.2.5 Choice of the number of donor catchments for
NN-OA and MS-OA

The choice of the number of donor catchments for output
averaging represents a central issue in the methodology. Pre-
vious studies showed that the optimal number of donors is
strongly related to the rainfall-runoff model and, of course,

to the case study. McIntyre et al. (2005) were amongst the
first to apply an ensemble (output-averaging) approach and to
explore the use of different numbers of donors on the perfor-
mance of the probability distribution model (PDM, Moore,
1985) for a set of more than 100 UK catchments. They tested
the impact of an increasing number of donors, either select-
ing the first n catchments with the smallest dissimilarity mea-
sure or including all the donors with a value of dissimilar-
ity below a defined threshold (in the latter case, the num-
ber of donors may thus vary depending on the target-donor
attributes). They found that a fixed number of 10 donors
resulted in the best regionalisation performances. Oudin et
al. (2008) applied an output-averaging regionalisation for the
TOPMO and GR4J models to a large French dataset of al-
most 1000 basins, but with no weights in flow averaging,
since they used an arithmetic average (thus not taking into
account the magnitude of donor dissimilarities). They found
that the two models performed optimally with a different
number of donor catchments (seven and four, respectively),
and the efficiency of the regionalised model decreased almost
linearly when increasing the number of donors above such
values. The higher the number of donor basins included in
the regionalisation process is, the more dissimilar the donors
will be for the target watershed, possibly leading to a deteri-
oration of the results. The use of weights in flow averaging
may indeed help to smooth this effect, giving less and less
importance to the donors as their similarity decreases.

In the present work, the effect on regionalisation perfor-
mances due to the number of donor basins is explored in de-
tail, applying NN-OA and MS-OA for an increasing number
n of donor catchments, as discussed in Sect. 4.2.

3.2.6 Impact of nested catchments: which catchments
should be considered (to be) nested?

As already introduced, one of the main purposes of the
present analysis is to quantify the impact of the presence of
several nested catchments on the regionalisation techniques.
In particular, since nested catchments may have a strong hy-
drological similarity to the ungauged one, they are expected
to play an essential role in the determination of method per-
formances.

Once the performances have been evaluated using all the
study catchments as potential donors, the regionalisation pro-
cedures are repeated for each target basin (assumed to be
ungauged) by excluding, from the donor set, the watersheds
which are considered to be nested in relation to the target
section.

In general, two or more catchments are nested between
each other if their closure sections are located on the same
river, i.e. they share part of their drainage area. Since several
gauged stations can be located on the same river, we propose
to follow two different criteria to identify the nested basins.
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– Criterion 1: the gauged sections that are immediately
downstream and upstream of the target section (Fig. 4a).

– Criterion 2: all the catchments sharing a given percent-
age of drainage area with the ungauged one (Fig. 4b).

3.3 Impact of station density

Another way to evaluate the performances of regionalisation
methods taking into account the richness in hydrometric in-
formation of the study area is to analyse the spatial density
of the potential donors.

It is expected that the effect of the presence of several
nested watersheds in a dataset is related to the effect due to
station density. Because of that, the further purpose of the
study is to analyse the impact of station density on region-
alisation accuracy. Parajka et al. (2015) tested the impact of
the station density for the direct weighted interpolation of
daily runoff time series with the topological-kriging (or top-
kriging) approach (see Skøien et al., 2006) and found that
direct interpolation is superior to hydrological model region-
alisation if station density exceeds 2 stations per 1000 km2.
Here, the same approach for analysing the density is applied
to all the parameter regionalisation techniques.

The full station density in the dataset is about 2.4 gauges
per 1000 km2, estimated by dividing the total number of sta-
tions by the area of Austrian territory, which is approximately
84 000 km2. All the applied regionalisation approaches are
tested for decreasing station density in the catchment dataset.
Seven different values of station density (ranging from 0.3 to
2.1 gauges per 1000 km2) are tested, which correspond to a
total number of stations between 25 and 175. For each value
of station density, the corresponding number of gauged sta-
tions is randomly sampled (simple automatic non-supervised
sampling) from the original set of 209 catchments, and the
regionalisation approaches are applied to this subsample
(catchment input dataset) in leave-one-out cross-validation.
In turn, each of the catchments in the subsample is consid-
ered to be ungauged, and the remaining basins are used as
potential donors. This operation is repeated 100 times to con-
sider different samples of watersheds with the same density
across the study area. Figure 5 shows an example of three
samples for two different station densities, corresponding to
25 and 100 stations in the input dataset.

3.4 Evaluation of model performances

As mentioned above, the rainfall-runoff models are cali-
brated against Kling–Gupta efficiency (Eq. 1). In addition
to KGE, model performances are evaluated through Nash–
Sutcliffe efficiency (Eq. 8) as well. While KGE considers
different types of model errors (the error in the mean, the
variability and the dynamics of runoff), NSE is a standard-

ised version of the mean square error.

NSE= 1−
∑
(Qsim−Qobs)

2∑(
Qobs−Qobs

)2 , (8)

where Qsim is the simulated runoff, Qobs is the observed
runoff and Qobs is the average observed runoff.

The regionalisation approaches are tested through leave-
one-out cross-validation for all the described analyses. The
parameter sets of the donor catchments are obtained through
a calibration procedure over the years 1977–1992. In con-
trast, to assess the performances of the regionalisation meth-
ods, only the results obtained over the validation period
(1992–2008) are reported. Spatiotemporal transfer of model
parameters is, therefore, the most exacting task (as confirmed
by the study of Patil and Stieglitz, 2015) since we are using
parameters obtained over different catchments (in regionali-
sation) and over a different observation period. On the other
hand, this is exactly what would happen in a real-world fore-
casting application or when assessing the impact of a climate
change scenario, where you have to identify the parametri-
sation of a model to be used for independent hydro-climatic
conditions and in any possible river section in the region.

4 Results and discussion

4.1 Model performances “at-site”

Table 4 shows the model performances obtained by calibrat-
ing the models “at-site”, that is, over the streamflow mea-
sured in each catchment during the calibration period (1977–
1992) and validated over the years 1992–2008 (no regionali-
sation procedure is involved).

Both rainfall-runoff models behave well for the study
area. While the median Kling–Gupta efficiencies are 0.85 for
TUW and 0.88 for the GR6J model in the calibration period,
they deteriorate to 0.76 and 0.81 in the validation period, re-
spectively. In the calibration period, KGE is always above
0.66 (TUW) and 0.76 (GRJ6). In contrast, the KGE is over
0.72 for both models for 75 % of the basins (even if it drops
below 0.3 for one and two basins, respectively, for GR6J and
TUW) in the validation period.

Looking at Nash–Sutcliffe efficiency, the difference be-
tween the two models is even more marked than for the KGE.
It is interesting that, despite the lower number of parameters,
the GR6J model tends to perform better than TUW.

4.2 Regionalisation performances using all catchments
as potential donors

4.2.1 Choice of the donors for the output-averaging
regionalisation methods

Before comparing performances of regionalisation methods,
it is necessary to choose the optimal settings for the output-
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Figure 4. Criteria for excluding nested catchments when regionalising model parameters.

Table 4. At-site performances: values of the 25 % (1st quar.), 50 % (Med.) and 75 % (3rd quart.) quantiles for Kling–Gupta (KGE) and
Nash–Sutcliffe (NSE) efficiencies.

KGE (–) NSE (–)

1st quart. Med. 3rd quart. 1st quart. Med. 3rd quart.

TUW Calibration 1977–1992 0.82 0.85 0.90 0.65 0.72 0.80
Validation 1992–2008 0.72 0.76 0.82 0.59 0.66 0.72

GR6J Calibration 1977–1992 0.86 0.88 0.91 0.72 0.77 0.81
Validation 1992–2008 0.75 0.81 0.84 0.67 0.74 0.79

Figure 5. Example of three samples for two different station densi-
ties.

averaging versions of the nearest neighbour (NN-OA) and
most similar (MS-OA) techniques.

As introduced in the methodology Sect. 3.2.5, we first in-
vestigate the effect of using different numbers of donors: in
particular, values between 1 and 50 are tested for both re-
gionalisation techniques.

Regionalisation methods are repeated through leave-one-
out cross-validation for each number of donors n, and the
median Kling–Gupta efficiency obtained for each value of n
over all 209 catchments is computed. Tests are performed for
the calibration and validation periods, but results are reported
only for the validation period.

Figure 6 shows the median Kling–Gupta efficiency with
the changing number of donors for TUW (panel a) and GR6J
(panel b). Looking at the figures, results show that, in all
four cases, the index always deteriorates when more than 10
donors are chosen. On the other hand, there is no unique op-
timal number of donors for the two models, nor for the two
regionalisation techniques. The optimal number of donors
identified according to the median of the KGE varies between
three and seven depending both on the rainfall-runoff model
(TUW or GRJ6) and the regionalisation approach (NN-OA
or MS-OA). Since the KGE differences between three and
seven donors are small (around 0.02), we decided to use three
donors for both regionalisation methods and both models,
which is also the most parsimonious option. The choice of a
low number of donors is convenient also in view of the anal-
ysis to be done of decreasing density, where a large number
of donors would imply the use of catchments that are less and
less similar to the target one.

It may be noted that the results by Oudin et al. (2008)
highlighted a clearer pattern of model performances when
increasing the number of donors, with a stronger decrease in
efficiency when using high numbers of donors. This result
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Figure 6. Impact of the number of donors on output-averaging near-
est neighbour (NN-OA) and most similar (MS-OA) regionalisation
methods for TUW (a) and the GR6J (b) model.

may be explained by the fact that they were using a sim-
ple non-weighted average of outputs. Here instead, the in-
fluence of the additional donors is gradually poorer, due to
the weights implemented in the output-averaging procedure
(Eq. 5). When adding further donors to the approaches, the
corresponding weights in the average are gradually lower ac-
cording to the increasing distance (for NN-OA) or dissimilar-
ity index (for MS-OA) from the target. Thus, the impact of
the less similar catchments is dampened compared to what
may be achieved using a non-weighted output average.

4.2.2 Performances of the regionalisation methods

This section shows the performances of the regionalisation
methods without excluding any candidate donor. The above-
described regionalisation methods are tested over all 209
study catchments through leave-one-out cross-validation, for

both models. Here all the basins in the dataset are used as
potential donors. In turn, each basin is considered to be un-
gauged, and all the remaining (208) catchments are available
in the donor set for testing the regionalisation approaches.

Figure 7 reports Kling–Gupta and Nash–Sutcliffe effi-
ciency boxplots for the two models when regionalising fol-
lowing each of the techniques.

For TUW (Fig. 7a and b), all regionalisation methods pro-
vided good simulations concerning the validation model per-
formances obtained when the models have been calibrated
on the target section (at-site simulations, white boxes). The
loss in model efficiency is, overall, small. The Nash–Sutcliffe
efficiencies of the KR, MS-1, and NN-1 methods are consis-
tent with the findings of Parajka et al. (2005), who computed
only the NS. Their results are very similar to the present ones,
even if they worked on a greater number of Austrian catch-
ments and calibrating the model against a different objective
function.

For the GR6J model (Fig. 7c and d), the efficiencies of
the nearest neighbour (NN-1 and NN-OA) and most similar
(MS-1 and MS-OA) regionalisations are closer to those of
the TUW with respect to what happened when the models
are calibrated at-site. In fact, with respect to the correspond-
ing at-site calibration, the performances in the ungauged case
(that is, when parameters are regionalised) suffer a larger de-
terioration for GR6J than for TUW. In addition, we notice
that, for the GR6J model, ordinary kriging has performances
always poorer than all the other regionalisation methods.

For both rainfall-runoff models MS-OA tends to provide
the best results, and, in general, the two methods based on
output average (NN-OA and MS-OA) that exploit the infor-
mation from more than one donor and outperform NN-1 and
MS-1, in particular in terms of Nash–Sutcliffe efficiency. It
confirms the usefulness of regionalising based on more than
one donor, as indicated by previous studies (e.g. McIntyre et
al., 2005; Oudin et al., 2008; Viviroli et al., 2009; Zelelew
and Alfredsen, 2014).

To verify whether there is an influence of the catchment
area on the results, due to the lumped structure of the model,
an additional analysis (not shown here for the sake of brevity)
showed that despite the different drainage areas of the catch-
ments in the dataset, regionalisation accuracies do not show a
clear relation to the size of the watershed, even if for some of
the smaller catchments the performances were suboptimal.
This result is consistent with previous evidence from the lit-
erature (see e.g. Parajka et al., 2013).

4.3 Impact of nested donors: performance losses in
regionalisation

4.3.1 Catchments identified as nested by the two
criteria

As introduced in Sect. 3.3, two different criteria are imple-
mented for identifying which donor catchments are consid-
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Figure 7. Original performances of the regionalisation methods for
TUW (a, b) and the GR6J model (c, d) for the 209 Austrian catch-
ments in the validation period 1992–2008. Boxes extend to 25 %
and 75 % quantiles, while whiskers refer to 10 % and 90 % quan-
tiles.

ered to be nested concerning a target catchment: Criterion
1 (Fig. 4a) assumes that the only nested donors are the first
downstream and first upstream gauged sections. Following
this approach, 81 % of the catchments in the dataset have at
least one downstream or upstream nested donor (red dots in
Fig. 8a).

Instead, Criterion 2 (Fig. 4b) excludes all the potential
donors sharing a given percentage of drainage area with the
target catchment. It requires the definition of a percentage
threshold value of shared drainage area. A preliminary sen-
sitivity analysis (not reported here) was performed, investi-
gating the effect of different values between 5 % and 20 %
for such a percentage. Results show that differences in terms
of regionalisation performance are not significant, and the
threshold was fixed to 10 %. The choice of the threshold in-
fluences the number of catchments which can be included in
the study: in fact, the higher the threshold is, the lower the

Figure 8. (a) Red dots (170) refer to catchments with at least one
upstream- or downstream-nested gauged catchment (Criterion 1).
(b) Red dots (137) refer to catchments with at least one nested
gauged catchment sharing more than 10 % of the drainage area (Cri-
terion 2).

number of basins classified as nested is following Criterion
2. Using 10 % as a threshold allows one to include most of
the watersheds in the analysis: 65 % (137 catchments) of the
basins have at least one nested donor catchment sharing at
least 10 % of its area (red dots in Fig. 8b).

All the watersheds having potential nested donors accord-
ing to the second criterion have nested gauged catchments,
also according to the first criterion, but not vice versa. The
impact of nested catchments on regionalisation performances
is therefore evaluated only for those 137 catchments that have
at least 1 nested catchment according to both criteria.

It is important to highlight that the remaining 35 % of the
basins are still used as potential donor catchments. The re-
gionalisation approaches are not repeated using such basins
as targets (since they have no nested donors, their perfor-
mance would not change and they would distort the results).

Among the 137 catchments considered for the analysis of
the nestedness, 43 % have only downstream-nested donor(s),
28 % only upstream-nested donor(s), and 29 % at least one
upstream- and one downstream-nested donor.
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4.3.2 Performance losses in regionalisation when
excluding nested donors

The regionalisation methods are applied again in leave-one-
out cross-validation but excluding from the available donors
the catchments which are nested in relation to the target (un-
gauged) basin. This approach is done for both “nestedness
criteria” (downstream/upstream or overlapping of drainage
area), and the analysis applies exclusively to the 137 catch-
ments classified as nested according to both of them (red dots
in Fig. 8b). The figures of this section (Figs. 9 and 10) there-
fore refer to such a subset.

Figure 9a and b compare the different performances
(Kling–Gupta and Nash–Sutcliffe efficiencies, respectively)
obtained in regionalisation (always over the validation pe-
riod), when nested catchments are available or not as candi-
date donor basins for both the TUW model (Fig. 9a and b)
and GR6J (Fig. 9c and d). Each group of boxplots refers to a
different regionalisation method: within such groups, the first
box indicates the performance when no basins are excluded
from the donor set, while the second and third boxes report
the performances due to the exclusion of the nested donors
following Criterion 1 or 2, respectively.

The performance deterioration is highlighted by bar plots
in Fig. 10, showing the mean loss in Kling–Gupta and Nash–
Sutcliffe efficiencies when excluding nested donors follow-
ing the two criteria.

Finally, Table 5 reports the interquartile variability of
Kling–Gupta and Nash–Sutcliffe efficiencies for both mod-
els and all the regionalisation approaches when nested donors
are excluded or not.

The less affected method is ordinary kriging, especially
for the TUW model. This is because ordinary kriging is not
based on the identification of one or more “sibling” donors
which may have been excluded if nested. On the other hand,
it should also be highlighted that such a method is the region-
alisation approach that performs worst when nested basins
are available.

As expected, for both TUW and GR6J, NN-1 is always the
most heavily affected method (dark green bars in the bottom
panels of Fig. 10). This is likely because the nearest donor is
a nested one in more than 80 % of the catchments for both
criteria, and its exclusion seriously compromises the perfor-
mance.

Excluding the nested catchments also has a strong impact
on MS-1 (dark blue bars in the bottom panels of Fig. 10),
even if to a lesser extent than for NN-1, since for more than
60 % of the catchments the most similar donor is a nested one
according to both criteria.

The degradation of performance moving from Criterion 1
(upstream/downstream) to Criterion 2 (overlapping drainage
area) highlighted in Fig. 9 demonstrates that using as donors
not only the immediate downstream or upstream gauged river
sections (Criterion 1), but also all the catchments partially
sharing their drainage area with the target one (Criterion 2),

has a strong positive influence on the regionalisation perfor-
mance.

Furthermore, the use of output averaging for both the near-
est neighbour and most similar approaches (NN-OA and MS-
OA) not only outperforms the NN-1 and MS-1 when using
all (nested and non-nested) donors (see also Sect. 4.2.2), but
also improves the robustness of the methods when the nested
donors are excluded. The bottom panels of Fig. 10 show that
the losses in the efficiencies of NN-OA and MS-OA are al-
ways smaller than those corresponding to the single donor
approaches (NN-1 and MS-1), for both rainfall-runoff mod-
els and regionalisation methods. This confirms that the use of
output averaging and the use of more than one donor basin is
preferable for regionalisation purposes, also for regions that
do not have as many nested catchments as the Austrian study
area.

Finally, the values reported in Table 5 (as well as Fig. 10)
show how, especially for NSE, the losses resulting when ex-
cluding nested donors from the regionalisation are higher for
the GR6J model than for the TUW. GR6J seems to be slightly
more affected by the presence of nested basins, except for
MS-1 and MS-OA, whose performances remain more simi-
lar to those of TUW. It may be due to the different structure
and parameter transferability of the models, which would in-
deed deserve a dedicated study.

4.4 Impact of station density: performance losses in
regionalisation

The last results concern the analysis of the impact of sta-
tion density on regionalisation performances. As introduced
in Sect. 3.4, for each of the seven assigned density values, the
described procedure provides 100 different sets of region-
alised target catchments. For a given density, each of 100
subsamples is formed by the same number of target catch-
ments, so that the same number of efficiencies is analysed.

First, it is important to verify that catchment samples are
evenly distributed across the country: to do so, we consider
the distance of each catchment from its closer potential donor
as shown in Fig. 11a. The average of the distances (d1, d2, d3,
d4, d5) of each catchment from the closest catchment (i.e. a
potential donor) in a sample can be considered a measure
of the sample spatial distribution: the higher the distance,
the less dense the sample. As said above, for each density,
100 different samples are generated, so that for each density,
we have 100 different values for such averages. Figure 11b
shows the average “distance within sample” of the closest
available donor catchment across the 100 generated sub-sets
for the different values of station density (each boxplot refers
to the 100 values of average distance calculated for each sub-
set). The average distance from the closest donor in the orig-
inal, full-density dataset (grey point in the figure) is around
8.5 km. As expected, the median target/donor distance (mid-
dle black solid line in each box) increases with decreasing
density. It may be noted that the variability of the distance,
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Figure 9. Effect of the exclusion of nested catchments for the subset of 137 watersheds classified as nested: Kling–Gupta (a, c) and Nash–
Sutcliffe (b, d) efficiencies when regionalising the TUW (a, b) and GR6J (c, d) models. “No exclusion”: all the donors are available.
“Criterion 1” or “Criterion 2”: nested catchments are excluded from the donor set. Box colours refer to the different methods: green is
nearest neighbour (1 donor is dark green and three is light green), blue is most similar (1 donor is dark blue and three is light blue) and
magenta is ordinary kriging. Boxes extend to 25 % and 75 % quantiles, while whiskers refer to 10 % and 90 % quantiles.

as shown by box size and whiskers, also gradually increases
with the reduction of station density. Still, such an increase
is overall modest: even for the lowest density, it is limited
to ± 18 % of the median for 80 % of the samples. The fact
that, on average, the distance between a target catchment and
the closest gauged catchment consistently increases with de-
creasing density proves that the samples with lower density
do not tend to cluster/concentrate the catchments in a small
region, but they are evenly distributed over the country.

To analyse the results, the median regionalisation perfor-
mances of each subsample are computed and presented here:
thus, for each gauging density, the results consist of 100 val-
ues of median performances.

For the sake of brevity, only the median Kling–Gupta ef-
ficiencies over the validation periods are reported. They are
shown in Fig. 12 for both the TUW and GR6J models: each
plot contains the boxplots of the median Kling–Gupta effi-
ciencies for each station density (i.e. number of gauges per
1000 km2); i.e. each boxplot presents the 100 values of me-
dian Kling–Gupta efficiencies obtained by applying the re-
gionalisation approaches to the 100 subsamples generated
with an assigned density. The coloured point and the dotted
line in the plots indicate the “original” (and maximum) me-
dian regionalisation efficiency of the approaches, that is, the
one obtained when using all available donors (i.e. full station
density, corresponding to 2.4 gauges per 1000 km2).
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Figure 10. Kling–Gupta and Nash–Sutcliffe efficiencies (top panels) and mean losses in the same methods resulting when excluding the
nested donors with Criterion 1 and Criterion 2 (bottom panels) for the TUW and GR6J models.

Table 5. Inter-quartile values of Kling–Gupta and Nash–Sutcliffe efficiencies when regionalising TUW and GR6J models excluding or not
excluding nested donor catchments.

Inter-quartile KGE (–)

NN-1 NN-OA MS-1 MS-OA KR

TUW No nested excluded 0.64/0.79 0.66/0.81 0.64/0.79 0.63/0.81 0.63/0.80
Criterion 1 0.50/0.76 0.54/0.79 0.52/0.78 0.57/0.78 0.60/0.78
Criterion 2 0.42/0.75 0.53/0.76 0.46/0.77 0.53/0.78 0.61/0.78

GR6J No nested excluded 0.65/0.82 0.65/0.83 0.62/0.83 0.64/0.83 0.53/0.79
Criterion 1 0.44/0.79 0.52/0.79 0.53/0.80 0.56/0.80 0.52/0.74
Criterion 2 0.34/0.78 0.45/0.77 0.44/0.78 0.52/0.79 0.52/0.73

Inter-quartile NSE (–)

NN-1 NN-OA MS-1 MS-OA KR

TUW No nested excluded 0.53/0.71 0.56/0.73 0.51/0.70 0.56/0.73 0.50/0.70
Criterion 1 0.33/0.68 0.47/0.70 0.46/0.66 0.50/0.70 0.49/0.69
Criterion 2 0.18/0.66 0.41/0.68 0.35/0.65 0.46/0.70 0.49/0.67

GR6J No nested excluded 0.57/0.77 0.60/0.77 0.54/0.77 0.61/0.78 0.50/0.73
Criterion 1 0.26/0.71 0.45/0.74 0.48/0.74 0.52/0.75 0.46/0.71
Criterion 2 0.13/0.71 0.34/0.73 0.33/0.72 0.48/0.75 0.45/0.69
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Figure 11. (a) Example of distance from the closest donor. (b) Boxplots of the average distance from the nearest available potential donor
across the 100 generated subsets, for different values of station density (gauges per 1000 km2). Whiskers extend to the 10th and 90th
percentiles. The grey dot (density = 2.4) indicates the average distance from the closest donor in the original dataset.

The NN-1 method (Fig. 12a and f) is the most affected
by the decreasing density. In fact, when the density declines,
there is a higher probability that the less dense subsamples
do not include the catchment that is the nearest one to each
target river section, and as we have seen in the analyses of the
nested donors, in the large majority of the cases, the nearest
catchment is a nested one. In contrast, the second best may
be substantially different from the target basin.

Also, the output-averaging version of the nearest neigh-
bour methods (Fig. 12b and g) strongly deteriorates for less
dense networks. In general, nearest neighbour methods are
highly sensitive to gauging density. The geographical dis-
tance proves to be a good similarity measure only for densely
gauged study areas (like Austria), since they firmly rely on
the presence of gauged catchments in the immediate sur-
roundings that are also hydrologically very similar. If the
density decreases, the closest donor may be relatively far
from the target, and it may therefore have little in common
with it.

As far as the MS-1 (Fig. 12c and h) is concerned, its per-
formances degrade more gracefully (except for the GR6J
model for the minimum density) than the NN-1 or the NN-
OA. Also in this case (like for the NN-1), when the density
decreases it becomes less probable that the most hydrologi-
cally similar catchment (identified by MS-1 in full density) is
still part of the subsample. The results also indicate that there
is more than one catchment in the original dataset that is sim-
ilar enough to the target in terms of catchment attributes.

This also holds true for the output-averaging MS (Fig. 12d
and i), which is even less affected by a reduction in donors’
density and is the best-performing approach for any density
(for both rainfall-runoff models).

We may note that, also in this analysis, analogously to
what resulted for the exclusion of nested catchments, for both

approaches (NN and MS), the implementation of output av-
eraging allows one to reduce the degradation in the perfor-
mances in comparison to the corresponding one-donor ver-
sion.

The impact of station density is similar to that of exclud-
ing nested catchments, also for the ordinary kriging approach
(Fig. 12e and j), which deteriorates less than the other meth-
ods for decreasing values of station density. For the TUW
model, the kriging regionalisation, starting from an already
high KGE in full density, results in performances that are in-
ferior only to those of MS-OA when the density goes below
0.9. For the GR6J model, even if the deterioration is limited
since KR was poorly performing for the full-density region-
alisation (Fig. 7), the median KGE is always worse than those
of all the other regionalisation approaches, for all the station
densities.

Overall, all methods (excluding the poorly performing
NN-1 and KR for the GR6J) result in relatively good per-
formances provided that the station density is at least 0.9
gauges per 1000 km2. On the other hand, leaving aside the
kriging method, the median KGE drops very steeply when
the density reduces from 0.6 to 0.3 gauges per 1000 km2.

5 Conclusions

An assessment of the impacts of the presence of nested catch-
ments and station density on the performance of parame-
ter regionalisation techniques in a large Austrian dataset has
been performed. The main motivation for this work lies in the
lack of systematic studies in the literature on the effects of
data richness and informative content on the accuracy of var-
ious methods for transferring rainfall-runoff model parame-
ters to ungauged catchments. Studies conducted on different
study sets often do not lead to the same ranking of the tested
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Figure 12. Median Kling–Gupta efficiency of the 100 sampled datasets for varying station density (number of gauges per 1000 km2) for the
TUW and GR6J models using the NN-1 (a, f), NN-OA (b, g), MS-1 (c, h), MS-OA (d, i) and KR (e, j) regionalisation methods. The coloured
point and dotted line in the plots indicate the original median regionalisation efficiency of the approaches when using all available donors
(i.e. full station density, corresponding to 2.4 gauges per 1000 km2).

approaches, and the obtained results are not transferable to
different study regions. This finding is indeed due to the di-
verse topological relationships between catchments (nested-
ness) in the datasets and the diverse density of the stream
gauges.

The purpose of the work is to give support to the choice
of the most appropriate parameter regionalisation approaches
based on the available hydrometric information in the region.
The study shows and quantifies how the informative content
of the available gauged sections, here expressed by the pres-
ence of several nested catchments in a dataset or by the gaug-
ing density of the study region, can influence the predictive
power of a certain technique.

The research has been conducted for a very densely
gauged dataset covering a large portion of Austria. Two
rainfall-runoff models for simulating daily streamflow have
been calibrated for the 209 study watersheds: a semi-
distributed version of the HBV model (TUW model) and the
lumped GR6J model coupled with the CemaNeige snow rou-
tine.

Both models perform very well when applied in the at-
site mode, where the calibration and validation performances
are very good for both rainfall-runoff models. The selected
model efficiencies are somewhat larger for the GR6J model,
which demonstrates very good performance, also in this
Alpine dataset.

In order to assess the model performance when used in un-
gauged basins, the stream-gauge data for every section were,
in turn, considered not to be available, and five regionali-
sation approaches were implemented for using the rainfall-
runoff models in the validation period. This is indeed an ex-
acting task because we are attempting to use the model over
an ungauged catchment and for an observation period differ-
ent from the one used for parameterising the gauged donor
catchments. The first regionalisation approach is an ordinary
kriging approach (KR), which separately interpolates each of
the model parameter based on their spatial correlation in the
study area. Two regionalisation approaches that select one
single donor catchment and transpose its parameter set to the
target basin have also been tested: in the first (NN-1), the geo-
graphically nearest catchment is selected, while in the second
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approach (MS-1), the single donor is the most similar one in
terms of a set of physiographic and climatic attributes. The
latter two approaches are implemented also in the output-
averaging (OA) version, where the parameter sets of more
than one donor are used for the simulation on the target sec-
tion and the model outputs are then averaged according to the
distance/dissimilarity between donors and target.

In the regionalisation mode, the performances of the GR6J
model deteriorate more than those of the TUW model, in
comparison with the “gauged”, at-site parameterisation. Rea-
sons for this behaviour may lie in the different model struc-
tures and in the different transferability of model parameters
(depending also on their meaning and their relation to the
available catchment attributes). Such an issue would deserve
further attention and investigation, but it would need a sep-
arate ad hoc analysis, since the comparison of the structures
and physical meaning of the parameters of the two models
is not the specific objective of our work. For both rainfall-
runoff models, the use of the output-averaging approach out-
performs the use of a single donor (NN-OA and MS-OA
performed better than NN-1 and MS-1), confirming the out-
comes of other studies on the importance of exploiting the in-
formation available from more than only one donor (see e.g.
McIntyre et al., 2005; Oudin et al., 2008; Viviroli et al., 2009;
Zelelew and Alfredsen, 2014). The output-averaging meth-
ods also outperform the parameter-averaging kriging method
(especially for the GR6J model), showing that it is preferable
to transfer the entire parameter set of each donor, thus main-
taining the correlation between the parameter values. The
results of the MS-OA are close but tend to be better than
those of the NN-OA, indicating that hydrological similarity
is more important than geographical proximity for choosing
the donors.

We expect that spatial proximity alone may be even less
representative of hydrological similarity in a drier climate:
Patil and Stieglitz (2012) and Li and Zhang (2017) have
shown that in dry runoff-dominated regions, nearby catch-
ments tend to exhibit less hydrological similarity than in
more humid regions.

The impact of the richness of the dataset (i.e. the informa-
tive content of the region) was then analysed to assess the
deterioration of the regionalisation approaches for decreas-
ing availability and “worth” of the available donors, starting
from the influence of using nested basins as donors.

Two criteria have been proposed for identifying a basin
that is nested with the target one. The first one, already used
in the few analyses of nestedness in the literature, classifies
as nested the first upstream and the first downstream gauges
on the river network. The second, novel criterion, identifies
as nested all the catchments that share more than a given
percentage (here chosen as 10 %) of the drainage area with
the target one. This results in the first criterion identifying
a larger number of nested catchments with at least one po-
tential donor. The first criterion considers to be nested also a
number of catchments that share less than 10 % of area with

the target one: this means that, in some cases, the first down-
stream or upstream gauge may be not representative of the
same drainage area, and their catchments may be governed
by very different hydrological processes.

All the regionalisation approaches have been repeated by
excluding from the donor set the catchments assumed to be
nested with each target basin, according to each one of the
two criteria.

For both rainfall-runoff models and all the regionalisation
approaches, when excluding all the basins that share a sig-
nificant portion of the same watershed (second criterion), the
regionalisation procedure deteriorates more than when ex-
cluding only the first upstream/downstream river sections:
in fact, such a first upstream/downstream catchment may, in
some cases, not have much in common with the target one.

Looking at the two rainfall-runoff models, when exclud-
ing the nested catchments, the regionalisation performances
tend to deteriorate more for the GR6J than for the TUW: this
seems to indicate that the TUW model may be more robust
for regionalisation purposes, even when nested donors are
not available.

Comparing the different regionalisation approaches,
parameter-averaging kriging is the method that is less im-
pacted by the exclusion of the nested donors, since it does not
depend only on the choice of one or a few “sibling” donors
that are very often the nested ones, but it also takes into ac-
count some of the donors in a given radius. This is consistent
with the outcomes of Merz and Blöschl (2004) and Parajka et
al. (2005), who observed almost no deterioration of regional-
isation performances when excluding the first downstream-
and upstream-nested donors using the same ordinary krig-
ing approach. When using, instead, a method transferring
the entire parameter set from one or more donor catchments,
the deterioration is more noticeable. The method that expe-
riences the worst deterioration is the NN-1, since in 80 % of
the cases, the nearest basin is a nested one, and it is thus ex-
cluded from the potential donors. The second worst is the
MS-1, that, when free to choose any single potential donor in
the entire region, would choose a nested one in 60 % of the
cases. The output-averaging methods degrade less severely,
showing that exploiting the information resulting from more
than one donor increases the robustness of the approach also
in regions that do not have as many nested catchments as in
Austria (where the importance of nested donors in region-
alising model parameters is highlighted also by Merz and
Blöschl, 2004).

Finally, an assessment of the impact of station density on
the regionalisation has also been implemented. The near-
est neighbour approaches (both NN-1 and NN-OA) are the
methods that suffer more from the decrease in gauging den-
sity. In contrast, the most similar methods (MS-1 and MS-
OA), which use as a similarity measure a set of catchment de-
scriptors, are more capable of adapting to less dense datasets.
In fact, in a more “sparse” monitoring network, the most sim-
ilar methods are able to find other adequate donors that may
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be anywhere in the region. On the other hand, the nearest
neighbour techniques, when applied in low station density
networks, risk identifying a “not so near” donor that may be
very different from the target one. The impact of decreasing
station density on the performance of the output-averaging
approach based on spatial proximity (NN-OA) is in line with
what was observed by Lebecherel et al. (2016). The perfor-
mances of both the output-averaging methods, in agreement
with the results obtained for similar methods by Oudin et
al. (2008), strongly deteriorate when the station density drops
below 0.6 gauges per 1000 km2.

The study confirms how the predictive accuracy of param-
eter regionalisation techniques strongly depends on the infor-
mative content of the dataset of available donor catchments,
quantifying the contribution of nested catchments and sta-
tion density for different approaches and rainfall-runoff mod-
els. The outcomes obtained for the Austrian dataset indicate
that the reliability and robustness of the regionalisation of
rainfall-runoff model parameters can be improved by mak-
ing use of output-averaging approaches that use more than
one donor basin but preserve the correlation structure of the
parameter set. Such approaches result in being preferable for
regionalisation purposes in both data-poor and data-rich re-
gions, as demonstrated by the analyses of the degradation of
the performances resulting from either removing the nested
donor catchments or decreasing the gauging station density.
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Appendix A: Choice of best catchment descriptors

The implementation of the most similar approach requires
the choice of the geomorphologic and climatic attributes to
be used for selecting the donor catchment(s), i.e. to calculate
the dissimilarity indices of Eq. (2).

This similarity study is part of a preliminary analysis car-
ried out through a regionalisation experiment using the whole
period of available daily data (from 1976 to 2008, again with
1 year of warm-up) for calibrating the rainfall-runoff models.

In order to individuate the best catchment descriptors (all
reported in Table 1 with a brief description), the most simi-
lar approach with one single donor catchment (MS-1) is ap-
plied sequentially to the entire dataset in leave-one-out cross-
validation, using at each step an increasing number of at-
tributes when defining the dissimilarity index 8. At each
step, the method is tested multiple times, adding one by one
each of the attributes, and the one which gives the best re-
gionalisation performances is selected. For greater clarity,
Fig. A1a refers to TUW and Fig. A1b to GR6J; it shows the
boxplots of the consecutive best combinations of descriptors:
at the first step, only one attribute is used; the most similar
approach is tested for all the available catchment features and
the similarity in the land cover classes (CORINE) gave the
best efficiency. At the second step, the operation is repeated
using land cover and each of the remaining attributes one at
a time, finding the geology classes to be the best attribute to
add, and so on. The analysis stops when the performances
are decreasing or stop improving.

As can be inferred from Fig. A1, both rainfall-runoff mod-
els reach good regionalisation performances when using up
to five attributes. Since the first best five attributes are the
same for both models and from the sixth step the perfor-
mances are not substantially improved, we decide to choose
those five descriptors to characterise catchment similarity:
land use classes, geological classes, mean annual precipita-
tion, stream network density and mean elevation.

Figure A1. Kling–Gupta efficiencies for the TUW (a) and GR6J
(b) models for the consecutive steps of the similarity analysis.
Boxes refer to 25 % and 75 % quantiles, whiskers refer to 10 % and
90 % quantiles and the blue points to the average.
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