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Abstract. The global availability of satellite rainfall products
(SRPs) at an increasingly high temporal and spatial resolu-
tion has made their exploitation in hydrological applications
possible, especially in data-scarce regions. In this context,
understanding how uncertainties transfer from SRPs to river
discharge simulations, through the hydrological model, is a
main research question.

SRPs’ accuracy is normally characterized by comparing
them with ground observations via the calculation of cate-
gorical (e.g. threat score, false alarm ratio and probability
of detection) and/or continuous (e.g. bias, root mean square
error, Nash–Sutcliffe index, Kling–Gupta efficiency index
and correlation coefficient) performance scores. However,
whether these scores are informative about the associated
performance in river discharge simulations (when the SRP is
used as input to a hydrological model) is an under-discussed
research topic.

This study aims to relate the accuracy of different SRPs
both in terms of rainfall and in terms of river discharge sim-
ulation. That is, the following research questions are ad-
dressed: is there any performance score that can be used
to select the best performing rainfall product for river dis-
charge simulation? Are multiple scores needed? And, which
are these scores? To answer these questions, three SRPs,
namely the Tropical Rainfall Measurement Mission (TRRM)
Multi-satellite Precipitation Analysis (TMPA), the Climate
Prediction Center MORPHing (CMORPH) algorithm and
the SM2RAIN algorithm applied to the Advanced SCAT-
terometer (ASCAT) soil moisture product (SM2RAIN–
ASCAT) have been used as input into a lumped hydrologic
model, “Modello Idrologico Semi-Distribuito in continuo”

(MISDc), for 1318 basins over Europe with different phys-
iographic characteristics.

Results suggest that, among the continuous scores, the cor-
relation coefficient and Kling–Gupta efficiency index are not
reliable indices to select the best performing rainfall prod-
uct for hydrological modelling, whereas bias and root mean
square error seem more appropriate. In particular, by con-
straining the relative bias to absolute values lower than 0.2
and the relative root mean square error to values lower than
2, good hydrological performances (Kling–Gupta efficiency
index on river discharge greater than 0.5) are ensured for al-
most 75 % of the basins fulfilling these criteria. Conversely,
the categorical scores have not provided suitable information
for addressing the SRP selection for hydrological modelling.

1 Introduction

An accurate rainfall estimate is essential in many fields span-
ning from climate change research and weather prediction to
hydrological applications (Tapiador et al., 2017; Ricciardelli
et al., 2018; Lu et al., 2018). In particular, the delivery of
real-time rainfall observations is one of the most challeng-
ing tasks in operational flood forecasting, both for techni-
cal reasons related to the need for a prompt release of the
observations and for scientific motives linked to the neces-
sity for sufficient accuracy to ensure that a reliable forecast-
ing is provided. Generally, rainfall observations are obtained
through real-time ground monitoring networks (e.g. Artan et
al., 2007), meteorological and numerical weather prediction
models (e.g, Montani et al., 2011; Zappa et al., 2008) and,
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more recently, satellite observations (Mugnai et al., 2013)
that, albeit with some difficulties (Maggioni and Massari,
2018), are becoming a potential alternative to the classical
rainfall monitoring methods thanks to their global availabil-
ity and increasing accuracy.

The global availability of near-real-time satellite rain-
fall products (SRPs) has boosted their use for hydrological
applications, specifically for river discharge estimation via
rainfall–runoff models (Casse et al., 2015; Elgamal et al.,
2017; Camici et al., 2018; Beck et al., 2017; see Maggioni
and Massari, 2018, and Jiang and Wang, 2019, for a more
complete review). In particular, in the past decade special at-
tention has been paid to the propagation of the satellite rain-
fall error in flood simulations (Hong et al., 2006; Hossain and
Anagnostou, 2006; Pan et al., 2010; Maggioni et al., 2013;
Thiemig et al., 2013; Ehsan Bhuiyan et al., 2019), and two
approaches, one probabilistic and one statistical, can be rec-
ognized (Quintero et al., 2016). In the probabilistic approach,
a statistical model is first used to produce an ensemble of
possible rainfall realizations. Then, each rainfall realization
is used to simulate a river discharge time series through a hy-
drological model, and the difference between simulated and
observed in situ discharge data is used to assess how rainfall
accuracy transfers to the flood simulation (e.g. Hong et al.,
2006; Hossain and Anagnostou, 2006; Demaria et al., 2014;
Maggioni et al., 2013, 2011). In the deterministic approach,
SRPs are first compared with a reference data set to assess
the accuracy in terms of rainfall estimate. Then, SRPs are
used as input in rainfall–runoff models to estimate river dis-
charge that is then compared with in situ discharge observa-
tions. Eventually, the existence and the shape of the relation-
ship between the SRP accuracy and the associated discharge
score is analysed (e.g, Serpetzoglou et al., 2010; Pan et al.,
2010; Thiemig et al., 2013; Chintalapudi et al., 2014; Pakok-
sung and Takagi, 2016; Shah and Mishra, 2016; Qi et al.,
2016; Ren et al., 2018; Ehsan Bhuiyan et al., 2019).

In both approaches, several continuous (e.g. bias; root
mean square error – RMSE; correlation coefficient – R;
Nash–Sutcliffe efficiency index – NSE; and Kling–Gupta ef-
ficiency index – KGE) and categorical (e.g. probability of
detection – POD; false alarm ratio – FAR; and threat score
– TS) performance scores are used to characterize the accu-
racy in terms of rainfall and river discharge. Generally, this
comparison has been carried out for few basins (e.g. Hong
et al., 2006; Pan et al., 2010; Demaria et al., 2014; Chintala-
pudi et al., 2014; Qi et al., 2016; Ren et al., 2018; Thiemig
et al., 2013), rarely at a regional scale (e.g. Ehsan Bhuiyan
et al., 2019), whereas no studies investigated the hydrologi-
cal propagation of SRP error at a continental scale. In Beck
et al. (2017), the authors carried out an evaluation of mul-
tiple (22) global daily rainfall data sets, both in terms of
rainfall and river discharge for many (+9000) basins across
the globe; however, the relationship between the accuracy, in
terms of rainfall and river discharge, was not investigated in
detail.

From the analysis of both the probabilistic and the statis-
tical approaches arises the fact that the hydrological perfor-
mances of SRPs depend on a complex interaction among the
characteristics of the input data (i.e. precipitation type, sea-
sonality, data resolution or time window considered; see e.g.
Ebert et al., 2007; Vergara et al., 2014; Satgé et al., 2019),
the hydrological model formulation (i.e. parameter estima-
tion and modelled processes; Quintero et al., 2016; Mei et
al., 2017; Ehsan Bhuiyan et al., 2019), the characteristics
of the basin (e.g. area and initial soil moisture conditions,
land use and land cover; Yong et al., 2010; Yilmaz et al.,
2005; Nikolopoulos et al., 2010; Mei et al., 2016; Shah and
Mishra, 2016; Gebregiorgis et al., 2012), and observations
(i.e. streamflow data; see e.g. Nikolopoulos et al., 2012).
In this context, it is not trivial to have general guidelines
about which SRPs should be favoured or which performance
score(s) should be used to identify the best performing rain-
fall product for river discharge estimation (Qi et al., 2016;
Hossain and Huffman, 2008). The only largely accepted sug-
gestion is about SRP bias, recognized as a major issue for
a reliable flood forecast across several basins around the
world (Maggioni et al., 2013; Thiemig et al., 2013; Shah
and Mishra 2016; Jiang and Wang, 2019). Based on that,
bias correction methods have shown to significantly reduce
streamflow errors (e. g, Yilmaz et al., 2005; Bitew and Ge-
bremichael, 2011; Valdés-Pineda et al., 2016). For instance,
by using the MIKE SHE model on a small and mountainous
basin in the Blue Nile basin, Bitew and Gebremichael (2011)
stated that large biases in satellite rainfall directly translate
into bias in one or more of the hydrology simulation com-
ponents. Zhu et al. (2016) found that, for two humid basins
in China, the accuracy in flood simulations is related to the
mean error and to bias in the rainfall estimates, as also found
by Yilmaz et al. (2005). Besides bias, it is difficult to find
studies advising on rainfall error metrics that are able to in-
dicate river discharge simulation performances. The work
of Bisselink et al. (2016), even if conducted over only four
basins in southern Africa, is an exception. The authors, by us-
ing different SRPs as input to the LISFLOOD model, proved
that a high correlation between monthly rainfall and observed
streamflow is a needed prerequisite to obtain good hydrolog-
ical performances, as long as the rainfall variability in time
is not too high.

Based on that, there is a need to investigate metrics that
can more effectively advance the use of SRPs for hydrolog-
ical applications and, specifically, for river discharge mod-
elling at regional scales. This paper aims to explore the link
between satellite rainfall accuracy of different products and
their river discharge modelling performance. The following
research questions are addressed: is there any performance
score that can be used to select the best performing rainfall
product for river discharge simulation? Are multiple scores
needed? And, which are these scores? Are R and RMSE,
generally used to characterize the rainfall accuracy, infor-
mative about the hydrological modelling performance? How
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small or large should these rainfall scores be to obtain good
performances in river discharge simulations, i.e. KGE on dis-
charge greater than 0.5?

In pursuing this goal, three different near-real-time SRPs,
i.e. Tropical Rainfall Measurement Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) real-time product
(TMPA 3B42RT; Huffman et al., 2010), the Climate Pre-
diction Center (CPC) MORPHing technique (CMORPH;
Joyce et al., 2004) and SM2RAIN–ASCAT rainfall product
(Brocca et al., 2019a) obtained by applying the SM2RAIN
algorithm (Brocca et al., 2014) to the ASCAT satellite soil
moisture product, are used to force a lumped hydrological
model, MISDc (Brocca et al., 2011) over 1318 basins across
Europe. An intercomparison of SRPs with respect to a bench-
mark rainfall data set, i.e. E-OBS (Haylock et al., 2008), is
carried out. This step, along with the reliability assessment
of the different SRPs for flood modelling over Europe, con-
stitutes only an intermediate output of the work. The ultimate
aim of the paper is to investigate how SRPs’ accuracy propa-
gates through the river discharge simulations, so as to help in
the selection of the rainfall performance scores that are more
informative of better hydrological performances. As the in-
tent of the paper is to analyse the performances of near-real-
time satellite rainfall products, gauge-corrected satellite or
reanalysis rainfall products are not considered in this work.

2 Study area

The study area is composed of 1318 basins, with an area
ranging in size from 200 to 136 000 km2, belonging to 23 dif-
ferent countries and spread over the whole of Europe, over a
longitude varying from −10 to 25◦ and a latitude from 35 to
70◦ (Fig. 1a). The European continent is characterized by a
complex topography ranging, from south to north, from huge
mountains and hilly plateaus to a large plain. The Alpine
mountain chain, crossing the continent from west to east, rep-
resents the highest and more extensive mountain range sys-
tem in Europe. Hilly plateaus gently slope towards the Great
European Plain, a low, flat region, extending from the At-
lantic coast of France to the Urals, crossed by many rivers
and with densely populated cities.

The climate is humid continental, with cold summers
in central and eastern Europe. Mean annual rainfall across
Europe ranges between 300 and 4000 mm yr−1, depend-
ing on the location. The north Atlantic coast of Spain, the
Alps and Balkan Mediterranean countries generally receive
higher rainfall amounts, while along the western edges of
the Mediterranean Sea, in northern Europe and in northern
Scandinavia, lighter rainfall is common. In terms of floods,
their occurrence ranges from spring to summer, moving from
northeastern Europe towards the Alps, whereas the Mediter-
ranean region and western Europe are prevailingly subject to
winter floods (Berghuijs et al., 2019).

The main features of the study basins, clustered according
to the latitude of the outlet section, are illustrated in Fig. 1b
and c. Among the 1318 basins, more than half (889) have the
outlet section located below the 50◦ latitude, and for about
11 % of them, the outlet section is placed above 60◦ latitude.
The median area of the basins located below 50◦ is lower
than one of the basins located in the northern part of Europe
(above 50◦ latitude). By considering these features, the se-
lected set of basins can be considered a comprehensive sam-
ple of the European basin characteristics.

3 Data sets

The data sets used in this study include both ground observa-
tions and satellite rainfall products (Table 1).

3.1 Ground observations

Ground observations comprise rainfall, air temperature and
river discharge data. Rainfall and air temperature are ex-
tracted from the European high-resolution 0.22◦×0.22◦ grid-
ded data sets, version 17.0 (E-OBS, https://www.ecad.eu/
download/ensembles/download.php#datafiles, last access:
2 October 2020; Haylock et al., 2008), currently maintained
by the Copernicus Climate Change Service. The E-OBS data
set is built by using data from nearly 9618 stations (i.e. equiv-
alent on average to a density of 1 station every 1000 km2),
but the station density significantly varies across Europe (see
Haylock et al., 2008; Cornes et al., 2018). For some regions,
the station density is sufficiently low enough to expect a
strong tendency for interpolated daily rainfall and temper-
ature values to be underestimated with respect to the “true”
area average of stations (Hofstra et al., 2009, 2010; Kyselý
and Plavcová, 2010). As the smoothing is greatest for higher
percentiles, an underestimation of peak floods is expected if
E-OBS rainfall data are used for rainfall–runoff modelling,
above all for basins with areas lower than 1000 km2 (Hofs-
tra et al., 2010). However, as this product is comprised by
time series thoroughly checked, both in terms of quality and
homogeneity (Klok and Tank, 2009), and it is continuously
available from 1950 up to now at a daily time step, it can be
considered a good benchmark for the analysis of long rainfall
time series.

Daily river discharge data are obtained through a Euro-
pean daily data set, compiled by the authors, merging sta-
tions from five different databases, namely the Global Runoff
Data Base (GRDC, https://www.bafg.de/GRDC/EN/Home/
homepage_node.html, last access: 2 October 2020), the Eu-
ropean Water Archive (EWA, https://www.bafg.de/GRDC/
EN/04_spcldtbss/42_EWA/ewa.html?nn=201574, last ac-
cess: 2 October 2020), the Italian National Institute for
Environmental Protection and Research (ISPRA) HIS na-
tional database (http://www.hiscentral.isprambiente.gov.it/
hiscentral/default.aspx, last access: 2 October 2020), the
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Figure 1. Location of study basins and length of discharge observation period after 2007 (a). Number of basins (b) and median basin area (c)
clustered according to the latitude coordinate of the outlet section of the basins.

Table 1. Main characteristics of the data sets used in this study.

# Satellite-only rainfall data sets Spatial/temporal resolution Spatial coverage Time period

1 TMPA RT (3B42RT V7) 0.25◦/3 h ±50◦ north–south latitude band 2000–2018
2 CMORPH 0.25◦/3 h ±60◦ north–south latitude band 1998–2018
3 SM2RASCAT 0.25◦/24 h Global, over land 2007–2018

# Large-scale, gauge-based rainfall data set Spatial/temporal resolution Coverage Time period

1 E-OBS 0.22◦/24 h Europe 1950–2018

# Gauge-based discharge data set Spatial/temporal resolution Coverage Time period

1 European daily data set 1318 sites per day Europe 1900–2016

Portuguese national database (http://snirh.pt/, last access:
2 October 2020), and the Spanish national database (http:
//ceh-flumen64.cedex.es/anuarioaforos/default.asp, last ac-
cess: 2 October 2020). From the resulting European data set,
composed of 3913 quality checked stations covering the pe-
riod 1900–2016, 1318 stations with available observations
after 2007 (according the availability of SRPs; see Sect. 3.2)
have been extracted.

To ensure the quality of discharge observations, the fol-
lowing steps have been followed: (1) a visual inspection of
the hydrograph, which is probably the most thorough method
(Crochemore et al., 2020), (2) a check on data availability,
(3) a check on the presence of outliers and (4) a check the
presence of inhomogeneities. Only stations with less than
20 % of missing data in 1 year, showing no inhomogeneities
in the time series, were retained in the compiled European
data set. The time series were also checked against the pres-
ence of anomalous values (i.e. values greater than five times
the standard deviation), which were flagged as outliers.

The authors, using the EU digital elevation model (EU-
DEM; Mouratidis and Ampatzidis, 2019) resampled at 100 m
ground resolution, developed an automatic and rapid proce-
dure to delineate the drainage watersheds located upstream
of each discharge measurement location (outlet section). The
procedure is based on the following steps: (i) we select cells

having a contributing area larger than or equal to 4 km2 over
the entire study area; (ii) we move the discharge measure-
ment locations from the coordinates reported in the origi-
nal metadata to the closest cells of the river network; and
(iii) we delineate the catchments. Adopting the method used
by Do et al. (2018), we evaluated the quality of the products,
comparing the area of the delineated catchment (Ad) with
that available from the original metadata (Am). The absolute
percentage difference (Dp) was calculated according to the
following formula Dp= (Ad−Am) /Ad× 100. The median
and 75th percentile of the distribution of the Dp values were,
respectively, 2.67 % and 22.07 %. We excluded, from the fol-
lowing hydrological simulation, catchments having Dp val-
ues larger than 50 % (less than the 20 % of the total number
of catchments).

The study basins and the related observation period length
after 2007 are shown in Fig. 1a. More than 50 % of the basins
have an observation period longer than 7 years. Spanish, Ital-
ian and northern European basins have a nearly complete
observation period (10 years), whereas, for central Europe,
some stations end the monitoring period in 2012, and the me-
dian length of discharge observations is about 6–7 years (see
Fig. 1a).
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3.2 Satellite rainfall products

Three different SRPs have been used in this study, namely
TMPA 3B42RT, CMORPH and SM2RAIN–ASCAT satellite
products. As these products have been largely discussed in
the literature, only a brief product description is reported in
the following, whereas for major details the reader is referred
to Huffman et al. (2010), Joyce et al. (2004) and Brocca et
al. (2019a) for TMPA 3B42RT, CMORPH and SM2RAIN–
ASCAT, respectively.

TMPA 3B42RT, provided by the National Aero-
nautics and Space Administration (NASA; https:
//disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_7/summary?
keywords=TMPA3b42, last access: 2 October 2020), covers
±50◦ north–south latitude band, with a spatial sampling of
0.25◦ and a temporal resolution of 3 h from 1997 onwards.

CMORPH is provided by the Climate Prediction Center
(CPC; ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/
3-hourly_025deg/, last access: 2 October 2020) for the
+60◦/− 60◦ latitude band from March 2000 up to now. In
this study, the CMORPH raw version is extracted with a spa-
tial and temporal resolution of 0.25◦ and 3 h.

In addition to these state-of-the-art SRPs, we used the
SM2RAIN–ASCAT rainfall product (Brocca et al., 2019a)
obtained through the application of the SM2RAIN algorithm
(Brocca et al., 2014) to the ASCAT satellite soil moisture
product (Wagner et al., 2013). SM2RAIN is an algorithm
based on the concept that the soil acts as a natural rain
gauge. By inverting the soil water balance equation, the al-
gorithm allows one to estimate the accumulated rainfall from
soil moisture observations. SM2RAIN–ASCAT, download-
able from https://doi.org/10.5281/zenodo.2591214 (Brocca
et al., 2019b), is available for the period 2007–2019, with
a 12.5 km spatial sampling and a daily temporal aggregation.

For the sake of simplicity, the TMPA 3B42RT, CMORPH
and SM2RAIN–ASCAT satellite data sets are indicated in
the following as TMPA, CMOR and SM2RASCAT, respec-
tively. By considering the spatial and temporal availability
of both ground-based and satellite observations (see Table 1
for a summary), the analysis has been carried out to cover
the maximum common observation period, i.e. from 2007 to
2016 at daily timescales (TMPA and CMOR are aggregated
at a daily scale), with three different areal masks cut (1) at
the original spatial coverage of each SRP, i.e. until 50, 60
and 70◦ latitude for TMPA, CMOR and SM2RASCAT, respec-
tively, (2) over the TMPA area (latitude< 50◦) and (3) above
the TMPA area (latitude > 50◦).

4 Method

4.1 Hydrological model

The “Modello Idrologico Semi-Distribuito in continuo”
(MISDc; Brocca et al., 2011) is a two-layer continuous hy-

drological model characterized by a component simulating
the temporal pattern of soil moisture and a rainfall–runoff
transformation component for simulating river discharge
time series. By using daily rainfall and air temperature data,
MISDc simulates the most important processes involved in
the rainfall–runoff transformation (e.g. infiltration, evapo-
transpiration, saturation excess and percolation). The geo-
morphological instantaneous unit hydrograph (IUH) is used
to transfer surface and subsurface runoff to the outlet of the
catchment. The model (downloadable from http://hydrology.
irpi.cnr.it/download-area/midsc-code/, last access: 2 Octo-
ber 2020) uses nine parameters calibrated by maximizing
the Kling–Gupta efficiency index (KGE; Gupta et al., 2009;
Kling et al., 2012, see Sect. 4.5 for more details) between the
observed and simulated river discharge.

The successful results obtained through the MISDc model
for discharge simulation in many different basins (in Italy
– see e.g. Brocca et al., 2011, 2013a, Massari et al., 2015,
Masseroni et al., 2016, and Cislaghi et al., 2019; and in Eu-
rope – see e.g. Brocca et al., 2013b, Massari et al., 2018, and
Camici et al., 2018) and for different applications (e.g. cli-
mate change impact studies; see Camici et al., 2014) allow
us to consider the model suitable for the purpose of this anal-
ysis.

4.2 Experimental design

The first step of the analysis is the quality assessment of the
SRPs in terms of rainfall. For that, each SRP has been com-
pared with the daily E-OBS data used as reference. Then,
river discharge simulations have been obtained by running
the lumped version of MISDc with the E-OBS data set (river
discharge reference) and with each SRP as input. Specifi-
cally, this involves the following:

1. The MISDc model has been calibrated over the en-
tire 2007–2016 period by using, as input, the mean
areal E-OBS rainfall and air temperature data for each
basin. These simulated discharge data, QE-OBS, have
been used as a benchmark to estimate the accuracy of
the selected SRPs for the river discharge simulation.

2. The MISDc model has been run for each basin by us-
ing, as input, the mean areal SRPs and E-OBS air tem-
perature data. In accordance with other literature (e.g,
Thiemig et al., 2013), in these runs the model parame-
ters are calibrated separately for each SRP. The period
2007–2012 is used for the parameter values calibration,
whereas the remaining (2013–2016) period is used for
the validation. QE-OBS is used as a benchmark to cali-
brate the parameters of the MISDc model.

The use of QE-OBS as benchmark presents three advantages
as it allows one to (1) consider a common and extended anal-
ysis period for all basins, (2) consider a common benchmark
in evaluating the SRP accuracy, both in terms of rainfall and
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in terms of river discharge, and, more importantly, (3) neglect
the uncertainty due to the hydrological model structure in the
SRP comparison.

4.3 Performance scores

The quality assessment of the different SRPs has been cal-
culated by four continuous dimensionless metrics and three
categorical scores. Among the continuous scores, the rela-
tive bias (rBIAS), the Pearson correlation coefficient (R), the
relative root mean square error (RRMSE) and the KGE, an
index increasingly used in hydrology to measure the good-
ness of fit between simulated and observed data, have been
computed between the daily E-OBS and the satellite rainfall
data averaged over the area of each basin as follows:

rBIAS=

1
n

n∑
i=1

(
SRPi −Prefi

)
1
n

n∑
i=1

(
Prefi

) (1)

R =
Cov(SRP,Pref)

σSPRσPref

(2)

RRMSE=

√
1
n

n∑
i=1

(
SRPi −Prefi

)2
1
n

n∑
i=1

(
Prefi

) (3)

KGE= 1−√√√√√√√√(R− 1)2+


1
n

n∑
i=1
(SRPi)

1
n

n∑
i=1

(
Prefi

) − 1


2

+

(
σSPR

σPref

− 1
)2

, (4)

where SRP and Pref represent the SRPs and E-OBS rain-
fall time series, Cov and σ are the covariance and the stan-
dard deviation operator, respectively, and n corresponds to
the length of the time series. rBIAS ranges from −∞ to
+∞, R values range from −1 to 1 and RRMSE is bounded
from 0 to +∞, while KGE varies from −∞ to 1. The more
rBIAS, R, RRMSE and KGE values go towards 0, 1, 0
and 1, respectively, the higher the agreement between E-
OBS and SRPs. In particular, for KGE, values in the range
−0.41< KGE<= 1 indicate that satellite rainfall data out-
perform the mean of the E-OBS observations (Knoben et al.,
2019). In addition, for each SRP and for different rainfall
thresholds, three categorical metrics are evaluated (Chen et
al., 2012; Brocca et al., 2014), namely probability of detec-
tion (POD), false alarm ratio (FAR) and threat score (TS).
POD reports on the capability of SRP to correctly detect rain-
fall events, FAR counts the fraction of rainfall events that are
actually non-events and TS takes into account the correctly
detected, missed rainfall events and false alarms. These cate-
gorical metrics range from 0 to 1. Higher POD and TS, along

with lower FAR values, indicate a better capability of SRPs
to detect rainfall events.

To evaluate the suitability of the rainfall products for river
discharge modelling, the KGE index between observed and
simulated river discharge data has been computed. In par-
ticular, we selected only this score for the following three
main reasons. (1) Due to inherent limitations recognized for
other indices (e.g. Nash–Sutcliffe efficiency index; Schaefli
and Gupta, 2007; Gupta et al., 2009), KGE is today the crite-
rion most commonly recommended and applied for evaluat-
ing the performance of hydrological models, and therefore,
its use allows meaningful comparisons with other studies.
(2) The purpose of the analysis was to investigate the rela-
tionship between rainfall score and river discharge simula-
tion without a specific focus on high or low flows. In this
respect, it is known that KGE assigns a relatively greater im-
portance to discharge variability with respect to other scores
(e.g. NSE or RMSE) that are generally found to be highly
sensitive to high discharge values (Gupta et al., 2009). (3) It
was the decision of the author, for reasons of practicality, to
limit the number of investigated performance scores in order
to communicate the results of the work in the most efficient
way.

To distinguish between the KGE of rainfall and discharge,
hereinafter the symbols KGE-P and KGE-Q will be used.
Specifically, the KGE-Q index has been evaluated between
the observed and simulated QE-OBS discharge and between
QE-OBS and the simulated discharge data obtained, by us-
ing SRPs as input, in order to establish the hydrological
performances of E-OBS and SRPs, respectively. River dis-
charge simulations characterized by KGE-Q values in the
range −0.41 and 1 can be assumed as reliable; KGE-Q val-
ues greater than 0.5 have been considered good with respect
to their ability to reproduce benchmark river discharge time
series (Thiemig et al., 2013).

5 Results

The findings of this work for the three SRPs are presented
below. The SRP quality has been evaluated first in terms of
rainfall and then in terms of river discharge, and finally, the
propagation of the rainfall error into the river discharge sim-
ulation has been investigated.

5.1 Rainfall assessment

The performances of the three SRPs against the E-OBS
data sets are illustrated in Fig. 2. For the sake of brevity,
the SRP performances are presented only for the valida-
tion period (2013–2016), but similar findings are obtained
in the calibration period (see Table 2). Specifically, rBIAS,
R, RRMSE and KGE-P values are illustrated in Fig. 2 for
each study basin and for the three products of TMPA, CMOR
and SM2RASCAT. At the top of each panel, the median score
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value is reported by considering the original spatial cover-
age of each SRP, whereas in Table 2 the performances of the
basins whose outlet section is located below or above 50◦

latitude, i.e. over or above the TMPA coverage, are listed.
From a first glance at Fig. 2 it is possible to note that the
three products show similar patterns in terms ofR (Fig. 2d–f)
and RRMSE (Fig. 2g–i), whereas the same does not hold for
the rBIAS (Fig. 2a–c) and KGE-P (Fig. 2l–n). The rBIAS is
small for TMPA and SM2RASCAT, with median values equal
to −0.127 and 0.047, respectively, whereas CMOR shows
a clear underestimation of the daily rainfall data over the
entire European area. Higher and lower R/RRMSE values
are obtained in central Europe; the opposite is observed in
the Mediterranean area. In terms of KGE-P , TMPA presents
higher values, with respect to the other two products, over
all the basins whose outlet section is located between 40 and
50◦ latitude. The median KGE-P value for TMPA is equal
to 0.516; this value reduces by about 24 % and 42 % for
SM2RASCAT and CMOR, respectively. The median rBIAS,
R, RRMSE and KGE-P rainfall score values for the three
products remain approximately the same if the analysis is fo-
cused on the TMPA area (see Table 2).

Outside the TMPA area and until a 60◦ latitude, CMOR
and SM2RASCAT show quite similar performances in terms
ofR and RRMSE, while SM2RASCAT outperforms CMOR in
terms of rBIAS and KGE-P . Due to soil freezing and snow
presence, the performances of SM2RASCAT decrease in terms
of R, rBIAS and KGE-P when moving towards northern Eu-
rope (Brocca et al., 2019a).

Results in terms of categorical metrics are summarized
in Fig. S1 in the Supplement, where POD (first row), FAR
(second row) and TS (third row) have been computed for
the validation period for three rainfall thresholds (0.5, 5 and
10 mm d−1) in order to assess the capability of SRPs to de-
tect low to high rainfall events. The numbers at the top of
each panel represent the median score value obtained by con-
sidering the original spatial coverage of each product. For all
three metrics and for the moderate to heavy rainfall events,
TMPA presents the highest values of POD (median values
equal to 0.500/0.415 for moderate or high events) and TS
(median values equal to 0.368/0.288 for moderate or high
events), outperforming the other two products. Conversely,
SM2RASCAT shows a higher ability to detect small and mod-
erate rainfall events, with performances in terms of TS being
slightly lower than the ones of the TMPA product.

5.2 Discharge assessment

Prior to assessing the hydrological performances of the satel-
lite rainfall data, the MISDc model was run with the E-OBS
rainfall data as input to obtain QE-OBS, the benchmark river
discharge data. The results of this calibration, carried out for
the entire observation period (2007–2016), are good, as il-
lustrated in Fig. 3a. For all the analysed basins, the KGE-Q
values are greater than −0.41, i.e. the model improves upon

the mean flow benchmark, and the median KGE-Q value ob-
tained for the European area is equal to 0.768 (0.770 over the
TMPA area). In addition, to explore the impact of the den-
sity of E-OBS rainfall on smaller basins (area < 1000 km2),
the relationship between basin area and KGE-Q has been in-
vestigated (not shown). As no relationship was found, and
considering that the purpose of the study is to investigate
the performances between rainfall and discharge time series
(without a specific focus on high or low flows), the limita-
tions of the E-OBS station density can be assumed to have
a negligible impact on the analysis results, and the QE-OBS
data can be assumed to be a good benchmark for the succes-
sive analysis. Hereinafter, the hydrological performance has
been assessed in terms of KGE-Q with respect to QE-OBS,
with values higher than 0.5 considered as being good.

Depending on the product, SRPs show different hydrologi-
cal performances, as illustrated in Fig. 3b–d for the validation
period and in Table 3 for both the calibration and the valida-
tion periods. At the top of each panel in Fig. 3 the median
KGE-Q value, averaged over the spatial coverage of each
product, is reported, whereas in Table 3 the performances of
the basins whose outlet section is located below or above 50◦

latitude are listed. In addition, in Table 3 the percentage of
basins showing KGE-Q values higher than 0.5 is computed.

By averaging the performances over the spatial coverage
of each product, median KGE-Q values range from 0.279
to 0.722 for CMOR and SM2RASCAT, respectively, in the
calibration period and from −0.090 to 0.569 for the same
products in the validation period (Fig. 3b–d). The percent-
age of the basins showing KGE-Q values higher than 0.5
is 18 % and 88 % for CMOR and SM2RASCAT, respectively,
whereas the same percentage drop in the validation period,
up to about 2 % and 62 %, is seen for the same products.
TMPA is in the middle between the two products in terms
of performances. The percentage of basins with good hydro-
logical performances is similar to that of SM2RASCAT.

Similar findings hold if the comparison is carried out
over the TMPA area (see Table 3). Poor results are ob-
tained by CMOR during the validation period (median
KGE-Q< 0; only 2.6 % show KGE-Q higher than 0.5),
whereas SM2RASCAT outperforms TMPA in both periods.
In particular, during the validation period a median KGE-
Q value equal to 0.580 is obtained for SM2RASCAT against
a value equal to 0.428 for TMPA. Moreover, by comparing
SM2RASCAT against TMPA in terms of basins with KGE-
Q greater than 0.5, the ratio is nearly two to one, i.e. 64 %
of basins show good hydrological performances when forced
with SM2RASCAT with respect to 39 % for TMPA. The low-
est performances for both products are obtained over south-
ern Spain and northern Italy. Conversely, the basins located
over northern Spain and central Europe show a better agree-
ment with respect toQE-OBS benchmark data, above all when
SM2RASCAT is used as rainfall input. The performances of
SM2RASCAT also remain good when the analysis is extended
above the TMPA area, with a median KGE-Q higher than
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Figure 2. Performances of satellite rainfall during the validation period in terms of rBIAS (a, b, c), R (d, e, f), RRMSE (g, h, i) and KGE-
P (l, m, n) over the study basins for the three products of TMPA (first column), CMOR (second column) and SM2RASCAT (third column).
The numbers in each plot represent the median score value obtained by considering the original spatial coverage of each product.

0.5 (Table 3). This is the first notable result of the paper; i.e.
among the SRPs available in near real time, there are some
products that can be profitably used to force a hydrological
model to obtain reliable river discharge data over Europe.
However, some questions raised in the introduction are still
unsolved, i.e. if there is any link between rainfall and river

discharge performances and if it is possible to find a rain-
fall score to select a priori the best SRP to obtain reliable
river discharge simulations. The answer to these questions is
given in the next paragraph, where the rainfall performances
are compared with the river discharge performances.
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Table 2. Performance scores for rainfall (in terms of rBIAS, R, RRMSE and KGE-P ) time series computed during the calibration (in italics)
and the validation periods. Rainfall performances are evaluated with respect to E-OBS rainfall data and distinguished between basins whose
outlet section is below or above 50◦ latitude. It has to be noted that the more rBIAS, R, RRMSE and KGE-P values go toward 0, 1, 0 and 1,
respectively, the higher the agreement between E-OBS and SRPs.

Rainfall performances

Score

rBIAS R RRMSE KGE-P rBIAS R RRMSE KGE-P

Product TMPA area (latitude < 50◦) Above TMPA area (latitude ≥ 50◦)

TMPA −0.127 0.626 1.968 0.516 – – – —
(−0.095) (0.619) (1.978) (0.533)

CMOR −0.462 0.551 1.969 0.299 −0.635 0.544 1.607 0.114
(−0.406) (0.576) (1.974) (0.375) (−0.618) (0.562) (1.621) (0.147)

SM2RASCAT 0.081 0.609 1.781 0.393 −0.086 0.572 1.477 0.331
(0.084) (0.595) (1.805) (0.436) (−0.080) (0.548) (1.514) (0.372)

Figure 3. Maps of the KGE-Q index obtained by considering (a) E-OBS, (b) TMPA, (c) CMOR and (d) SM2RASCAT rainfall data sets. For
E-OBS, the KGE-Q index has been obtained by comparing observed against modelled discharge data over the period 2007–2016. Modelled
discharge data have been obtained by using the E-OBS rainfall data set as input to the MISDc model. For the satellite data, KGE-Q refers
to the validation period (2013–2016). In panels (a), (b), (c) and (d), the median KGE value averaged over the original product coverage is
reported.

5.3 Rainfall vs. river discharge performances: is there
any link between them?

By comparing the patterns of Fig. 2 against the patterns of
Fig. 3b–d, some insights about the link between the rain-

fall accuracy and the hydrological performance can be noted.
The basins with the highest RRMSE (e.g. in the Mediter-
ranean area and, in particular, in southern Spain and northern
Italy) correspond to basins with poorer hydrological perfor-
mances (KGE-Q< 0.4). In addition, as for the CMOR prod-
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Table 3. Median KGE-Q index computed by comparing QE-OBS
simulated data against simulated discharge data obtained by forcing
the MISDc hydrological model with satellite (TMPA, CMOR and
SM2RASCAT) rainfall data. The percentage of the basins showing
KGE-Q values higher than 0.5 is also listed. Performances and per-
centages are averaged over different spatial windows, i.e. the orig-
inal spatial coverage of the product and over or above the TMPA
area (latitude ±50◦). Note: Cal – calibration period; Val – valida-
tion period.

KGE-Q

Spatial coverage TMPA area Above TMPA area
of the product (latitude < 50◦) (latitude ≥ 50◦)

Score

Product Cal Val Cal Val Cal Val

TMPA 0.692 0.428 0.692 0.428 – –
CMOR 0.279 −0.090 0.324 −0.014 0.201 −0.248
SM2RASCAT 0.722 0.569 0.751 0.580 0.670 0.539

Percentage of basins with KGE> 0.5

TMPA 87.9 38.6 87.9 38.6 – –
CMOR 17.5 2.40 21.6 2.60 4.90 1.80
SM2RASCAT 87.6 61.7 92.6 64.0 77.2 56.9

Average 64.4 34.2 67.4 35.1 41.1 29.4

uct, high rBIAS values (both negative or positive) produce
negative KGE-Q values. Interestingly, R and KGE-P rain-
fall scores seem to be weakly linked to the hydrological per-
formances. Finally, no clear link can be highlighted between
KGE-Q and the rainfall categorical scores as, for instance,
the low or high values of SM2RASCAT in terms of TS and
FAR do not explain the higher performances of this product
in terms of discharge (compare Fig. 3 to Fig. S1).

To better investigate these relationships, the scatter plots of
Figs. 4 and S2 have been constructed for the continuous and
categorical scores, respectively. For each basin and for each
SRP, the rainfall scores (x axis) are plotted against the KGE-
Q values (y axis), resulting in a large ensemble of points
spread out in the full range of rainfall or discharge scores
without any apparent relationship. The unique result in Fig. 4
is that CMOR shows higher absolute values of rBIAS and
lower KGE-P values with respect to the other two prod-
ucts; rBIAS of SM2RASCAT varies near zero and, in terms
of RRMSE, SM2RASCAT is characterized by a reduced range
of variability (i.e. most of the SM2RASCAT data are charac-
terized by RRMSE ranging from 1.5 and 2.5) with respect to
the other two products. By looking at the categorical scores
(Fig. S2), the three products show a similar variability range
for moderate to high rainfall events, whereas some differ-
ences are evident for low rainfall events that, however, should
have a minor impact on river discharge modelling. In particu-
lar, SM2RASCAT tend to have higher POD values for a rainfall
threshold equal to 0.5, due to the tendency of the product to
overestimate the rainfall occurrence (Brocca et al., 2019a).

To extract useful information from Figs. 4 and S2, the
scores obtained separately for each product have been
grouped, and the KGE-Q data points have been binned into
uniform ranges (with step 0.1) of rainfall scores. The median
KGE-Q and the 25th and 75th percentiles of KGE-Q values
have been computed for each rainfall score within each bin.
The white dots in Figs. 4 and S2 represent, for each bin of
each rainfall score, the median KGE-Q value; the two ends
of the black lines in the same figure represent the 25th and
75th percentile of the KGE-Q data points. By looking at the
boxplots so obtained, some insights, already anticipated by
inspecting Fig. 2 vs. Fig. 3 for the continuous scores, can
be confirmed. The SRP hydrological performances decrease
by increasing the absolute value of rBIAS, |rBIAS| and the
RRMSE values (higher |rBIAS| and RRMSE values indicate
lower rainfall performances; Fig. 4a and c), whereas KGE-Q
increases with R and KGE-P (higher R and KGE-P values
indicate higher rainfall performances; Fig. 4b and d). If these
relationships have reflected the expectations, the same did
not occur for all the categorical scores and rainfall events in-
vestigated here. Indeed, it has been found that higher (i.e. bet-
ter) POD and TS scores lead to a better performance, whereas
the relationships between KGE-Q and the FAR for small and
moderate rainfall are different (i.e. inverse) from what can be
expected. This could be due to the lowest impact of small or
moderate rainfall events on flood generation. Then, focusing
the attention only on high rainfall events, it seems that KGE-
Q slightly increase with POD, whereas a stronger link can be
noted between KGE-Q and TS or FAR.

The findings obtained so far become even more interest-
ing if the following question is posed: for which values of
rainfall scores is it possible to obtain good results in terms of
river discharge simulation (i.e. KGE-Q> 0.5)? The straight
grey line in Fig. 4 (and Fig. S2), drawn for a threshold value
of KGE-Q equal to 0.5, helps us to answer the question by
suggesting that good hydrological performances can be ob-
tained for SRPs characterized by rBIAS values close to 0 and
small RRMSE scores, i.e. for good rainfall data. Conversely,
R and KGE-P seem to have a smaller impact on KGE-Q
than for a large range of R and KGE-P values (from 0.5 to
0.8 and from 0.4 to 0.8, respectively), so it is possible to ob-
tain high KGE-Q values. Similar conclusions hold for the
categorical scores evaluated for heavy rainfall events. It can
be noted that the higher capability of SRPs to detect rainfall
events does not affect the hydrological performances, i.e. it
is possible to obtain KGE-Q higher than 0.5 for a large range
of POD, FAR and TS values. Finally, a last point has to be
addressed to fulfil the purpose of the paper. It has to be de-
termined how small or large the rainfall scores should be to
obtain good hydrological performances, i.e. KGE-Q greater
than 0.5. In particular, a range of variability for rBIAS and
RRMSE that seems to have a stronger link with the hydro-
logical performances should be defined.

The boxplot of Fig. 5a shows the hydrological perfor-
mances that have been obtained during the validation pe-
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Figure 4. Performances of discharge in terms of KGE (KGE-Q) against (a) relative rainfall bias – rBIAS; (b) rainfall correlation – R;
(c) relative root mean square error of rainfall – RRMSE; and (d) KGE-P . The scores are evaluated for the validation period (2013–2016) for
all the 1318 basins.

Figure 5. Hydrological performances in terms of the KGE values obtained during the validation period by the three satellite rainfall products
for all the basins whose outlet section is located over the TMPA area (889). The following hydrological performances are shown: (a) without
any constraint on the rainfall scores, (b) constraining the module of rBIAS to values lower than 0.2, (c) constraining RRMSE to values lower
than 2 and (d) constraining the module of rBIAS to values lower than 0.2 and RRMSE to values lower than 2.

riod by the three SRPs without any constraint on the rain-
fall scores. In order to always consider the same number of
basins for all the products, the area of analysis is cut over
the TMPA area, and a median KGE-Q value equal to 0.342
is obtained for the 889 basins. According to Table 3, nearly
35 % of the basins show KGE-Q greater than 0.5. If the ab-
solute value of rBIAS (i.e. |rBIAS|) is constrained to val-
ues lower than 0.2 (Fig. 5b), the median KGE-Q value over
the 400 basins that fulfils the criteria is equal to 0.525. As
shown in Fig. 5c, a constraint on RRMSE lower than 2 is

not enough to ensure good hydrological performances (me-
dian KGE-Q lower than 0.5), whereas, if a combination of
the two rainfall scores is considered, the threshold on KGE-
Q> 0.5 is exceeded by nearly 75 % of the basins fulfilling
the criteria (see first boxplot of Fig. 5d). In other words, this
means that nearly less than 25 % of the basins fulfilling the
criteria show low performances (first boxplot in Fig. 5d). Al-
ternatively, less than 25 % of basins not fulfilling the rainfall
constraints show good hydrological performances (see sec-
ond boxplot in Fig. 5d).
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For the sake of completeness, a figure similar to Fig. 5 has
been added in the Supplement (Fig. S3) for the other rainfall
scores (R, KGE-P , POD, FAR and TS and relative combi-
nations), but none of the shown rainfall constraints can be
considered satisfactory for the purposes of the analysis. In-
deed, not one of the rainfall constraints in Fig. S3 allows a
clear separation between basins fulfilling or not fulfilling the
criteria with a corresponding increase in KGE-Q.

6 Discussion

The findings of Figs. 4 and 5 draw some interesting conclu-
sions about the main research question of the paper, i.e. for
rainfall performance, score(s) can be used to select the best
performing rainfall product for river discharge simulation. In
particular, it has been noted thatR and KGE-P rainfall scores
have a small impact on KGE-Q as, for R ranging from 0.5 to
0.8 and for KGE-P ranging from 0.4 to 0.8, it is possible to
obtain high (> 0.5) KGE-Q values. As the meaningful range
ofR (KGE-P ) is between 0 and 1 (−0.41 and 1), we can con-
clude that R and KGE-P are not suitable scores for defining
a criterion able to discern between good and bad hydrologi-
cal simulations. This result could be linked to the hydrologi-
cal model structure and to the parameters calibrated into the
model. Indeed, it has been largely demonstrated in the sci-
entific literature (e.g. Zeng et al., 2018) that the impact of
imperfect precipitation estimates on model efficiency can be
reduced to some extent through the adjustment of model pa-
rameters. In this case, it is clear that the hydrological model
calibration step is able to correct the rainfall time shift, allow-
ing one to obtain good hydrological performances (KGE-Q)
for a large range of R values. A similar consideration holds
for KGE-P , largely influenced by the correlation coefficient.
Conversely, rBIAS along with RRMSE seem to be the most
appropriate error metrics to be used in conjunction to select
the best performing SRP for river discharge simulation. With
respect to bias, the finding is in line with other studies. For
instance, Maggioni et al. (2013) showed that bias can dou-
ble from rainfall to runoff consistently from small to large
basins. Conversely, no suggestions can be found with respect
to RRMSE or R metrics to characterize the SRP potential in
terms of river discharge simulation. In the scientific litera-
ture, we have found thresholds on metric scores to express
the quality of SRPs in terms of rainfall. In particular, some
authors considered an R value equal to or greater than 0.7
(Condom et al., 2011), a normalized RMSE value less than
or equal to 0.5 (Adeyewa and Nakamura, 2003; Condom et
al., 2011; Satgé et al., 2016; Shrestha et al., 2017) and bias
ranging from−10 %≤ bias ≤ 10 % (Brown, 2006; Yang and
Luo, 2014) to be associated with good satellite rainfall per-
formances – but without a reference to justify these numbers.

Specifically, in this study we have found that, by constrain-
ing |rBIAS| to values lower than 0.2 and RRMSE to values
lower than 2, good hydrological performances are assured for

nearly 75 % of the basins fulfilling the criteria. The remaining
percentage of basins for which the rainfall or discharge per-
formance relationship is not satisfied highlights that it is not
straightforward to find such relationships as errors in rainfall
and river discharge data used as a benchmark, and the hy-
drological model recalibration could influence the analysis.
These findings corroborate those obtained by Qi et al. (2016),
stating that a good river discharge simulation is a result of a
good combination between a rainfall product and a hydro-
logical model, and the selection of the most accurate rainfall
product alone does not guarantee the most accurate hydro-
logical performances.

7 Conclusions

This study represents the most comprehensive European-
scale evaluation to date of satellite rainfall products (SRPs).
Three different near-real-time SRPs are used to force a
lumped hydrological model over 1318 basins throughout Eu-
rope. The results can be summarized as follows:

1. In terms of rainfall accuracy, the three SRPs show sim-
ilar patterns in terms of R and RRMSE, whereas the
same does not hold for the rBIAS. For the three prod-
ucts, higher or lower R or RRMSE values are ob-
tained in central Europe; the opposite is observed in the
Mediterranean area. The rBIAS is low for TMPA and
SM2RASCAT, whereas CMOR shows a clear underesti-
mation of the daily rainfall data over the entire European
area.

2. Among the SRPs available in near real time, there are
some SRPs that can be reasonably used to force a hydro-
logical model in order to obtain reliable river discharge
simulations over Europe. In particular, SM2RASCAT is
the best performing product for river discharge simula-
tion across Europe (even at high latitudes).

3. There is a link between rainfall accuracy and river
discharge performance. In particular, by constraining
|rBIAS| to values lower than 0.2 and RRMSE to val-
ues lower than 2, good hydrological performances are
assured for almost 75 % of the basins fulfilling these cri-
teria.

Overall, we believe the results obtained from this study pro-
vide very useful information about the application of SRPs in
simulating river discharge at basin scale. In particular, for the
first time, this work addresses the topic of providing quanti-
tative guidelines for the use of SRPs for near-real-time hy-
drological applications.

Nevertheless, some limitations can be recognized in the
analysis. One of the main limitations lies in the use of only
one hydrological model for river discharge simulation. In this
respect, further analysis with multiple hydrological models
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will be carried out to better investigate the link between rain-
fall, hydrological model and discharge performance. In ad-
dition, in future research the ranges of rainfall performance
scores defined here will also be checked with the use of dif-
ferent satellite rainfall products (e.g. the global precipitation
measurement – GPM; Huffmann et al., 2018) and in different
regions worldwide. In particular, the extension of the analysis
to different regions in the world could allow us to explore the
connection between rainfall accuracy and river discharge per-
formances as a function of additional criteria such as climate
type, soil characteristics and terrain features (topography).

Another limitation of the study lies in having considered
only one performance score for the river discharge. Indeed,
as the main purpose of this study has been to reproduce
the entire river discharge time series, special attention was
not paid to high or low flows. A more comprehensive study
should consider a larger set of river discharge metrics to bet-
ter address the SRP selection. Finally, the results of this study
are likely sensitive to the quality of the data taken as “refer-
ence”, i.e. the E-OBS data sets used as benchmark to evalu-
ate the performances of SRPs, both in terms of rainfall and,
through the hydrological model, in terms streamflow.

Despite the aforementioned limitation, this study con-
tributes to a better understanding of the propagation of the
satellite rainfall error in streamflow simulations. This could
be very helpful for data users facing the selection of the best
satellite rainfall for hydrological applications.

Code and data availability. All data and codes used in the study
are freely available online. The E-OBS data set by Haylock et
al. (2008) is available from the European Climate Assessment
and Dataset (ECA&D) website at https://www.ecad.eu/download/
ensembles/download.php#datafiles (last access: 2 October 2020).
The ground discharge data collected in the paper can be re-
quested from the Global Runoff Data Centre (GRDC), Fed-
eral Institute of Hydrology, Koblenz, Germany, at https://www.
bafg.de/GRDC/EN/Home/homepage_node.html (last access: 2 Oc-
tober 2020). The European Water Archive (EWA), assembled
by the European Flow Regimes from International Experimen-
tal and Network Data (Euro-FRIEND) project (http://ne-friend.
bafg.de/servlet/is/7413/, last access: 2 October 2020) and held
by the GRDC, is available at https://www.bafg.de/GRDC/EN/04_
spcldtbss/42_EWA/ewa.html?nn=201574, (last access: 2 October
2020). The Italian National Database, created by Istituto Superi-
ore per la Protezione e la Ricerca Ambientale, Sistema informa-
tivo idrologico servizio registri Web (ISPRA HIS), is available
at http://www.hiscentral.isprambiente.gov.it/hiscentral/default.aspx
(last access: 2 October 2020). The Portuguese National Database,
created by Sistema national de Informaçao de Recursos Hidri-
cos (SNIRH), is available at http://snirh.pt/ (last access: 2 Octo-
ber 2020). The Spanish National Database, created by the Ecolog-
ical Transition Ministry, is available at http://ceh-flumen64.cedex.
es/anuarioaforos/default.asp (last access: 2 October 2020). The
TMPA 3B42RT rainfall data by Huffman et al. (2010), provided by
the National Aeronautics and Space Administration (NASA), are
available at https://doi.org/10.5067/TRMM/TMPA/3H-E/7 (Huff-

man, 2016). CMORPH by Joyce et al. (2004), provided by the
Climate Prediction Center (CPC), is available at ftp://ftp.cpc.
ncep.noaa.gov/precip/global_CMORPH/3-hourly_025deg/ (last ac-
cess: 2 October 2020). The SM2RAIN ASCAT rainfall prod-
uct by Brocca et al. (2019b) is freely downloadable at
https://doi.org/10.5281/zenodo.2591214. The “Modello Idrologico
Semi-Distribuito in continuo” (MISDc) hydrological model, cre-
ated by Brocca et al. (2011), is freely downloadable at http://
hydrology.irpi.cnr.it/download-area/midsc-code/ (last access: 2 Oc-
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