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Abstract. River temperature is an important parameter for
water quality and an important variable for physical, chemi-
cal and biological processes. River water is also used by pro-
duction facilities as cooling agent. We introduced a new way
of calculating a catchment-wide air temperature using a time-
lagged and weighed average. Regressing the new air temper-
ature vs. river water temperature, the meteorological influ-
ence and the anthropogenic heat input could be studied sep-
arately. The new method was tested at four monitoring sta-
tions (Basel, Worms, Koblenz and Cologne) along the river
Rhine and lowered the root mean square error of the regres-
sion from 2.37 ◦C (simple average) to 1.02 ◦C. The analysis
also showed that the long-term trend (1979–2018) of river
water temperature was, next to the increasing air tempera-
ture, mostly influenced by decreasing nuclear power produc-
tion. Short-term changes in timescales < 5 years were con-
nected with changes in industrial production. We found sig-
nificant positive correlations for the relationship.

1 Introduction

River water temperature (Tw) greatly influences the most im-
portant physical and chemical processes in rivers and is a key
factor for river system health (Delpla et al., 2009). Tw also
confines animal habitats (Gaudard et al., 2018; Isaak et al.,
2012; Durance and Ormerod, 2009), regulates the spread of
invasive species (Wenger et al., 2011; Hari et al., 2006) and
is therefore an important ecological parameter. River water
is not solely important from an environmental perspective
but is also of very significant interest for the economy. Es-
pecially for energy-intensive industries such as power plants,
oil refineries, paper or steel mills, river water is an impor-
tant resource. Its availability is a basic requirement for the
location of the facilities (Förster and Lilliestam, 2010). As

a cooling agent, given a 32 % energy efficiency, 68 % of the
energy is discharged through the cooling system into the re-
spective stream (Förster and Lilliestam, 2010). This leads
to a significant heat load, even on large rivers such as the
Rhine (IKSR, 2006; Lange, 2009). As a consequence, anthro-
pogenic effects such as industrial heat input, river regulation
or streamside land change can contribute significantly to the
heat budget of a river and, furthermore, on Tw (Cai et al.,
2018; Gaudard et al., 2018; Råman Vinnå et al., 2018). The
natural influences on Tw are the following: (1) meteorology,
including sensible heat flux, latent heat flux and radiative
heat fluxes; (2) source temperature, which describes the ori-
gin of the water, e.g., snow-fed, glacier-fed and groundwater-
fed; (3) hydrology, which influences the water temperature
through the amount of water and the flow velocity, together
with the change in riparian vegetation; and (4) ground heat
flux.

Dependent on data availability, computing power, accu-
racy and the questions asked, Tw can be modeled in different
ways. The common options are statistical models and physi-
cally based models.

A physically based Tw model (Sinokrot and Stefan, 1993)
usually parameterizes or estimates the meteorological and
ground heat fluxes and adds anthropogenic heat input. Each
modeled heat flux is then applied to the water mass and ini-
tialized with the starting and boundary conditions of source
temperature and discharge. However, it is difficult to obtain a
good estimation of these different terms over a larger catch-
ment area. Hybrid models are in between physically based
and statistical models. They use the physical formulation of
fluxes but determine their parameters stochastically (Piccol-
roaz et al., 2016). Hybrid models can reproduce river wa-
ter temperatures better than simple statistical models (e.g.,
linear regression; Toffolon and Piccolroaz, 2015). Their ap-
proach includes more parameters and, thus, is more complex.
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However, a simple hybrid model with three parameters is
comparable to a statistical model with the same number of
parameters. Statistical models use air temperature (Ta) as a
proxy for sensible, latent and radiative heat fluxes (ground
heat flux can be neglected) and establish a Ta→ Tw relation-
ship through regression. Ta is rather easily available from me-
teorological networks or reanalysis products. This is an es-
tablished method, and depending on the complexity, linear or
exponential models are used (Stefan and Preudhomme, 1993;
Mohseni et al., 1998; Koch and Grünewald, 2010). Gen-
erally, exponential models deliver better results with tem-
perature extremes. However, they lack the distinct separa-
tion between contribution to Tw from anthropogenic heat in-
put and natural influences. Using linear models, Markovic
et al. (2013) show that between 81 % and 90 % of the Tw
variability can be described by Ta. Furthermore, the au-
thors showed that 9 %–19 % can be attributed to hydrolog-
ical factors (e.g., discharge). The study was conducted for
the Danube and Elbe basins using data from 1939 to 2008.
These two rivers have comparable discharges and catchment
areas to the Rhine river, which could mean these results
are transferable. These, although simple, linear models are
able to clearly separate the different influences on Tw. An-
other development is spatial statistical models. They corre-
late various landscape variables (e.g., elevation, orientation,
hill shading, river slope, channel width, etc.) across the catch-
ment area and aim to statistically determine their influence
on Tw at a certain point. These correlations can be across any
distance and do not have to satisfy flow connection or direc-
tion in the river system. As a prerequisite, a detailed knowl-
edge about the river system and its characteristics is needed
(Jackson et al., 2017a, b). An improvement on spatial statis-
tic models was recognizing rivers as a network of connected
segments with a definite flow direction (Hoef et al., 2006;
Hoef and Peterson, 2010; Isaak et al., 2010; Peterson and
Hoef, 2010; Isaak et al., 2014). The correlation of the vari-
ables (e.g., Ta, Tw discharge, etc.) which influence other Tw is
weighed on their flow connectivity and Euclidean distance or
flow distance. These models can also include time lag con-
siderations using temporal auto correlation (Jackson et al.,
2018). Artificial neural networks (ANN) are a subset of the
statistical models and are used when an incomplete under-
standing of most contributing processes is given (Hassoun,
1995). ANN use a sample data set to train artificial neurons
the relationship between input (e.g., air temperature) and out-
put (Tw) (Zhu et al., 2018).

We used a simple linear regression model (transferable to
other streams) to investigate the temperature changes in the
Rhine, over 40 years, which had been influenced by 12 nu-
clear power plants (NPPs) along the Rhine. These NPPs had
caused, for decades, the largest part of anthropogenic heat in-
put (Lange, 2009). The nuclear power production increased
in the 1970s and 1980s and reached a peak in the mid-1990s.
After the Fukushima disaster (2011), the German govern-
ment decided to exit nuclear power production, and the first

NPPs were shut down. After this political decision, a dis-
tinct drop in nuclear power production was visible on top
of the already decreasing production rates. By July 2019,
eight NPPs remained operational in the catchment area of
the Rhine that were using (partly) river water as a cooling
agent. In this publication, we hypothesized that, next to envi-
ronmental factors, the long-term decrease in power produc-
tion, which is coupled to a decreasing use of river water as
cooling agent, has a long-term (> 10 years) impact on Tw of
the Rhine. Short-term economic changes, observable in the
change in the gross domestic product (GDP), may influence
Tw on shorter timescales (< 5 years). As several industrial-
ized hot spots are present along the river, this impact might
be spatially heterogeneous. Using the nuclear power produc-
tion and GDP data, we also investigated the varying anthro-
pogenic impact on Tw along the Rhine at four monitoring
stations (Basel, Worms, Koblenz and Cologne).

2 Methods

We investigated the change in anthropogenic heat input and
its spatial and temporal heterogeneity along the Rhine, com-
bining ideas from spatial correlation models, to develop a
new method for calculating a representative catchment air
temperature (Tc). Tc and discharge at the measurement sta-
tion Q were used in a multiple linear regression Tc→ Tw
(Eq. 1). The resulting regression coefficients a1, a2 and a3
describe the magnitude of the respective influences (anthro-
pogenic heat input and meteorological and hydrological in-
fluences).

Tw = a1+ a2 · Tc+ a3 ·Q. (1)

Using an improved calculation method for Tc, which includes
catchment-wide averaging with river size weighing and a
time lag, the regression should deliver a better estimate for
a1, a2 and a3.

The model was run on a Tw time series, from 1979 to 2018,
measured at four Rhine stations, namely Basel in Switzerland
(CH) and Worms, Koblenz and Cologne in Germany (DE).
From 1979 to 2018, several changes in anthropogenic heat
input to the Rhine catchment area occurred, making it an in-
teresting data set to study. Webb et al. (2003) and Markovic
et al. (2013) have shown that Q is inversely related to Tw
and an important factor in the Tc→ Tw relationship. Addi-
tionally, it may function as a measure of how fast the water
mass responds to changes in Tw. Ground heat flux, ground
water influx and heat generation due to friction were not in-
cluded in this model because of the comparably small influ-
ence (Sinokrot and Stefan, 1993, for the Mississippi; Caissie,
2006, as a review article).

Using the multiple regression (Eq. 1), we especially in-
vestigated the change in a1 over time, which we call, in this
study, the Rhine base temperature (RBT). This temperature
represents Tw, without the influence of meteorology (Ta) and
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discharge (Q). RBT was defined as an indicator for indus-
trial heat input and the use of Rhine water as cooling agent,
in case both are mostly independent of Ta and Q.

2.1 Water temperature and discharge

We used a data set of daily averaged Tw and Q from 1979 to
2018 provided by WSA (2019), BfG (2019), LfU (2019) and
BAFU (2019). The original data sets had a 10 min sample
frequency and were averaged to a daily output. Table 1 lists
the respective stations along the Rhine, stream kilometers,
data availability, the important tributaries upstream and the
data provider.
Tw was measured by platinum resistivity sensors (Pt100).

The accuracy of these sensors is commonly ±0.5 ◦C, but the
precision, which describes the ability to detect temperature
changes, is 0.05 ◦C. As we focused on the change of Tw over
time and did not compare the absolute temperature, the ac-
curacy was not essential, and the precision of the sensors
was sufficient for this study. Measurement uncertainties (e.g.,
depth and location of the sensor) did not influence the calcu-
lation with respect to the aim of this study, as long as the
measured Tw was a linearly dependent proxy for the aver-
age river temperature. Q was provided as daily averages in
m3 s−1 by the source in Table 1 and usually calculated from
a river stage nearby.

The original data sets were provided by the state and feder-
ally operated monitoring stations, which usually run backup
measurement systems. They verified the data, and we addi-
tionally screened the data set for suspicious features. Miss-
ing data points for up to 1 week were linearly interpolated.
Longer or recurring data outages were not given.

2.2 Air temperature

Ta is retrieved from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis Model ERA5. It
provides an hourly time resolution of the 2 m Ta on a 1

4
◦ by

1
4
o

grid. The data set is available from 1979 to 2018. We took
the hourly Ta output and calculated a daily mean for each
grid point between 1979 and 2018 to fit the time resolution
of Tw.

2.3 Nuclear power plants

The annual electrical power production (EPP) by NPPs
is available from the International Atomic Energy Agency
(IAEA) Power Reactor Information System (PRIS; IAEA,
2019). A total of 12 NPPs (1986–1988) were online in the
Rhine catchment area, and eight remained operational by
July 2019. All shutdowns were undertaken in Germany. In
this study, separate reactor blocks of the same plant NPPs
were combined.

The heat input (HI) by NPPs to the Rhine was calcu-
lated for each monitoring station using the conversion fac-
tor c and the yearly EPP; see Eq. (2). NPPs with an exclu-

sive river water cooling system have a conversion factor of 3,
which is based on the power efficiency of electricity genera-
tion (Lange, 2009). Other factors are estimated depending on
the cooling system and personal communication with tech-
nicians from NPPs. If no conversion factor was available, a
constant HI was assumed (Lange, 2009).

HI [GW] =
c ·EPP [GWh]

365 · 24 [h]
. (2)

The NPPs, their conversion factor and, if applicable, the con-
stant HI are shown in Table 2. The time series of upstream
HI by NPPs for each monitoring station is shown in Fig. 1.

Calculated temperature change

We calculated the expected change 1Tw based on a change
in HI (1 HI) from NPPs using the average discharge Q, the
heat capacity of the water cp and the water density ρ; see
Eq. (3).

1Tw =
1 HI

cp ·Q · ρ
. (3)

This approach follows the idea that the contribution of NPPs
significantly alters the Tw and only influences the RBT frac-
tion.

2.4 Gross domestic product (GDP)

The GDP for the adjacent German federal states is obtained
from Arbeitskreis VGdL (2019a, 2007b). Due to changes in
the calculation method of the GDP before and after the Ger-
man reunification (1990), two separate data sets were used.
For this study, only the GDP change in the secondary sector
(construction and production) was taken into account.

The RBT, if compared to the GDP, was filtered using a
10th order Butterworth bandpass filter. The sampling rate
of the GDP was 1 yr−1. We used 1.1 yr−1 as higher and
0.05 yr−1 as lower cutoff frequencies for RBT. This means
that signals with a periodicity larger than 20 years and lower
than 0.9 years were excluded from the calculations and dis-
play. The reasoning for this was to make the RBT data com-
parable to the yearly data of the GDP change. The low-
frequency cutoff was canceling long-term trends, as the GDP
change was only related to the previous year. The high-
frequency cutoff was used to dampen fast, alternating RBT
signals in comparison to the slow sampled GDP data.

2.5 Rescaled adjusted partial sums

Rescaled adjusted partial sums (RAPSs) were used to visual-
ize trends in time series which may not be clearly visible in
the unprocessed data set. Equation (4) shows the calculation
of the RAPS index X, using time series Y .

Xk =

i=k∑
i=1

Yi −Y

σY
. (4)
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Table 1. Monitoring stations used in this study from Switzerland (Basel) to the lower Rhine region (Cologne, Germany). The location is
shown as a Rhine kilometer (KM), and the time period, the important upstream tributary and the data source are listed.

Station Stream Time period Important tributary Data provider
kilometer upstream

Basel KM 171 1.1.1977–31.12.2018 Aare BAFU (2019)
Worms KM 443 1.1.1971–31.12.2018 Neckar LfU (2019)
Koblenz KM 590 1.1.1978–31.12.2018 Main BfG (2019)
Cologne KM 688 1.1.1985–31.12.2018 Mosel WSA (2019)

Figure 1. Heat input by upstream nuclear power plants (NPPs) from 1969 to 2018 at each monitoring station.

Table 2. NPPs included in this study. The conversion factor de-
scribes the conversion from electrical power production (EPP) to
heat input (HI). If cooling towers are installed, a constant heat input
was used for the calculation based on Lange (2009). Note: NA – not
available.

NPP Country River Conversion Constant
factor HI

Beznau I and II CH Aare 3 NA
Biblis I and II DE Rhine 2 NA
Cattenom I–IV DE Mosel NA 200 MW
Fessenheim I and II FR Rhine 3 NA
Goesgen CH Aare NA 50 MW
Grafenrheinfeld DE Main NA 200 MW
Leibstatt CH Rhine NA 50 MW
Muehleberg CH Aare 3 NA
Neckarwestheim I and II DE Neckar 1 NA
Obrigheim DE Neckar 3 NA
Philippsburg I and II DE Rhine 1 NA

Y is the average over the total time series, σ is the standard
deviation of the whole time series and Yi is the ith data point
in Y .

A change in the slope of the RAPS index only indicates
a change in the slope of the original time series. A negative
RAPS slope does not indicate a negative slope in the origi-
nal time series. Garbrecht and Fernandez (1994) and Basarin
et al. (2016) used this method to investigate trends in hydro-
logical time series.

2.6 Catchment area

The catchment area was calculated using the HydroSHEDS
database (Lehner et al., 2008). The 1

125
◦ by 1

125
◦ gridded data

set provides the information, at each grid point, according to
which cell the water of a grid cell is drained. By selecting
a starting location, e.g., Koblenz at 50.350◦ N and 7.602◦ E,
it was possible to iteratively identify all grid points draining
into this location. These grid points represent the catchment
area of this location (in the example from Fig. 2 at Koblenz).
By counting the iteration steps, the distance a water drop
travels to reach the monitoring station of Koblenz was deter-
mined. This was done for each of the four stations. Addition-
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ally, the accumulation number (ACC) was obtained from the
data set. It defines how many cells in total were draining into
a particular cell, and it is a measure for the size of a river.
Finally, a grid, which defines the catchment area, the ACC
and the hydrological distance, was established, spanning the
whole catchment area. Figure 2 shows the catchment area,
the hydrological distance and the calculated flow time to the
Koblenz monitoring station.

2.7 Multiple regression

A multiple linear regression was used to separate the anthro-
pogenic heat input a1 and meteorological a2 and hydrolog-
ical a3 contributions to the river water temperature. Tw was
regressed with Tc and river dischargeQ. Their regression co-
efficients a2 (Tc slope) and a3 (Q slope) represent the magni-
tude of the respective influences. The offset a1 (RBT) com-
bines all other influences which were not related to a change
in Tc or Q. We hypothesized that the RBT is directly linked
to heat input by power plants, which are NPPs in this study,
and other industrial facilities.

Instead of taking Ta directly at the monitoring station, we
improved Eq. (1) by a time-dependent and weighed average
of Ta (x,y, t) over the whole catchment; see Eq. (5). There
were spatial coordinates (x,y) in the catchment area, and the
subscript 0 marks the location of the monitoring station.

Tw (x0,y0, t0)= a1+ a2 · Tc (x0,y0, t0+1t (x,y))

+ a3 ·Q(x0,y0, t0) . (5)

The new representative catchment temperature was called
Tc (x0,y0, t0). It was a weighed average of the whole catch-
ment area (x,y), which is defined by the measurement point
(x0,y0). The difference between the measurement time t0 and
the reading of Ta is called time lag 1t(x,y) and depends
on the hydrological distance between the measurement point
and the reading.1t(x,y) is negative and points to a moment
in time before the measurement.

2.7.1 Time lag

A change in Tw is slower than a change in Ta. The time lag1t
describes this lag and is commonly used in water temperature
models.

A reason for the occurrence of 1t is that the water
mass mixing capability, heat capacity and surface area cause
strong thermal inertia. Changing Tw through new meteoro-
logical conditions and heat fluxes takes time. Therefore, lin-
ear and exponential models include either a fixed 1t for Ta
(Eq. 6) or an average of Ta, including a time span from before
(Eq. (7); Stefan and Preudhomme, 1993; Webb and Nobilis,

1995, 1997; Haag and Luce, 2008; Benyaha et al., 2008).

Tc (x0,y0, t0)= Ta (x0,y0, t0+1t) (6)

Tc (x0,y0, t0)=

t=t0+1t∑
t=t0

Ta (x0,y0, t) . (7)

A second reason for the mismatch is advection. Rivers, in this
case the Rhine, exhibit current velocities which enable their
water to cover significant distances on timescales larger than
days. Therefore, it is necessary to take the change in Ta, in
space and time, during advection into account. This is espe-
cially important for daily averaged Tw (Erickson and Stefan,
2000). Pohle et al. (2019) average 8 d of hydroclimatic vari-
ables over the whole catchment area; see Eq. (8). However,
this approach does not include the characteristics of flow path
and flow speed.

Tc (x0,y0, t0)=

x=n,y=m,t=t0−8∑
x=0,y=0,t=t0

Ta (x,y, t) . (8)

We combined the general idea of a time lag and averaging Ta
over the whole catchment area (see Eqs. 6, 7 and 8), but in
this study, each grid point was linked to a specific time lag
1t (x,y) which is dependent on a fixed flow speed v and the
hydrological distance s(x,y) to the measurement point (see
Fig. 2). The distance was obtained from the discharge map
(Sect. 2.6) and calculated with v, as described by Eq. (9). The
new 1t (x,y) represents the mismatch by advection but not
specifically the mismatch through thermal inertia. The ther-
mal inertia would be independent of s(x,y) and a constant
added to 1t . However, we are of the opinion that a sufficient
part of the thermal inertia time lag was included in our rep-
resentation of 1t (x,y).

1t (x,y)=−
s (x,y)

v
. (9)

2.7.2 Weighing coefficients

Tobler (1970) proposed that close spatial and temporal con-
ditions tend to be more highly correlated than those further
away. This led to the introduction of the weighing factor w.
A linear decreasing weighing factor from 1 to 0 was used;
1 marks the grid point closest (smallest 1t) to the monitor-
ing station and 0 the point farthest away (largest 1t). As the
sizes of the catchment areas were different for the four mon-
itoring stations, four weighing coefficient tables were calcu-
lated. As an example, Table 3 shows the weighing coefficient
for Koblenz.

A catchment-wide hydrological flow model, estimating
the flow speed at every grid point for every hydrological sce-
nario, was not used. It was not available yet for every grid
point of the catchments, and the focus of this study was to
create a simple setup that is also transferable to other river
catchments. Therefore, using a constant flow speed of 0.4 m
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Figure 2. Catchment area of the Koblenz monitoring station as an example. The colors show the hydrological distance between the monitoring
station and each grid point of the catchment area. The second y axis shows the time it takes in days, in our setup, to flow from a certain grid
point to the monitoring station, based on the hydrological distance. The flow speed is 0.4 m s−1 and was defined to be constant in space and
time. All monitoring stations are marked by a cross. The other markers show the location of the NPPs.

Table 3. Weighing factors for the distance and the resulting 1t for
the monitoring station of Koblenz. 1t is calculated from distance
and flow speed; see Eq. (9). The weighing coefficient is linearly
correlated to 1t .

1t (d) Weighing factor Distance from
measurement point

(kilometers)

0 1 0
−1.01 0.96 35.1
−2.00 0.92 69.6
−5.02 0.81 174.6

. . .
−13.01 0.50 452.5

. . .
−26 0 904

s−1 was decided on. This flow speed was determined by cal-
culating the root mean square error (RMSE; whole data set)
of the ACC+1t model, with a step-wise reduction in the
flow speed from 1.4 to 0.3 m s−1. The lowest RMSE was
obtained at Koblenz at 0.4 m s−1. The RMSE and Nash–
Sutcliffe coefficient (NSC) coefficients at all flow speeds
and all stations are shown in the Supplement. For Basel and
Worms, slower flow speeds lowered the RMSE further. We
did not include this as it would create unreasonable low flow
speeds. The reason for the low flow speeds, with lowest
RMSE, might be the thermal inertia. As thermal inertia is
not explicitly represented in 1t (Eq. 9), a smaller flow speed

could compensate for that, especially in smaller catchment
areas.

The weighing coefficient w is combined with ACC. ACC
is used as a second coefficient which overweighs grid points
with large accumulation and, therefore, large water masses.
This ensures a balance between the large number of low ACC
grid points, which carry less water, and the influence of Ta on
large water masses. Figure 3b shows ACC ·w over the whole
catchment area of Koblenz.

2.7.3 Tc

Combining 1t , ACC ·w weighing and the gridded temper-
ature reanalysis data of Sect. 2.2, we proposed a new 3D
(x,y, t) averaging of Ta, which is shown in Eq. (10).

Tc (x0,y0, t0)=
1

n ·m

1∑
w(1t (x,y)) ·ACC(x,y)

x=n,y=m∑
x=1,y=1

w(1t (x,y)) ·ACC(x,y)

· Ta (x,y, t0+1t (x,y)) . (10)

Tc (x0,y0, t0) was calculated by weighed (ACC ·w) averag-
ing Ta (x,y, t +1t (x,y)) over all grid points of the catch-
ment area (x = 1, . . . ny = 1, . . . m), which was set by the
measurement point (x0,y0). The time lag 1t was an estimate
for the time it takes a water droplet from a specific grid point
(x,y) in the catchment area to reach the measurement loca-
tion.
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Figure 3. The catchment area of the Koblenz monitoring station.
(a) Number of grid points (accumulation number – ACC) which
are upstream of each specific grid point. (b) ACC ·w, distance and
ACC-weighed grid cells.

Based on Eq. (10), the daily Tc was calculated for each
monitoring station. This temperature represents the meteoro-
logical influence all water droplets have experienced on their
way to the monitoring station and is subsequently used in the
multiple linear regression.

2.7.4 Tc calculation methods

Additionally, we used these four calculations methods,
namely (1) w+1t , (2) avg+1t , (3) avg and (4) point, to

compare the results of the linear regression to the calculation
proposed in Eq. (10).

(1) In the following, only w weight (Eq. 11) and time lag
are shown:

Tc (x0,y0, t0)=
1

n ·m

1∑
w(1t (x,y))

x=n,y=m∑
x=1,y=1

w(1t (x,y)) · Ta (x,y, t0+1t (x,y)) . (11)

(2) Here, no weight and only time lag (Eq. 12) are shown,
as follows:

Tc (x0,y0, t0)=
1

n ·m

x=n,y=m∑
x=1,y=1

Ta (x,y, t0+1t (x,y)) . (12)

(3) A mean Ta(x0,y0, t0) over the whole catchment area at
the time t0 of the measurement was calculated; see Eq. (13).
1t was not used in the following:

w(x,y)= 1

Tc (x0,y0, t0)=
1

n ·m

x=n,y=m∑
x=1,y=1

Ta (x,y, t0) . (13)

(4) Ta(x0,y0, t0) at the location x0,y0 and time t0 of the
measurement (see Eq. 14) is shown, as follows:

Tc (x0,y0, t0)= Ta (x0,y0, t0) . (14)

3 Results

3.1 Water temperature time series

To investigate the long-term changes, we fitted a time-
dependent linear function to the time series of Tw and Ta
(catchment average) of all four monitoring stations (Basel,
Worms, Koblenz and Cologne). The same was also done
when all four monitoring stations had an overlapping data
set (1985–2018); see Table 1. Figure 5a presents the yearly
averaged Tw and the linear fits for the two time periods. The
average Ta of the catchment area is also shown. In Fig. 5b, the
RAPS index of Ta and Tw is shown. The fit coefficients and
the rate of warming per year are displayed in Table 4. The
calculated Ta increased in the catchment area of all monitor-
ing stations, and the respective slopes are shown in columns
four and five of Table 4.

Figure 5 and Table 4 show that the change in Tw was
found to be heterogeneous along the Rhine. The slope at
Basel is approx. 6 times higher (0.049 ◦C yr−1) than the
one at Cologne (0.0084 ◦C yr−1), when comparing only the
overlapping data set. However, during the same period, Ta
(0.05 ◦C yr−1 at Basel; 0.05 ◦C yr−1 at Cologne) displays
similar behavior at these two stations, which is an indica-
tion of a similar meteorological influence. The Tw warming
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Figure 4. ACC bins (x axis) vs. the relative contribution (y axis). The grid points are binned by their ACC value. The red bars show
the relative contribution (largest contribution normalized to one) by the number of grid points in this bin only. The white bars show the
distribution using the number of grid points in this bin and weighing ACC ·w.

Figure 5. (a) Yearly averages of water temperatures at the four monitoring stations (black line). The red dashed line is a fit to the available
data set. The red dotted line is a fit to the overlapping time period (1985–2018). The blue line is the yearly average air temperature of the
catchment area. (b) RAPS Tw (black) and Ta (blue) indexes. The triangle markers divide the RAPS index into sections, based on a slope
change in the RAPS index. Each section also represent a trend change in the original Ta and Tw time series.
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rate from 1985 to 2018 for Worms and Koblenz is in between
those from Cologne and Basel. These two stations show sim-
ilar Ta warming rates compared to Basel and Cologne. Gen-
erally, the Ta warming rates have a difference of less than
5 %. Arora et al. (2016) showed a mean Tw warming rate
in northern and northeastern German rivers of 0.03 ◦C yr−1

(1985–2000) and 0.09 ◦C yr−1 (2000–2010). Regarding our
time period (1985–2010), these values are plausible. Basarin
et al. (2016) found a maximum increase in Tw at the Danube
at Bogojevo (1950–2012) of 0.05 ◦C yr−1, which matches the
maximum increase at Basel. Ta increased by 0.02 ◦C yr−1 be-
tween 1985 and 2010 in the study by Arora et al. (2016).
We found a steeper slope at all stations. The reason could
be the hiatus of global warming (Hartmann et al., 2014),
which is a flattening of the Ta increase between 1998 and
2012. This period is fully included in the Arora et al. (2016)
study and our data set, but we investigated further until 2018,
when the warming of Ta already increased again (Hu and Fe-
dorov, 2017). Michel et al. (2020) investigated Tw at 52 river
gauges in Switzerland, representing most of the Rhine catch-
ment area at Basel. The authors reported an average Tw in-
crease at the 52 stations of 0.037 ◦C yr−1 (1998–2018) and
0.033 ◦C yr−1 (1979–2018). Ta increased by 0.039 ◦C yr−1

(1998–2018) and 0.046 ◦C yr−1 (1979–2018). Comparing
this to our results at Basel, the Ta warming rates are similar.
The difference might originate from the use of meteorolog-
ical stations nearby river gauges only (Michel et al., 2020)
instead of a reanalysis product. The difference in Tw warm-
ing (approx. 0.021 ◦C yr−1) could be interpreted as showing
that most warming might occur in the broader vicinity before
the Basel monitoring station.

TheR2 values make the differences between the four mon-
itoring stations visible. Basel exhibits the largest R2 values,
and these are consistently high for Ta and Tw. This is in con-
trast to the station at Cologne, where R2 of Tw was low and
statistically not significant. The slope of Ta at Cologne is
lower than at the other stations but still statistically signifi-
cant. The Pearson correlation coefficients between Ta and Tw
were the lowest at Cologne and the largest in Basel. For Ta,
the RAPS index of all the monitoring stations showed four
concurrent sections (start–1987, 1987–2000, 2000–2014 and
2014–end). Their borders are marked by the blue triangles in
Fig. 5. The section between 2000 and 2014 could be a con-
sequence of the hiatus of global warming between 1998 and
2012 (Hartmann et al., 2014). Each section represents slope
changes in the RAPS index and indicates trend changes in
the original time series. The Tw RAPS index for Basel dis-
played the same pattern in the sections as the Ta index. All
other stations showed other RAPS Tw to RAPS Ta patterns.
This means that the Ta and Tw trends of the original time se-
ries were different at these stations. Ta cannot fully describe
the trends in Tw.

We hypothesized that different meteorological conditions
were not the reason for this difference. Meteorological differ-
ences should also have been visible in the Ta warming rate of

the four stations, which was not the case. The RAPS analysis
for Ta and Tw only coincided within the Basel data set.

3.2 Regression

We fitted the multiple regression model (Eq. 5) using Tc and
Q to Tw of each monitoring station for the available data set.
Afterwards, we recalculated Tw,modelled using the regression
coefficients a1, a2 and a3. From the comparison between the
Tw,modelled and measured Tw, the RMSE and the NSC for
each monitoring station was derived (see Table 5). To support
the introduction of weighing coefficients ACC ·w and1t , we
compared five different calculations of Tc from Sect. 2.

Table 5 shows the RMSE and NSC values for all corre-
lations. The lowest (RMSE) and highest (NSC) values are
displayed in bold in Table 5. The lowest RMSE was found to
be 1.02 ◦C for ACC ·w+1t (first row) at the Koblenz station.
At this location, the largest NSC, of 0.97, also appeared. The
flow speed was optimized for lowest RMSE at the Koblenz
station (see Sect. 2.7.2). It was evident that the three methods,
including a 1t , have a lower RMSE (below 2.01 ◦C; lowest
1.02 ◦C) than the two methods without a 1t (above 2.37 ◦C;
largest 2.97 ◦C). The same trend held true for NSC where the
1t methods were above 0.90 and the other two were below
0.86. We think that the use of a catchment-wide1t improved
the quality of the multiple regression analysis and delivered a
significant improvement in the Ta→ Tw-based modeling. In-
terestingly, combining ACC and the weighing factor w pro-
vided the best estimation for all stations, except for Basel.
The content of Fig. 4 could explain this result. Without ACC
weighing, small water masses (small ACC) may be overrep-
resented in the contribution to Tc. Large ACC grid points rep-
resent large water masses (rivers and lakes), and their influ-
ence on Ta may be otherwise underestimated. At Basel the
fraction of lowACC grid points was relatively small com-
pared to the other stations, as Basel is closest to the water
sources and has the smallest catchment area. Therefore, the
ACC weighing might have provided weaker results.

As ACC ·w+1t provided the smallest RMSE, this calcu-
lation method was used for all further calculations of Tc.

In the Supplement, we provide a calculation of the regres-
sion coefficients for the year 2001 only. These coefficients
were then taken as a basis for calculating Tw for each year
from 2000 to 2018. The RMSE and NSC data were consistent
in magnitude with the long-term regressions of this section.
The RMSE at Koblenz ranged from 0.75 to 1.22 ◦C. A lower
RMSE was caused by the shorter regression period. This sup-
ports the stability and validity of the regression model.

3.3 Rhine base temperature

The RBT was used to explain differences in the Tw warming
rates of Table 4. We regressed a 2-year segment of the Tw
time series and set a step size of 1 month in order to create
a RBT time series over the full data set. The regression of a
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Table 4. Slope of linear fits and Pearson correlation coefficients to the daily temperature data at the four monitoring stations. The data set
used is described in the column header. Next to the slope values are the R2 values, which are statistically significant if R2 > 0.19.

Station Slope Tw whole Correlated Tw↔ Ta Slope Tw 1985–2018 Correlated Tw↔ Ta Slope Ta whole Slope Ta 1985–2018
data set (◦C yr−1) whole data set (◦C yr−1) 1985–2018 data set (◦C yr−1) (◦C yr−1)

Basel 0.054, R2
= 0.66 0.867 0.049, R2

= 0.38 0.874 0.050, R2
= 0.48 0.050, R2

= 0.32
Worms 0.055, R2

= 0.52 0.690 0.035, R2
= 0.38 0.729 0.050, R2

= 0.20 0.048, R2
= 0.36

Koblenz 0.033, R2
= 0.31 0.778 0.024, R2

= 0.38 0.762 0.052, R2
= 0.11 0.048, R2

= 0.36
Cologne 0.008, R2

= 0.001 0.499 0.008, R2
= 0.31 0.499 0.050, R2

= 0.001 0.050, R2
= 0.31

Table 5. RSME (in degrees Celsius) and NSC for all Tc calculation methods. Different Tc calculation methods and the regressions are applied
over the total data set. The RMSE and the NSC are calculated between Tw and Tw,modelled. The first column contains the calculation method.
The best results for each monitoring station and each calculation method are indicated in bold.

RMSE NSC

Method Basel Worms Koblenz Cologne Basel Worms Koblenz Cologne

ACC ·w+1t 1.65 1.24 1.02 1.31 0.93 0.96 0.97 0.95
(1) w+1t 1.56 1.33 1.43 1.87 0.92 0.95 0.95 0.92
(2) avg+1t 1.61 1.45 1.70 2.08 0.93 0.94 0.93 0.90
(3) avg 2.48 2.43 2.37 2.97 0.82 0.84 0.86 0.79
(4) point 2.67 2.55 2.63 2.85 0.78 0.82 0.82 0.80

2-year segment should also compensate for extreme events
occurring during 1 year. These could be extremely low dis-
charge or extreme water temperatures in which industrial and
power production had to react. As the absolute RBT cannot
be meaningfully interpreted, only the changes in RBT over
time are shown in Fig. 6. We subtracted the last data point
of each time series from the rest of the data and showed the
change in RBT, a 4-year running mean and 1 RBT (Eq. 3)
vs. time. The HI by NPPs is shown as a dotted blue line re-
lating to the y axis on the right (Fig. 6).

3.3.1 Long-term trends

In this study, long-term trends were visible on timescales of
decades. The HI by NPPs, the 4-year running mean RBT and
1RBT followed a similar trend in this analysis (see Fig. 6).
After the maximum heat discharge from NPPs between 1996
and 1998, the HI and the RBT of Worms, Koblenz and
Cologne declined. The RBT started its decline 1–2 years be-
fore 1995, which might have been triggered by the recession
in 1993 and a sharp drop in the German trade balance. At
Basel, the RBT and the HI remained comparably constant.
Additionally, we calculated 1Tw based on the change in HI,
using Eq. (3), at every station and compared it to the 1RBT
from the regression model (see Table 6). The period for each
monitoring station starts at the maximum HI by NPPs for the
respective station and ends in the year 2017.

At Basel, both simulated and calculated RBT changes
were negligible due to the lack of change in HI. At all
other stations, the change in HI was reflected in the change
in RBT. The maximum difference between simulation and

Figure 6. Rhine base temperature (RBT) from four monitoring sta-
tions (black solid line). The red dashed line is the RBT 4-year
running mean. The magenta line with the “+” markers shows the
1RBT relative to the last year. The blue dotted line is the upstream
heat input (HI) by NPPs; see Sect. 2.3.

calculation was found to be 0.34 ◦C. Before 1995, Worms,
Koblenz and Cologne showed an approximately 1 ◦C offset
between 1RBT and 1Tw (see Fig. 6). This occurred dur-
ing a time when the NPPs HI remained relatively stable, but
the GDP increased by 30 % between 1985 and 1995 (World-
bank, 2020). The change in nuclear power production over a
time period of 30 years or more can explain the changes in
and the heterogenous warming rates of Tw along the Rhine.
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Table 6. Change in RBT (column three) in the time period given in
column two. The start of the period indicates the maximum HI of
NPPs at the respective monitoring station. The calculated1Tw (col-
umn four) and the change in HI by nuclear power plants (column
five) are also provided. The calculations were done using Eq. (3).
Note: GW – gigawatt.

Name Period 1RBT from 1Tw from 1HI
data set Eq. (3) (GW)

Basel 2008–2017 −0.26 0.04 0.17
Worms 1996–2017 1.29 1.19 7.14
Koblenz 1999–2017 1.59 1.45 10.5
Cologne 1998–2017 1.21 1.55 10.7

NPPs may also impact Tw at much shorter timescales but do
not change their power output accordingly.

3.3.2 Short-term trend

Short-term changes (< 5 years) in RBT (Fig. 6) are not likely
to be influenced by the overall HI from NPPs, as these adopt
production at longer timescales. More important are local
industrial conditions, which could also include fossil fuel
power plants. However, not all influences on the coefficient
a1 and, subsequently, on the RBT originate from industrial
production. Various potential influences are unknown and not
within the scope of this publication.

For Basel, it was not possible to satisfyingly explain the
short-term variations. The Rhine and its tributaries upstream
are flowing through subalpine lakes and, in relation to the
downstream part, are not strongly industrialized. Lakes have
a complicated heat budget (Råman Vinnå et al., 2018), which
was not focused on in this analysis.

For all other stations, we hypothesized that local produc-
tion facilities and their HI into the Rhine are responsible for
the short-term changes, by comparing the RBT time series
to economic data. Figure 7 shows the comparison of RBT
(black line; 1 year running mean) to the changes in the GDP
(blue line). A discontinuity in the GDP in 1991 is visible due
to the German reunification, which is when the calculation
method of the GDP changed. Therefore, the data were plot-
ted as separate lines.

For Worms (Fig. 7, bottom panel), we added the change
in the turnover of BASF (red dashed line; BASF AG, 1989).
BASF is a major chemical company, and one of its largest
production facilities, with an estimated HI of 500 MW to
1 GW, is located 12 km upstream (Rhine kilometer 431) from
the Worms station. It was investigated whether the produc-
tion and HI changes in this factory were also visible. In 1985,
although the change in GDP did not indicate a large RBT
change, a RBT decrease was visible. This was indicated by
a turnover decrease in 1985 and 1986. After the German re-
unification in 1990, a negative GDP change (recession) was
evident. This was followed by a BASF turnover decline and

Figure 7. The change in RBT (black solid line) at three monitoring
stations (Cologne, Koblenz and Worms). The blue dashed line is
the GDP change in the adjacent federal states. To explain trends
during two time periods, the red dashed line, which is the turnover
of BASF, and the red dotted line, which is the production rate of the
oil refineries, were added. The triangles mark the years 2000 (burst
of the dot-com bubble) and 2008 (mortgage crisis).

a decrease in RBT. After that, the RBT followed the zigzag
movements of the GDP, and so did the BASF turnover (only
shown until 2000). In particular, the economic events, such as
the burst of the dot-com bubble (early 2000s) and the mort-
gage crisis (2008), were visible in the RBT and in the GDP
when a decrease in both parameters followed. The two events
are marked by triangles in Fig. 7.

Before 1990, the RBT at Koblenz did not follow the GDP
trend, and it showed a rather anticyclic behavior which can
not be explained yet. After 1991, the RBT followed the gen-
eral trend of the GDP but did not seem to be strongly influ-
enced by the short recession after the German reunification.
Again, economic events such as the burst of the dot-com bub-
ble (early 2000s) and the mortgage crisis (2008) displayed an
influence on the RBT.

The RBT at Cologne did not seem to be strongly influ-
enced by the recession connected to the German reunifica-
tion, but after 1999, the RBT follows the zigzag trends of the
GDP.

For all monitoring stations, a red dashed line was added
between 1995 and 1999. This dashed line indicates the pro-
duction rate of German oil refineries (MWV, 2003). From
1995 to 1999, German refineries ran at full capacity (100 %);
usually the capacity levels did not exceed 90 %. The increase
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Table 7. Spearman’s rank correlation coefficients between RBT and
GDP change for ACC ·w+1t . The last column shows the signifi-
cance.

Name ACC ·w+1t Significance

Worms 0.48 p < 0.05
Koblenz 0.53 p < 0.05
Cologne 0.44 p < 0.05

in production was clearly visible in the RBT at Cologne,
where a large oil refinery is located 19 km upstream at Rhine
kilometer 671 (Rhineland refinery). The RBT at Worms and
Koblenz could be influenced by the output of a refinery next
to Karlsruhe at Rhine kilometer 367 (Mineraloelraffinerie
Oberrhein).

3.3.3 Correlation

We correlated the GDP change and the filtered RBT signal.
It was noticeable that a 480 d shift to the past was needed
to obtain matching trends. This means that a change in RBT
or anthropogenic HI appeared about 480 d earlier than in the
GDP calculation. The shift could be caused by the following
two reasons: (1) using the GDP difference of 2 consecutive
years has a significance at a unspecific point of time within
these 2 years. (2) The GDP is lagging behind the real eco-
nomic situation which is, in this case, the industrial produc-
tion. Yamarone (2012) claimed that GDP was a coincident
economic indicator similar to industrial production. How-
ever, Yamarone (2012) used quarterly GDP calculations, and
in this study annual data were used. The quarterly data set
may react faster to changes. A second thought was that Ya-
marone (2012) compared the calculations of industrial pro-
duction, which is an economic index, to GDP (another eco-
nomic index). In this study, real-time data from industrial HI
into the river was processed. This shift has not been done for
Fig. 6) because a shift of 1.5 years on a 40-year timescale is
negligible.

Table 7 shows the Spearman’s rank correlation coeffi-
cients of Worms, Koblenz and Cologne for the ACC ·w+1t
calculation method, which resulted in the lowest RMSE at
Koblenz.

All correlations were found to be positive and statistically
significant (p < 0.05). The correlation at Koblenz was high-
est. Figure 8 shows the filtered RBT signal vs. the GDP
change at the three monitoring stations. The RBT time series
was detrended and filtered. Most of the time, the variations in
the RBT (filtered and shifted) were coincident with the GDP
change. The RBT peak between 1995 and 1998 was not very
well represented by the GDP change, which has already been
discussed earlier in context of Fig. 7.

4 Conclusions

We introduced a new catchment-wide air temperature Tc,
which decreased the RMSE (Table 5) in a Tc→ Tw regres-
sion. Tc is a weighed (ACC ·w) average of all Ta across the
catchment area, including the use of 1t for each grid point
according to the hydrological distance and flow speed. In the
approach, this time lag was used as an indicator for the point
in time at which a water droplet was at a certain grid cell in
the catchment area. As a result, one can obtain a better esti-
mate of which Ta a water droplet experienced on its way to
a certain point (in this study it is a monitoring station), and
it delivered better linear Tc→ Tw estimates. This improve-
ment in the Tc→ Tw relationship may support the analysis
of processes in the heat budget of rivers. Usually, Ta data is
readily available and can easily be combined withQ data for
multiple linear regression analysis. Still, a sufficiently long
(decadal) time series of Tw was required. Nevertheless, a lin-
ear relationship was found to be simpler than a full, physi-
cally based model which requires all meteorological fluxes
as input quantities.

In the proof of concept, we focused on the Rhine catch-
ment area, but in principle, the model can be applied to any
river system around the globe if the respective long-term data
are available. However, catchment area data and reanalysis
Ta data are often globally available. Morrill et al. (2005)
showed a linear Ta→ Tw relationship for 43 rivers with var-
ious catchment areas in the subtropics. This potentially indi-
cates that the proposed model and procedure can be applied
elsewhere. However, this still has to be verified. Future cal-
culations may be coupled with catchment-wide hydrological
models to improve the accuracy of the time lag. The time
lag used in this study was based on trial and error in search
of the lowest RMSE. A detailed catchment-wide hydrologi-
cal flow model would be especially beneficial for setting an
upper limit for the time lag and constraining its validity. It
would also be interesting to estimate the importance of the
advection time lag vs. the thermal inertia time lag.

With Tc, we regressed four Tw time series (Basel, Worms,
Koblenz and Cologne) along the Rhine. The offset in the this
regression a1 was called RBT, and its change over time was
found to be an indicator for anthropogenic HI. The RBT pos-
itively correlated to long-term economic changes, such as the
decrease in nuclear power production, and to short-term eco-
nomic events. We showed that changes in production rates
(oil refineries or chemical industry) and a change in GDP
may influence the RBT and, therefore, the Rhine’s water tem-
perature. Additionally, the Spearman’s rank correlation co-
efficient between RBT and GDP is positive and significant,
providing another indication for the relation. This case study
might provide a tool for a better understanding of the long-
term consequences of industrial water use, and it might be
used as a verification tool for reported HI. Germany has a
rigorous reporting system on cooling water use. However,
other countries could check if industrial HI is in accordance
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Figure 8. Detrended and filtered RBT signal (black solid) and the GDP change (blue dashed) at Cologne, Koblenz and Worms.

with legislative guidelines, without depending on official re-
ports. Whether the ongoing COVID-19 (2020) pandemic and
its impact on the economy is also visible, using the offered
procedures, may be explored after the crisis.

Hardenbicker et al. (2016) estimated, using a physically
based model (QSIM), that between the reference period of
1961–1990 and the near future 2021–2050, the mean annual
Tw of the Rhine could increase by 0.6–1.4 ◦C. This trend is
plausible, according to the historical data analyzed, if the Ta
increase remains constant. However, they used a constant an-
thropogenic HI by, for example, power plants and production
industries, and different warming rates along the Rhine can
result from changes in anthropogenic HI. Next to the global
air temperature increase, the industrial use of river water will
have major impacts on the Rhine water temperature in future.

The difference in the Tw warming rate between Basel and
the other monitoring stations in the time series data can be
explained by the change in nuclear power production and
the influence of general industrial production. For the Rhine,
a decreasing (except for Basel) RBT, which indicates a de-
creasing HI, was found. Other river catchment areas with
growing energy-intensive industries might be impacted by
much larger warming rates than those caused by the gen-
eral increase in Ta, which means they will experiences all
the consequences on the physical, chemical and biological
processes.
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