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Abstract. Evapotranspiration (ET) influences land—climate
interactions, regulates the hydrological cycle, and contributes
to the Earth’s energy balance. Due to its feedback to large-
scale hydrological processes and its impact on atmospheric
dynamics, ET is one of the drivers of droughts and heat-
waves. Existing land surface models differ substantially, both
in their estimates of current ET fluxes and in their projec-
tions of how ET will evolve in the future. Any bias in esti-
mated ET fluxes will affect the partitioning between sensi-
ble and latent heat and thus alter model predictions of tem-
perature and precipitation. One potential source of bias is
the so-called “aggregation bias” that arises whenever non-
linear processes, such as those that regulate ET fluxes, are
modeled using averages of heterogeneous inputs. Here we
demonstrate a general mathematical approach to quantifying
and correcting for this aggregation bias, using the GLEAM
land evaporation model as a relatively simple example. We
demonstrate that this aggregation bias can lead to substan-
tial overestimates in ET fluxes in a typical large-scale land
surface model when sub-grid heterogeneities in land surface
properties are averaged out. Using Switzerland as a test case,
we examine the scale dependence of this aggregation bias
and show that it can lead to an average overestimation of
daily ET fluxes by as much as 10 % across the whole country
(calculated as the median of the daily bias over the growing
season). We show how our approach can be used to iden-
tify the dominant drivers of aggregation bias and to estimate

sub-grid closure relationships that can correct for aggrega-
tion biases in ET estimates, without explicitly representing
sub-grid heterogeneities in large-scale land surface models.

1 Introduction

Earth’s surface and subsurface are characterized by spa-
tial heterogeneity spanning wide ranges of scales, including
scales that cannot be explicitly resolved by large-scale Earth
system models (ESMs), which are typically run at resolu-
tions of 10-100km. Averaging over this finer-scale hetero-
geneity can bias model estimates of water and energy fluxes
and hence alter future temperature predictions. Earth system
model estimates of global terrestrial evaporation differ sub-
stantially from atmospheric reanalyses based on in situ and
satellite remote sensing observations (Mueller et al., 2013),
but it is unclear how much of these differences could be at-
tributed to errors in capturing sub-grid heterogeneity.
Several recent studies (e.g., Fan et al., 2019; Shrestha et
al., 2018) have emphasized the need to account for land sur-
face heterogeneity in large-scale ESMs. Despite recent com-
munity efforts in refining ESMs’ spatial resolution (Huang
et al., 2016; Rauscher et al., 2010; Ringler et al., 2008; Ska-
marock et al., 2012; Zarzycki et al., 2014), the grid resolution
of present-day ESMs is still too coarse to explicitly capture
important effects of surface heterogeneity. Whether the so-
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lution lies in hyper-resolution large-scale land surface mod-
eling remains an open question, because heterogeneities that
are important to land—atmosphere fluxes will not be fully re-
solved even at scales of 100 m (Beven and Cloke, 2012).

The effects of aggregating over spatial heterogeneity
in land surface models have been assessed using several
approaches. Most of these approaches compare grid-cell-
averaged energy and water fluxes with flux estimates for
finer-resolution grids or for grid cells that are subdivided into
mosaics of several surface types which separately exchange
momentum, energy, and water vapor with the overlying at-
mosphere (e.g., Giorgi, 1997). Several studies have reported
increases in average evapotranspiration (ET) (e.g., Kuo et al.,
1999; Boone and Wetzel, 1998; Hong et al., 2009; McCabe
and Wood, 2006; El Maayar and Chen, 2006), and at least
one has reported decreases in grid-cell-averaged ET (Ershadi
et al., 2013), as model grids are coarsened and less spatial
heterogeneity is accounted for. Shrestha et al. (2018) studied
the effects of horizontal grid resolution on ET partitioning in
the TerrSysMP Earth system model and found that the aggre-
gation of topography decreases average slope gradients and
obscures small-scale convergence and divergence zones, di-
rectly impacting surface and subsurface flow. They observed
5 % and 8 % decreases in the transpiration/evapotranspiration
ratio for a dry and a wet year, respectively, when their model
grid cells were coarsened from 120 to 960m. All these
studies calculate the effects of land surface heterogeneity
on ET fluxes using numerical experiments that refine the
model’s spatial resolution, either directly or through the use
of land surface mosaics.

Quantifying the effect of sub-grid-scale heterogeneity on
grid-cell-averaged fluxes is especially important when highly
nonlinear processes are involved. Regardless of scale, the
main challenge is not to explicitly represent the heterogene-
ity in all its details, but instead to define an appropriate
scale-dependent sub-grid closure relationship that recognizes
the important heterogeneities within the grid elements and
the nonlinearities in the processes (Beven, 2006). Such a
sub-grid closure scheme would capture the effects of sub-
grid heterogeneity in large-scale land surface models without
forcing them to run at finer spatial resolutions.

We have recently proposed a general theoretical frame-
work, based on Taylor series expansions, that quantifies
the aggregation bias that results from averaging over sub-
grid heterogeneity when grid-cell-averaged ET is estimated
(Rouholahnejad Freund and Kirchner, 2017; Rouholahne-
jad Freund et al., 2020a). In contrast to the numerical ex-
periments described above, this theoretical framework does
not depend on a particular evapotranspiration model or grid
scale. Our previous work demonstrated this framework using
Budyko curves as a see-through “toy” model, leaving open
the question of how strongly ET estimates would be affected
by sub-grid heterogeneity in a more typical mechanistic
evapotranspiration model. Here we use the mechanistic evap-
otranspiration model GLEAM (Global Land-surface Evapo-

Hydrol. Earth Syst. Sci., 24, 5015-5025, 2020

ration: the Amsterdam Methodology) to quantify how aggre-
gation biases vary across a range of scales, using Switzerland
as a case study. We show how our Taylor expansion frame-
work can be used to quantify the sensitivity of ET fluxes to
heterogeneity in their individual drivers. We further demon-
strate how this framework can be used to estimate correction
factors (i.e., sub-grid closure relationships) that account for
the effects of sub-grid heterogeneity without explicitly mod-
eling it, and we show how these correction factors can be
used to improve grid-scale ET estimates. Because our frame-
work is not model-specific, the analysis presented here could
also be applied to many other evapotranspiration algorithms.

2 Methods and results

2.1 A common mechanistic framework for predicting
evapotranspiration

Most large-scale land surface models calculate ET as a func-
tion of available water and energy at daily time steps. They
typically multiply an estimate of potential evapotranspira-
tion (PET) by a conversion factor to calculate actual evap-
otranspiration. PET is generally understood as the maximum
rate of evapotranspiration from a large area (to avoid the ef-
fect of local advection) covered completely and uniformly
by actively growing vegetation with adequate moisture at all
times (Brutsaert, 1984). Models typically estimate PET us-
ing the Penman equation (Penman, 1948; intended for open
water surfaces), the Penman—Monteith equation (Monteith,
1965; Monteith and Unsworth, 1990; intended for reference
crop evapotranspiration by adding atmospheric transport pro-
cesses and stomatal resistance to Penman’s open water evap-
oration), or the Priestley—Taylor equation (Priestley and Tay-
lor, 1972; intended for open water and water-saturated crops
and grasslands). The conversion factor that is used to esti-
mate ET from PET typically depends on plant physiology
and on the water that is available for evaporation.

Here, we employ an ET algorithm that is used by sev-
eral land surface models (i.e., GLEAM; Miralles et al., 2011;
Martens et al., 2017), in which actual ET is calculated as a
fraction of PET. This fraction is expressed as a multiplicative
factor, often called a stress factor, which ranges between 0
and 1 and thus limits ET rates. Under wet conditions, ET can
equal PET (stress factor equals one), while under dry condi-
tions, PET is multiplied by a stress factor smaller than one
depending on the degree of water stress. This approach is
employed by the GLEAM model, among others. GLEAM
is a diagnostic satellite-data-driven method that is used to
estimate global land evaporation fluxes. GLEAM uses the
Priestley—Taylor formula and remotely sensed datasets of ra-
diation and temperature to calculate PET. In GLEAM, actual
ET is calculated by constraining PET estimates by a stress
factor that is based on estimates of root-zone soil moisture.
The root-zone soil moisture is derived from a multilayer wa-
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ter balance module that describes the infiltration of precip-
itation through the vertical soil profile. ET estimates from
GLEAM have been applied in many studies (e.g., Miralles
et al., 2013, 2014; Greve et al., 2014; Jasechko et al., 2013).
GLEAM operates on daily time steps at 0.25° spatial resolu-
tion. 0.25° is about 27.6 km in the north—south direction and
18.9km in the east—west direction at the latitude of Switzer-
land. To the best of our knowledge, there are no prior stud-
ies quantifying the aggregation bias in ET estimates from
GLEAM or other models with similar ET formulations.

GLEAM calculates ET as an explicit function of the stress
factor and potential evaporation:

ET=S-PET+ (1 —B)I, )

where ET is actual evapotranspiration (mmd~!), § is the
evaporative stress factor (—) that accounts for environmen-
tal conditions that reduce actual ET relative to potential ET,
[ is interception loss (mm d~!, Gash, 1979), and B is a con-
stant (8 = 0.07 — Gash and Stewart, 1977) that avoids double
counting of interception losses during hours with wet canopy.
The stress factor (S) depends on the soil moisture conditions
and is parameterized separately for tall canopy, short vegeta-
tion, and bare soil. GLEAM uses the following soil-moisture-
based parameterization to calculate the stress factor (Miralles
et al., 2011; Martens et al., 2017):

We — wy \ 2
s=1_<—), P

We — Wwp

where S is the stress factor (—) for tall canopy, wy is soil
moisture saturation at any given time (-), and w. and wy,, are
the critical soil moisture saturation level and wilting point.
For soil moisture saturation values below the wilting point
Wywp, the stress is maximal (stress factor equals 0), causing
ET to sharply decline to zero. For values above the criti-
cal moisture level w,, there is no water stress (stress factor
equals 1) and ET equals PET. Between wy,p and w, the stress
increases as soil moisture decreases following a parabolic
function (Eq. 2). In the analysis presented below, we set the
critical soil moisture level (w) and wilting point (wwp) to 0.6
and 0.1, respectively. To simplify the analysis presented be-
low, we have used the tall-canopy stress factor (Eq. 2) for
all of Switzerland, even though the short-canopy or bare-soil
formulations may be better suited to some locations.

GLEAM uses the Priestley—Taylor approach to calculate
PET (Priestley and Taylor, 1972):

PET=2—2 (R, -G 3

= Aty (Rn—G), 3)
where PET is potential evapotranspiration (mmd~!), « is
a dimensionless coefficient that parameterizes the resis-
tance to evaporation and is set to 0.8 for tall canopy
in GLEAM (Miralles et al., 2011), A =2.26 (MJkg™!)
is the latent heat of vaporization, R, is net radia-
tion (MJIm~2d™!), G is the ground heat flux, approximated
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as G =0.05R, MIm—2d~") for tall canopy in GLEAM,
T is temperature (°C), and A is the slope of the temper-
ature/saturated vapor pressure curve (kPa°C~!), which is
functionally related to temperature (Tetens, 1930; Murray,
1967; Stanghellini, 1987):

A =aeT, (4)

where a =0.04145 (kPa°C~1), b =0.06088 (°C~!), and
y is the psychrometric constant (kPa®C™!), which can be
calculated as (Brunt, 1952)
CPair P (5)

V=T aw

A+ MW atio
where Cp,;, = 0.001013 (MJ kg~! °C~1) is the specific heat
of air at constant pressure, P = 101.3 (kPa) is atmospheric
pressure, and MW 4o = 0.622 (—) is the molecular weight
ratio of HyO/ air. Substituting the aforementioned constants
in Eq. (5) yields y =0.073 (kPa°C~1). Expanding Eq. (1)
using Egs. (2)—(5) yields the ET function as calculated by
GLEAM:

ET[nma-1] = [—4w§v[m3 ] 48w 0.44]

A oc-1
o [kPacC—1] .0.95

Mmikg '] Akpacc1] F V[kpacc1]
86400

1000000~ "[wm=?]
- [—4w$v +4.8wy — 0.44] -0.02905

aebT

" aebT +0.073

+(1- IB)I[mmd*I]

R,+ (1 _0'07)I[mmd*1]‘ (6)

In the analysis below, we use the GLEAM evapotranspira-
tion algorithm to demonstrate how aggregation biases can
be estimated in land surface modeling schemes. We chose
GLEAM because its governing equations are amenable to the
analytical solutions derived below. Here we make no particu-
lar claim for the accuracy or validity of GLEAM as an evap-
otranspiration model, nor is our analysis intended to test this.
Likewise our analysis should not be interpreted as implying
that GLEAM is any more, or less, susceptible to aggrega-
tion bias than other evapotranspiration schemes, because this
question is beyond the scope of the current paper.

2.2 Mathematical framework for predicting
aggregation bias

Nonlinear averaging using second-order Taylor
expansions

ET is a nonlinear function of its drivers. An intrinsic prop-
erty of any nonlinear function is that the average of the func-
tion will not equal the function evaluated at the average in-
puts (e.g., Rastetter et al., 1992; Giorgi and Avissar, 1997;
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Rouholahnejad Freund and Kirchner, 2017). Thus averaging
over sub-grid heterogeneity in ET drivers, as large-scale land
surface models do, would be expected to lead to biased ET
estimates, even if the underlying equations were exactly cor-
rect. For an ET function of three variables, namely Ry, wy,
and T, the mean of the ET function, in terms of the func-
tion’s value at the mean of its inputs, can be approximated
by the second-order Taylor series expansion of the ET func-
tion (Eq. 6):

ET EAT—i—l aZETV (R)+82ET
~ — ar
2 aR2 Y w2

w

Var (wy,)

2

BZETV D+ 92ET
ar
aT? OR,OT

N 92ET Cov(R '+ 92ET
—Cov ,
IR, Oy W) dT

+

Cov(Rn, T)

Cov(wy,T), 7)

where ET is the estimate of the “true” average of the nonlin-
ear ET function over its variable inputs, ET is the ET function
evaluated at its mean inputs, and the derivatives are under-
stood to be evaluated at the mean values of the variables (R_n,
Wy, T) and multiplied by the corresponding variances and
covariances among finer-resolution input data. For the spe-
cific case of the GLEAM model, the ET function is evaluated
at its mean inputs (EAT), and these derivatives are derived an-
alytically from the ET function described by Eq. (6), directly
yielding the following expressions:

ET = |47 + 4.8, — 0.4 -0.02905

bT
— R, ®)
aebT +0.073
O’ET _ ©
dRZ
9°ET A
Tl = [—8]-0.02905 - mRn (wwp S ww <we), (10a)
3’ET
) =0 (ww < Wwp, Ww > wc), (10b)
w
3’ET 5 )
N [—4ww 48wy — 0.44] -0.02905 - Ry - b
2 2
A—yA
. % (11)
(y +4)
3’ET 5
e = [—4ww 448wy — 0.44] -0.02905
n
A b
. _)/’ (12)
A+y A+y
3’ET A
——— =[—8wy, +4.8]-0.02905 - ———
d Ry dwy, Aty
(wwp < ww < we), (13a)
3’ET
m =0 (ww < Wyp, Wy > wc), (13b)

Hydrol. Earth Syst. Sci., 24, 5015-5025, 2020

92ET A
— —[—8wy +4.8]-0.02905- ——
dwwdT Aty
by
. A——|—y . Rn (U)Wp < wy < wc) s and (143)
92ET

(14b)

dwndT =0 (ww < Wyp, Wy > wc),
where A depends on temperature as described in Eq. (4). The
difference between the average of the functions (ET) and the
function of the averages (ET), or, equivalently, the sum of all
the other terms in Eq. (7), represents the aggregation bias.
The magnitude of this bias can be calculated by combin-
ing Egs. (7)—(14) with estimates of the variances and covari-
ances of the input variables. Note that the interception term
in Eq. (6) is dropped out from the derivatives as the intercep-
tion loss in GLEAM is a linear function of amount of rainfall
necessary to saturate the canopy and therefore has negligible
effect when averaged.

The approach outlined in Eq. (7) is general and could be
extended to other land surface modeling schemes. The par-
tial derivatives in Egs. (8)—(14), of course, are specific to the
GLEAM equations; for other models they would differ. More
complex land surface model algorithms may not have such
simple analytical derivatives; in that case, the derivatives can
be evaluated numerically.

2.3 Sub-grid heterogeneity and aggregation bias in ET
estimates across Switzerland

Drivers of ET (i.e., soil moisture, net radiation, and tempera-
ture) can be highly heterogeneous within the grid cells of typ-
ical ESMs. Soil moisture can show pronounced spatial vari-
ability, especially in areas where surface roughness, porosity,
and permeability vary by orders of magnitude across a vari-
ety of length scales (Giorgi and Avissar, 1997). Temperature
and incoming radiation vary significantly with season, eleva-
tion, altitude, and albedo. Switzerland, for example, shows
strong local variations in average annual temperature, soil
moisture content, net radiation, and albedo (Fig. 1; albedo
values in Fig. S1 in the Supplement).

We quantified how averaging over spatial (and tempo-
ral) heterogeneities of ET drivers affects estimated ET at
several grid scales across Switzerland, as an example case
for which high-resolution data are available. Our analysis is
based on 500 m input data of temperature (interpolation of
MeteoSwiss data after Viviroli et al., 2009), net radiation
(Viviroli et al., 2009), and soil moisture (simulations from
the hydrological model PREVAH, Brunner et al., 2019; Spe-
ich et al., 2015; Orth et al., 2015; Zappa and Gurtz, 2003)
at daily time steps for the 2004 growing season. Although
our soil moisture data are derived from model simulations
whose accuracy is difficult to assess due to the scarcity of
real-world soil moisture measurements, for our purposes all
that is necessary is that the simulated values exhibit realisti-
cally complex spatial variability.

https://doi.org/10.5194/hess-24-5015-2020



E. Rouholahnejad Freund et al.: Averaging over spatial heterogeneity biases ET estimates

annual temperature (°C)

L —
NW b g
[olole o]

soil moisture saturation(-)

5019

annual precipitation (mm yr-1)

Figure 1. Spatial distribution of input data for the year 2004 at 500 m resolution: annual mean (a) temperature (°C), (b) soil moisture
saturation (—, simulated by the PREVAH hydrological model), (¢) precipitation (mm yr_l), (d) net radiation (W m~2), (e) potential evapo-
transpiration (PET, mm yrfl) using the Priestley—Taylor equation (Eq. 3), and (f) evapotranspiration (ET, mm yrfl) using the approach used

in the GLEAM model (Eq. 1). See Table S1 for references.

We used the GLEAM equations, as outlined in Sect. 2, to
calculate ET for each day at the 500 m resolution of these in-
put data. We use these 500 m ET estimates as virtual “truth”
for the purpose of our analysis, because our goal is not to
determine whether GLEAM estimates of ET are accurate
(compared to direct measurements, for example) but rather
to quantify how spatial aggregation affects them.

To quantify how spatial aggregation affects model esti-
mates of ET, we calculated ET over larger spatial scales in
two different ways. We first calculated the arithmetic aver-
age of the 500m ET estimates over 1/32, 1/16, 1/8, 0.25,
0.5, 0.75, 1, and 2° grid cells across Switzerland to repre-
sent the true average ET at those grid scales. Next we cal-
culated the arithmetic average of the 500 m input data (of
temperature, soil moisture, and net radiation) over the same
grid cells and then used these grid-cell-averaged input data
in the GLEAM equations to calculate the modeled coarse-
resolution ET at each grid scale. The deviation of the mod-
eled coarse-resolution ET from the true average ET measures
the aggregation bias. Because this numerical experiment uses
the same model equations, based on the same underlying
data, for the ET calculations at each spatial resolution, it iso-
lates spatial aggregation as the only possible cause of the
difference between the true average ET (ET in Eq. 7) and
the coarse-resolution modeled ET (ET in Eq. 7) at each grid
scale.

Figure 2a shows that the ET aggregation bias varies con-
siderably across Switzerland and also varies considerably
with grid scale. The average aggregation bias is higher at
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coarser grid scales, averaging 10 % at 2 and 1° grid resolu-
tion across all of Switzerland (calculated as the median of the
daily aggregation biases over the growing season; Fig. 2a).
Smaller grid scales typically exhibit smaller aggregation bi-
ases (averaging 4 % at 1/16° grid resolution across all of
Switzerland calculated as the median of the daily aggregation
biases over the growing season) because they typically aver-
age over less spatial heterogeneity, but even at the smallest
grid scales, aggregation biases can locally reach 40 % as in-
dicated by the scatter plot in Fig. 3. These figures are medians
of the daily aggregation biases over the entire growing sea-
son of 2004; the aggregation biases of two arbitrarily selected
days (29 May and 18 July 2004) at several spatial scales
lead to much larger overestimation of ET in parts of south-
ern Switzerland (Figs. S2 and S3). The two selected days are
days 150 and 200 of Julian day calendar of year 2004.

Using our 500 m input data, we can test how well Eq. (7)
estimates the difference between the true average ET and
the coarse-resolution modeled ET at each grid scale. We
used Eqgs. (8)—(14) to calculate the partial derivatives of the
GLEAM equations for each grid cell and time step, using
the grid-cell-averaged values of the input data. We then mul-
tiplied these derivatives by the corresponding variances and
covariances among the 500 m input data to obtain bias esti-
mates via Eq. (15) for each grid cell and time step:

Hydrol. Earth Syst. Sci., 24, 5015-5025, 2020
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a) True Aggregation Bias (%)

1/32°

116° /Z 1/8° ;9;; 0.25°

05° 0.75° i 1° 5:

(b) Estimated Aggregation Bias (%)

1/32°
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05° 0.75° : 1° i: 2° ;
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% aggregation bias in ET estimate

10 35 50 100 200 (median of daily errors in April-Oct 2004)

Figure 2. (a) True aggregation bias in ET, as calculated by averaging the 500 m resolution ET estimates using fine-resolution input data in
Eq. (6), over 1/32, 1/16, 1/8, 0.25, 0.5, 0.75, 1, and 2° grid cells across Switzerland. (b) Aggregation bias in ET, as estimated by Eq. (7)
from grid-cell-averaged temperature (°C), soil moisture (wy), net radiation (Ry), their variances at each grid scale, and the covariances of
all pairs of variables using the 500 m input data. At finer grid scales, the aggregation bias is more localized and smaller on average. Across
Switzerland as a whole, the average aggregation bias becomes smaller as grid scales become finer but never disappears completely.

92ET 92ET
Var (Ry) + —

A 1
Bias=ET—ET~ ——
2 |: aR2 w2

w
2 2

)]
Var(T)

2

]
Var (wy) + —— TCov(Rn,T)

n

92ET 92ET
—————Cov(Rp, wyw) — ———
0 R 0wy dwydT

Cov (ww,T), (15)
where ET is the true average ET at some grid resolution,
ET is the modeled coarse-resolution ET at the same spatial
scale, and the right-hand side is the Taylor expansion esti-
mate of the aggregation bias. We then compared these esti-
mated biases against the true aggregation biases (the differ-
ence between the true average ET and the coarse-resolution
modeled ET) in the numerical experiment described above.
The true bias, in other words, is ET—ETin Eq. (15), and the
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estimated bias is the Taylor approximation on the right-hand
side.

Figure 2b shows that the aggregation bias estimated by
Eq. (15) is generally similar, in both overall magnitude and
spatial distribution, to the true aggregation biases calculated
by the numerical experiment. This comparison is shown
more explicitly in Fig. 3, in which the estimated aggregation
bias is compared with the true aggregation bias for each grid
cell at each grid scale. Figures 2 and 3 show that Eq. (15) is
generally a good predictor of aggregation bias. Both the es-
timated aggregation biases (Fig. 2) and the true aggregation
biases are markedly higher in regions of greater topographic
complexity (Fig. S4).

https://doi.org/10.5194/hess-24-5015-2020
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Figure 3. Daily estimated aggregation bias in ET estimates (%, median of daily biases in April-October 2004) versus daily true aggregation
bias in ET estimates (%, median of daily biases in April-October 2004) at several spatial scales. Estimated aggregation biases are calculated
using Eq. (7). True aggregation biases are calculated as differences between the finer-resolution ET estimates from finer-resolution input
data, averaged over several spatial scales (average of functions) and ET values calculated from average inputs at each spatial scale (function
of averages). The coefficients of determination (R?) between the true and estimated aggregation biases verify the reliability of the Taylor

expansion method and Eq. (7) as estimates of the aggregation bias.

2.4 Correcting for aggregation bias
2.4.1 Identifying drivers of aggregation bias

The Taylor expansion in Eq. (15) not only allows one to
quantify the aggregation bias; it also allows one to quantify
the relative importance of the three input variables (net radi-
ation, soil moisture, and temperature) as drivers of that bias.
Each of the terms in Eq. (15) combines a variance or co-
variance that expresses how variable the input data are and
a second derivative that expresses how sensitive the average
ET is to that variability. Each of these terms — a derivative
multiplied by a variance or covariance — has the same units
as ET, and thus they can be directly compared to one another.

Table 1 shows each of the aggregation bias terms, calcu-
lated over all of Switzerland for the two arbitrarily chosen
days mentioned in Sect. 2.3 (29 May and 18 July 2004). For
these two example days, the aggregation bias is clearly dom-
inated by a single term, associated with the variance of soil
moisture. The variance in net radiation (Ry) creates no ag-
gregation bias, because GLEAM ET is a linear function of
Ry; thus positive and negative deviations from average R,
will increase and decrease ET by exactly offsetting amounts.
Similarly, the variance in temperature (7') also results in lit-
tle aggregation bias, because GLEAM ET increases nearly
linearly with 7 across a wide range of temperature. The co-
variance terms similarly lead to little aggregation bias. By
contrast, the strong curvature in the quadratic dependence of
ET on soil moisture (Eq. 6) implies that positive and negative
deviations from mean soil moisture will not have offsetting
ET effects, and thus that spatial heterogeneity in soil mois-
ture can significantly alter average ET. On most of the days
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of the year 2004, the soil moisture variance term is the dom-
inant driver of the aggregation bias. However, there are some
days in which other factors such as the T and R, covariance
term are the dominant factors.

24.2 Correcting for aggregation bias using sub-grid
closure relationships

The Taylor expansion framework in Eq. (7) can be used
not only to diagnose aggregation bias, but also to estimate
sub-grid closure relationships that correct for the effects of
small-scale heterogeneity. The variance and covariance terms
in Eq. (7) express how sub-grid heterogeneity affects aver-
age ET at the grid scale, implying that these aggregation
bias estimates could be used to improve grid-scale ET es-
timates, without explicitly modeling ET at high resolutions.
This approach could be particularly useful in land surface
algorithms that are part of coarser-resolution Earth system
models; in such cases it may be much more efficient to evalu-
ate Eqs. (7)—(14) at the coarse grid resolution than to directly
evaluate the underlying ET model, Eq. (6), at high resolu-
tion. The Taylor expansion approach could also be attractive
where we lack spatially explicit high-resolution maps of the
ET drivers, but where their variances and covariances can
nonetheless be estimated from other sources (i.e., from the
variability of topography, mapped soil units, remote sensing
data, etc.).

It is beyond our scope here to construct such variance and
covariance estimates, but we can illustrate how they could
potentially be used. The solid red symbols in Fig. 4 show
the relationships between true average ET and modeled grid-
cell-averaged ET, for each grid cell (and one example day,
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Figure 4. Daily estimated ET rates versus true average ET at each grid cell at several different grid scales (example day, 31 May 2004).
The solid red symbols demonstrate the relationships between true average ET calculated using fine-resolution data at each grid cell and
modeled grid-cell-averaged ET using grid-cell-averaged inputs in Eq. (8), for each grid cell at several different grid scales (overestimated).
For comparison, the open symbols show true average versus average ET estimated by the Taylor expansion approach of Eq. (7), which
corrects for sub-grid heterogeneity effects using only grid-cell-averaged estimates of the ET drivers and their small-scale variances and

covariances (heterogeneity-corrected ET estimates, corrected).

31 May 2004) at several different grid scales. For compari-
son, the open grey symbols in Fig. 4 show average ET es-
timated by the Taylor expansion approach of Eq. (7), which
corrects for sub-grid heterogeneity effects using only grid-
cell-averaged estimates of the ET drivers and their small-
scale variances and covariances.

The heterogeneity-corrected ET estimates shown by the
open symbols in Fig. 4 cluster much closer to the 1: 1 line
than the modeled grid-cell-averaged ET values shown by
the solid red symbols, suggesting that the Taylor expansion
approach may substantially improve estimates of grid-cell-
averaged ET. Real-world results may be less clear than those
shown in Fig. 4, because the heterogeneity-corrected ET esti-
mates (the open symbols in Fig. 4) are calculated using exact
values for the variances and covariances of the ET drivers
within each grid cell, and in real-world cases these vari-
ances and covariances will not be known precisely. Figure 4
nonetheless demonstrates the potential value of knowing, or
being able to estimate, those variances and covariances. Ef-
forts to determine those variances and covariances can be fo-
cused on the terms that matter the most, if one can identify
the main drivers of aggregation bias using the methods de-
scribed in Sect. 2.2 above.

3 Discussion
Averaging over spatially heterogeneous ET drivers leads to
substantial aggregation biases in ET flux estimates from a

typical mechanistic large-scale land surface model. This ag-
gregation bias arises from the inherent nonlinearities in evap-
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otranspiration processes, coupled with the inherent spatial
heterogeneity in the driving factors. The joint effects of these
nonlinearities and heterogeneities can be estimated using
second-order Taylor expansions of the governing equations.
Using Switzerland as a test case, we have shown that median
aggregation biases of 10 %—35 % are common, even at grid
scales substantially smaller than those typically used in land
surface models (Fig. 2). These biases can be much larger for
individual days (Figs. S2 and S3) and potentially have sub-
stantial consequences for water and energy flux estimates in
land surface models and consequently for temperature pre-
dictions in coupled models. The overestimated evaporative
fluxes would lead to overestimated latent heat fluxes and un-
derestimated sensible heat fluxes, and thus potentially to un-
derestimates of expected temperature increases in a changing
climate. Unrealistically high evaporation estimates lead to
cooler modeled temperatures and wetter modeled climates.
Correcting for the aggregation bias in ET fluxes would lead to
reduced evaporative cooling and increased atmospheric heat-
ing via sensible heat flux.

In coupled Earth system models, ET fluxes influence how
surface temperature, net radiation, and soil moisture evolve
through time and thus influence future values of ET. The
analyses shown in Figs. 2-4 are based on static values for
each day and thus do not account for the propagation of ag-
gregation biases forward through time. Estimating the conse-
quences of aggregation biases for dynamic modeling would
require fully coupled Earth system model simulations rather
than the single ET algorithm analyzed here. In a dynamic
model, the Taylor expansion approach can potentially be
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used to correct for aggregation biases in each time step, us-
ing statistical models for the variances and covariances of the
ET drivers. Thus, estimating aggregation biases in a dynamic
model would not require explicitly simulating sub-grid het-
erogeneity at every time step. Correcting for aggregation bi-
ases at each modeling time step would prevent them from
propagating further into future time steps or into the parti-
tioning of future water and energy fluxes at the land surface.
The present paper does not illustrate this dynamic correction
for aggregation biases but establishes the theoretical frame-
work for it.

The purpose of our analysis was to demonstrate how ag-
gregation bias due to spatial heterogeneity can be quantified
(Sect. 2.2 and 2.3), how its dominant drivers can be identi-
fied (Sect. 2.4.1), and how its effects can be efficiently cor-
rected for, using sub-grid closure relationships (Sect. 2.4.2).
For this demonstration, we chose GLEAM as an illustrative
example and Switzerland as a topographically complex case
study where high-resolution data on the ET drivers are avail-
able. Applications of this approach to more complex land
surface models may require calculating the necessary deriva-
tives (see Eq. 7) numerically rather than analytically, and ap-
plications where high-resolution data are unavailable may re-
quire statistically estimating the variances and covariances
among the drivers of ET, based on their relationships with
topography, soil types, land cover, etc. Using the approach
outlined here, one can account for the effects of sub-grid
heterogeneity without explicitly modeling ET at fine spatial
resolution, which could be impractical due to computational
costs or impossible due to a lack of fine-resolution input data.

In our analysis, spatial heterogeneity in soil moisture
emerged as the dominant driver of aggregation bias in ET
estimates. Particularly if this result can also be confirmed in
other regions and climates, it points to the importance of im-
proving our understanding of spatial patterns of soil mois-
ture and what controls them. The lower topographic curva-
ture of coarsely gridded landscapes can lead models to pre-
dict higher soil moisture at coarser grid scales (Kuo et al.,
1999); higher soil moisture at larger grid scales would lead
to even higher modeled values of ET, beyond the effects of
the aggregation biases analyzed here. Soil moisture may also
be substantially influenced by lateral subsurface transfers of
water, which are ignored in our analysis and are also ignored
by many land surface models. Overlooking lateral transfers
could potentially bias ET estimates in large-scale land sur-
face models (Fan et al., 2019), but this is beyond the scope
of the present study.

Data availability. Temperature data are an interpolation of Me-
teoSwiss data after Viviroli et al. (2009) and are originally from
archive data of MeteoSwiss ground level monitoring networks.
However, the acquired data may not be used for commercial pur-
poses (e.g., by passing on the data to third parties or by publish-
ing them on the internet). As a consequence, we cannot offer di-
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rect access to the data used in this study. Daily soil moisture sat-
uration, net radiation, and temperature data over Switzerland at a
500 m resolution for the year 2004 can be retrieved from EnviDat at
https://doi.org/10.16904/envidat.176 (Rouholahnejad Freund et al.,
2020b).
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