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Abstract. The need to fit time series characterized by the
presence of a trend or change points has generated increased
interest in the investigation of nonstationary probability dis-
tributions in recent years. Considering that the available hy-
drological time series can be recognized as the observable
part of a stochastic process with a definite probability distri-
bution, two main topics can be tackled in this context: the
first is related to the definition of an objective criterion for
choosing whether the stationary hypothesis can be adopted,
whereas the second regards the effects of nonstationarity
on the estimation of distribution parameters and quantiles
for an assigned return period and flood risk evaluation. Al-
though the time series trend or change points are usually
detected using nonparametric tests available in the literature
(e.g., Mann–Kendall or CUSUM test), the correct selection
of the stationary or nonstationary probability distribution is
still required for design purposes. In this light, the focus is
shifted toward model selection criteria; this implies the use
of parametric methods, including all of the issues related to
parameter estimation. The aim of this study is to compare
the performance of parametric and nonparametric methods
for trend detection, analyzing their power and focusing on
the use of traditional model selection tools (e.g., the Akaike
information criterion and the likelihood ratio test) within this
context. The power and efficiency of parameter estimation,
including the trend coefficient, were investigated via Monte
Carlo simulations using the generalized extreme value distri-
bution as the parent with selected parameter sets.

1 Introduction

The long- and medium-term prediction of extreme hydrolog-
ical events under nonstationary conditions is one of the major
challenges of our times. Streamflow, as well as temporal rain-
fall and many other hydrological phenomena, can be consid-
ered as stochastic processes (Chow, 1964), i.e., families of
random variables with an assigned probability distribution,
and time series are the observable part of this process. One
of the main goals of extreme event frequency analysis is the
estimation of distribution quantiles related to a certain non-
exceedance probability. They are usually obtained after fit-
ting a probabilistic model to observed data. As Koutsoyian-
nis and Montanari (2015) depicted in their historical review
of the “concept of stationarity”, Kolmogorov, in 1931, “used
the term stationary to describe a probability density function
that is unchanged in time”, whereas Khintchine (1934) pro-
vided a formal definition of stationarity of a stochastic pro-
cess.

In this context, detecting the existence of time-dependence
in a stochastic process should be considered a necessary task
in the statistical analysis of recorded time series. Thus, sev-
eral considerations should be made with respect to updating
some important hydrological concepts while assuming that
the non-exceedance probability varies with time or other co-
variates. For example, the return period may be reformulated
in two different ways, the “expected waiting time” (EWT;
Olsen et al., 1998) or the “expected number of events” (ENE;
Parey et al., 2007, 2010), which lead to a different evaluation
of quantiles within a nonstationary approach. As proved by
Cooley (2013), the EWT and ENE are affected differently by
nonstationarity, possibly producing ambiguity in engineer-
ing design practice (Du et al., 2015; Read and Vogel, 2015).
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Salas and Obeysekera (2014) provided a detailed report re-
garding relationships between stationary and nonstationary
EWT values within a parametric approach for the assessment
of nonstationary conditions. In such a framework, a strong
relevance is given to statistical tools for detecting changes in
non-normally distributed time series (Kundewicz and Rob-
son, 2004).

To date, the vast majority of research regarding climate
change and the detection of nonstationary conditions has
been developed using nonparametric approaches. One of the
most commonly used nonparametric measures of trend is
Sen’s slope (Gocic and Trajkovic, 2013); however, a wide
array of nonparametric tests for detecting nonstationarity is
available (e.g., Kundewicz and Robson, 2004). Statistical
tests include the Mann–Kendall (MK; Mann, 1945; Kendall,
1975) and Spearman (Lehmann, 1975) tests for detecting
trends, and the Pettitt (Pettitt, 1979) and CUSUM (Smadi and
Zghoul, 2006) tests for change point detection. All of these
tests are based on a specific null hypothesis and have to be
performed for an assigned significance level. Nonparametric
tests are usually preferred over parametric tests as they are
distribution-free and do not require knowledge of the parent
distribution. They are traditionally considered more suitable
for the frequency analysis of extreme events with respect to
parametric tests because they are less sensitive to the pres-
ence of outliers (Wang et al., 2005).

In contrast, the use of null hypothesis significance tests
for trend detection has raised concerns and severe criticisms
in a wide range of scientific fields for many years (e.g., Co-
hen, 1994), as outlined by Vogel et al. (2013). Serinaldi et
al. (2018) provided an extensive critical review focusing on
logical flaws and misinterpretations often related to their mis-
use.

In general, the use of statistical tests involves different er-
rors, such as type I error (rejecting the null hypothesis when it
is true) and type II error (accepting the null hypothesis when
it is false). The latter is related to the test power, i.e., the prob-
ability of rejecting the null hypothesis when it is false; how-
ever, as recognized by a few authors (e.g., Milly et al., 2015;
Beven, 2016), the importance of the power has been largely
overlooked in Earth system science fields. Strong attention
has always been paid to the level of significance (i.e., type I
error), although, as pointed out by Vogel et al. (2013), “a
type II error in the context of an infrastructure decision im-
plies under-preparedness, which is often an error much more
costly to society than the type I error (over-preparedness)”.

Moreover, as already proven by Yue et al. (2002a), the
power of the Mann–Kendall test, despite its nonparametric
structure, actually shows a strong dependence on the type
and parametrization of the parent distribution.

Using a parametric approach, the estimation of quantiles
of an extreme event distribution requires the search for the
underlying distribution and for time-dependant hydrological
variables. If variables are time-dependent, they are “i/nid”
(independent/non-identically distributed) and the model is

considered nonstationary; otherwise, the variables are “iid”
(independent, identically distributed) and the model is a sta-
tionary one (Montanari and Koutsoyiannis, 2014; Serinaldi
and Kilsby, 2015).

From this perspective, the detection of nonstationarity may
exploit (besides traditional statistical tests) well-known prop-
erties of model selection tools. Even in this case, several mea-
sures and criteria are available for selecting a best-fit model,
such as the Akaike information criterion (AIC; Akaike,
1974), the Bayesian information criterion (BIC; Schwarz,
1978), and the likelihood ratio test (LR; Coles, 2001); the
latter is suitable when dealing with nested models.

The purpose of this paper is to provide further insights into
the use of parametric and nonparametric approaches in the
framework of extreme event frequency analysis under non-
stationary conditions. The comparison between those differ-
ent approaches is not straightforward. Nonparametric tests
do not require knowledge of the parent distribution, and their
properties strongly rely on the choice of the null hypothe-
sis. Parametric methods for model selection, in comparison,
require the selection of the parent distribution and the esti-
mation of its parameters, but are not necessarily associated
with a specific null hypothesis. Nevertheless, in both cases,
the evaluation of the rejection threshold is usually based on
a statistical measure of trend that, under the null hypothesis
of stationarity, follows a specific distribution (e.g., the Gaus-
sianity of the Kendall statistic for the MK nonparametric test,
and the χ2 distribution of deviance statistic for the LR para-
metric test).

Considering the pros and cons of the different approaches,
we believe that specific remarks should be made about the
use of parametric and nonparametric methods for the analysis
of extreme event series. For this purpose, we set up a numer-
ical experiment to compare the performance of (1) the MK
as a nonparametric test for trend detection, (2) the LR para-
metric test for model selection, and (3) the AICR paramet-
ric test, as defined in Sect. 2.3. In particular, the AICR is a
measure for model selection, based on the AIC, whose distri-
bution was numerically evaluated, under the null hypothesis
of a stationary process, for comparison purposes with other
tests.

We aim to provide (i) a comparison of test power be-
tween the MK, LR, and AICR; (ii) a sensitivity analysis of
test power to parameters of a known parent distribution used
to generate sample data; and (iii) an analysis of the influ-
ence of the sample size on the test power and the significance
level.

We conducted the analysis using Monte Carlo techniques;
this entailed generating samples from parent populations as-
suming one of the most popular extreme event distributions,
the generalized extreme value (GEV; Jenkinson, 1955), with
a linear (and without any) trend in the position parameter.
From the samples generated, we numerically evaluated the
power and significance level of tests for trend detection, us-
ing the MK, LR, and AICR tests. For the latter, we also

Hydrol. Earth Syst. Sci., 24, 473–488, 2020 www.hydrol-earth-syst-sci.net/24/473/2020/



V. Totaro et al.: Numerical investigation on the power of parametric and nonparametric tests 475

checked the option of using the modified version of AIC, re-
ferred to as AICc, suggested by Sugiura (1978) for smaller
samples.

Considering that parametric methods involve the estima-
tion of the parent distribution parameters, we also analyzed
the efficiency of the maximum likelihood (ML) estimator by
comparing the sample variability of the ML estimate of trend
with the nonparametric Sen’s slope. Furthermore, we scoped
the sample variability of the GEV parameters in the station-
ary and nonstationary cases.

2 Methodological framework

This section is divided into five parts. Sect. 2.1, 2.2, and
2.3 report the main characteristics of the MK, LR, and AICR
tests, respectively. In Sect. 2.4, the probabilistic model used
for sample data generation, based on the use of the GEV
distribution, is described in the stationary and nonstationary
cases. Finally, Sect. 2.5 outlines the procedure for the numer-
ical evaluation of the tests’ power and significance level.

2.1 The Mann–Kendall test

Hydrological time series are often composed by non-
normally independent realizations of phenomena, and this
characteristic makes the use of nonparametric trend tests
very attractive (Kundzewicz and Robson, 2004). The Mann–
Kendall test is a widely used rank-based tool for detecting
monotonic, and not necessarily linear, trends. Given a ran-
dom variable z, and assigned a sample of L independent data
z= (z1, . . . , zL), the Kendall S statistic (Kendall, 1975) can
be defined as follows:

S =

L−1∑
i=1

L∑
j=i+1

sgn
(
zj − zi

)
, (1)

where “sgn” is the sign function.
The null hypothesis of this test is the absence of any statis-

tically significant trend in the sample, whereas the presence
of a trend represents an alternative hypothesis. Yilmaz and
Perera (2014) reported that serial dependence can lead to a
more frequent rejection of the null hypothesis. For L≥ 8,
Mann (1945) reported that Eq. (1) is approximatively a nor-
mal variable with a zero mean and variance which, in the
presence of tm ties of length m, can be expressed as

V =

L(L− 1)(2L+ 5)−
n∑

m=1
tmm(m− 1)(2m+ 5)

18
.

In practice, the Mann–Kendall test is performed using the
Z statistic

Z =


S−1
√
V (S)

S > 0
0 S = 0
S+1
√
V (S)

S < 0
,

which follows a standard normal distribution. Using this ap-
proach, it is simple to evaluate the p value and compare it
with an assigned level of significance or, equivalently, to cal-
culate the Zα threshold value and compare it with Z, where
Zα is the (1−α) quantile of a standard normal distribution.

Yue et al. (2002b) observed that autocorrelation in time
series can influence the ability of the MK test to detect
trends. To avoid this problem, a correct approach with respect
to trend analysis should contemplate a preliminary check
for autocorrelation and, if necessary, the application of pre-
whitening procedures.

A nonparametric tool for a reliable estimation of a trend in
a time series with N pairs of data is the Sen’s slope estima-
tor (Sen, 1968), which is defined as the median of the set of
slopes δj :

δj =
zi − zk

i− k
, j = 1, . . ., N, (2)

where i > k.

2.2 Likelihood ratio test

The likelihood ratio statistical test allows for the comparison
of two candidate models. As its name suggests, it is based on
the evaluation of the likelihood function of different models.

The LR test has been used multiple times (Tramblay et
al., 2013; Cheng et al., 2014; Yilmaz et al., 2014) to select
between stationary and nonstationary models in the context
of nested models. Given a stationary model characterized by
a parameter set θst and a nonstationary model, with parameter
set θns, if l(θ̂st) and l(θ̂ns) are their respective maximized log
likelihoods, the likelihood ratio test can be defined using the
deviance statistic

D = 2
[
l
(
θ̂ns

)
− l
(
θ̂st

)]
. (3)

D is (for large L) approximately χ2
m distributed, with m=

dim(θns)− dim(θst) degrees of freedom. The null hypothesis
of stationarity is rejected if D >Cα , where Cα is the (1−
α) quantile of the χ2

m distribution (Coles, 2001).
Besides the analysis of power, we also checked (in

Sect. 3.3) the approximation D ∼ χ2
m as a function of the

sample size L for the evaluation of the level of significance.

2.3 Akaike information criterion ratio test

Information criteria are useful tools for model selection. It
is reasonable to retain that the Akaike information criterion
(AIC; Akaike, 1974) is the most famous among these tools.
Based on the Kullback–Leibler discrepancy measure, if θ is
the parameter set of a k-dimensional model (k = dim(θ)),
AIC is defined as

AIC=−2l(θ̂ )+ 2k. (4)

The model that best fits the data has the lowest value of the
AIC between candidates. It is useful to observe that the term

www.hydrol-earth-syst-sci.net/24/473/2020/ Hydrol. Earth Syst. Sci., 24, 473–488, 2020



476 V. Totaro et al.: Numerical investigation on the power of parametric and nonparametric tests

proportional to the number of model parameters allows one
to account for the increase of the estimator variance as the
number of model parameters increases.

Sugiura (1978) observed that the AIC can lead to mislead-
ing results for small samples; thus, he proposed a new mea-
sure for the AIC:

AICc =−2l(θ̂ )+
2k(k+ 1)
L− k− 1

, (5)

where a second-order bias correction is introduced. Burn-
ham and Anderson (2004) suggested only using this version
when L/kmax < 40, with kmax being the maximum number
of parameters between the models compared. However, for
larger L, AICc converges to AIC. For a quantitative compar-
ison between the AIC and AICc in the extreme value station-
ary model selection framework, the reader is referred to Laio
et al. (2009).

In order to select between stationary and nonstationary
candidate models, we use the ratio

AICR =
AICns

AICst
, (6)

where the subscripts indicate the AIC value obtained for a
stationary (st) and a nonstationary (ns) model, both fitted
with maximum likelihood to the same data series.

Considering that the better fitting model has a lower AIC,
if the time series arises from a nonstationary process, the
AICR should be less than 1; the opposite is true if the pro-
cess is stationary.

In order to provide a rigorous comparison between the use
of the MK, LR, and AICR , we evaluated the AICR,α thresh-
old value corresponding to the significance level α using nu-
merical experiments.

More in detail, we adopted the following procedure:

1. N = 10000 samples are generated from a stationary
GEV parent distribution, with known parameters;

2. for each of these samples the AICR is evaluated by fit-
ting the stationary and nonstationary GEV models de-
scribed in Sect. 2.4, thus providing its empirical distri-
bution (see probability density function, pdf, in Fig. 1);

3. exploiting the empirical distribution of AICR , the
threshold associated with a significance level of α =
0.05 is numerically evaluated. This value, AICR,α , rep-
resents the threshold for rejecting the null hypothesis of
stationarity (which in these generations is true) in 5 %
of the synthetic samples.

This procedure was applied both for the AIC and AICc. The
experiment was repeated for a few selected sets of the GEV
parameters, including different trend values, and different
sample lengths, as detailed in Sect. 3.

2.4 The GEV parent distribution

The cumulative distribution function of the generalized ex-
treme value (GEV) distribution (Jenkinson, 1955) can be ex-
pressed as follows:

F (z,θst)=

 exp
{
−

[
1+ ε

(
z−ζ
σ

)]−1/ε
}

ε 6= 0

exp
{
−exp

[
−

(
z−ζ
σ

)]}
ε = 0

σ > 0, (7)

where ζ , σ , and ε are known as the position, scale, and shape
parameters, respectively; θst = [ζ , σ , ε] is a general and com-
prehensive way to express the parameter set in the station-
ary case. The flexibility of the GEV, which accounts for the
Gumbel, Fréchet, and Weibull distributions as special cases
(for ε = 0, ε > 0 and ε < 0 respectively) makes it eligible for
a more general discussion about the implications of nonsta-
tionarity.

Traditional extreme value distributions can be used in a
nonstationary framework, modeling their parameters as func-
tion of time or other covariates (Coles, 2001), producing
θst −→ θns = [ζt , σt , εt ].

In this study, only a deterministic linear dependence on
the time t of the position parameter ζ has been introduced,
leading Eq. (7) to be expressed as follows:

F (z,θns)=

 exp
{
−

[
1+ ε

(
z−ζt
σ

)]−1/ε
}

ε 6= 0

exp
{
−exp

[
−

(
z−ζt
σ

)]}
ε = 0

σ > 0 (8)

with

ζt = ζ0+ ζ1t (9)

and θns = [ζ0, ζ1, σ , ε].
It is important to note that Eq. (8) is a more general way of

defining the GEV and has the property of degenerating into
Eq. (7) for ζ1 = 0; in other words, Eq. (7) represents a nested
model of Eq. (8) which would confirm the suitability of the
likelihood ratio test for model selection.

According to Muraleedharan et al. (2010), the first three
moments of the GEV distribution are as follows:

mean= ζ +
σ

ε
(g1− 1) ε 6= 0, ε < 1, (10)

variance=
σ 2

ε2

(
g2− g

2
1

)
ε 6= 0, ε <

1
2
,and (11)

skewness= sgn(ε) ·
g3− 3g2g1+ 2g3

1(
g2− g

2
1
)3/2 ε 6= 0, ε <

1
3
. (12)

Here, gk = 0(1− kε), with k ∈ Z+ and 0(·), is the gamma
function. It is worth noting that, following Eqs. (10)–(12), the
trend in the position parameter only affects the mean, while
the variance and skewness remain constant.

In this work, we used the maximum likelihood
method (ML) to estimate the GEV parameters from sample
data. The ML allows one to treat ζ1 as an independent param-
eter, as well as ζ0, σ and ε. For this purpose, we exploited the
“extRemes” R package (Gilleland and Katz, 2016).
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Figure 1. An empirical distribution of AICR and the rejection threshold AICR,α of the null hypothesis (stationary GEV parent).

2.5 Numerical evaluation of test power and significance
level

The power of a test is related to the type II error and is the
probability of correctly rejecting the null hypothesis when
it is false. In particular, defining α (level of significance), the
probability of a type I error, and β, the probability of a type II
error, we have a power value of 1−β. The maximum value
of power is 1, which correspond to β = 0, i.e., no probabil-
ity of a type II error. In most applications, the conventional
values are α = 0.05 and β = 0.2, meaning that a 1-to-4 trade-
off between α and β is accepted. Thus, in our experiment we
always assumed a significance level of 0.05, and, for the fol-
lowing description of results and discussion, we considered
a power level of less than 0.8 to be too low and, hence, unac-
ceptable. In Sect. 4, we report further considerations regard-
ing this choice. For each of the tests described in Sect. 2.1,
2.2, and 2.3, the power was numerically evaluated according
to the following procedure:

1. N = 2000 Monte Carlo synthetic series, each of
length L, are generated using the nonstationary GEV
in Eqs. (8) and (9) as a parent distribution with a fixed
parameter set θns = [ζ0, ζ1, σ , ε] with ζ1 6= 0.

2. The threshold AICR,α associated with a significance
level of α = 0.05 is numerically evaluated, as described
in Sect. 2.3, using the corresponding parameter set θst =

[ζ0, σ , ε] of the GEV parent distribution.

3. From these synthetic series, the power of the test is es-
timated as

rejection rate=
Nrej

N
,

where Nrej is the number of series for which the null
hypothesis is rejected, as in Yue et al. (2002a).

The same procedure, with N = 10000, was used in order to
check the actual significance level of the test, which is the
probability of type I error, i.e., the probability of rejecting
the null hypothesis of stationarity when it is true. The task
was performed by following the abovementioned steps 1 to 3
while replacing θns with θst in step 1); in such a case, the
rejection rate Nrej/N represents the actual level of signifi-
cance α.

We used a reduced number of generations (N = 2000) for
the evaluation of power as a good compromise between the
quality of the results and computational time. N = 2000 was
also used by Yue et al. (2002a).

3 Sensitivity analysis, results, and discussion

A comparative evaluation of the tests’ performance was car-
ried out for different GEV parameter sets θns, considering
three values of ε (−0.4, 0, and 0.4) and three values of σ
(10, 15, and 20). The position parameter was always kept
constant and equal to ζ0 = 40. Then, for any possible pair
of σ and ε values, we considered ζ1 ranging from −1 to 1
with a step size of 0.1. Such a range of parameters repre-
sents a wide domain in the hydrologically feasible parame-
ter space of annual maximum daily rainfall. Upper-bounded
(ε =−0.4), EV1 (ε = 0), and heavy-tailed (ε =+0.4) cases
are included. Moreover, for each of these parameter sets θns,
N samples of different sizes (30, 50, and 70) were generated.

For a clear exposition of the results, this section is divided
into four subsections. In Sect. 3.1, we focus on the oppor-
tunity to use the AIC or AICc for the evaluation of AICR;
in Sect. 3.2, the comparison of test power and its sensitivity
analysis to the parent distribution parameters and the sam-
ple size is shown; in Sect. 3.3, the evaluation of the level of
significance for all tests and, in particular, the validity of the
χ2 approximation for the D statistic is discussed; and finally
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in Sect. 3.4, the numerical investigation of the sample vari-
ability of the parameters is reported.

3.1 Evaluation of AICR , with the AIC and AICc

Considering the nonstationary GEV four-parameter model,
in order to satisfy the relation L/kmax < 40 suggested by
Burnham and Anderson (2004), a time series with a record
length no less than 160 should be available. Following this
simple reasoning, the AIC should be considered not to be
applicable to any annual maximum series showing a chang-
ing point between the 1970s and 1980s (e.g., Kiely, 1999).
In our numerical experiment, the second-order bias correc-
tion of Sugiura (1978) should always be used, as we have
L/kmax = 70/4= 17.5 for the nonstationary GEV for a max-
imum sample length of L= 70. Nevertheless, we checked if
using the AIC or AICc may affect results. For this purpose,
we evaluated the percentage differences between the power
of the AICR obtained by means of the AIC and AICc from
synthetic series. In Fig. 2, the empirical probability density
functions of such percentage differences, grouped according
to sample length, are plotted for generations with ε = 0.4 and
different values of σ . It is interesting to note that the error
distribution only shows a regular and unbiased bell-shaped
distribution for L= 70. We then observe a small negative
bias (about −0.02 %) for L= 50, while a bias of −0.08 with
a multi-peak and negatively skewed pdf is noted for L= 30.
The latter pdf also has a higher variance than the others. The
purpose of this figure is to show that the difference between
the power obtained with the AIC and the power obtained with
the AICc is negligible. Different peaks in one curve (L= 30)
can be explained by the merging of sample errors obtained
for different values of σ . Similar results were obtained for all
values of ε, which always provided very low differences and
allow for the conclusion to be reached that the use of the AIC
or AICc does not significantly affect the power of AICR for
the cases examined. This follows the combined effect of the
sample size (whose minimum value considered here is 30)
and the limited difference in the number of parameters in the
selected models. In the following, we will refer to and show
only the plots obtained for the AICR in Eq. (6) with the AIC
evaluated as in Eq. (4).

3.2 Dependence of the power on the parent distribution
parameters and sample size

The effect of the parent distribution parameters and the sam-
ple size on the numerical evaluation of the power and sig-
nificance level of the MK, LR, and AICR tests for different
values of ε, σ , and ζ1 is shown in Fig. 3. The curves repre-
sent both the significance level, which is shown for ζ1 = 0
(true parent is the stationary GEV), and the power, which is
shown for all other values ζ1 6= 0 (true parent is the nonsta-
tionary GEV). Each panel in Fig. 3 shows the dependence of
the power and significance level of MK, LR and AICR on the

trend coefficient for one set of parameter values and different
sample sizes. In all panels, the test power strongly depends
on the trend coefficient and sample size. This dependence is
also affected by the parent parameter values. In all cases, the
power reaches 1 for a strong trend and approaches 0.05 (the
chosen level of significance) for a weak trend (ζ1 close to 0).
In all combinations of the shape and scale parameters (and
especially for short samples) for a wide range of trend val-
ues, the power exhibits values well below the conventional
value of 0.8. The curves’ slope between 0.05 and 1 is sharp
for long samples and gentle for short samples. It also depends
on the parameter set, with slopes generally being gentler for
higher values of the scale (σ ) and shape (ε) parameters of
the parent distribution. A significant difference in the power
between the MK, LR, and AICR tests is observable when the
sample size is smaller and even more so when the parent dis-
tribution is heavy-tailed (ε =+0.4).

In particular, for ε = 0, −0.4 and L= 50, 70, it is possi-
ble to report a slightly larger power of LR with respect to the
AICR and MK, but values are very close to each other. How-
ever, the reciprocal position of MK and AICR power curves
is interesting; in fact, the AICR power is always larger than
that of the MK, except when ε =−0.4, for all values of the
scale parameter.

A higher difference is found for a heavy-tailed parent dis-
tribution (ε =+0.4). While LR still has the largest power
value, the difference with respect to AICR remains small
and the MK power value almost always collapses to values
smaller than 0.5.

The practical consequences of such patterns are very im-
portant and are discussed in Sect. 4.

3.3 Sensitivity and evaluation of the actual significance
level

We evaluated the threshold values (corresponding to a signif-
icance level of 0.05) for accepting/rejecting the null hypothe-
sis of stationarity according to the methodologies recalled in
Sect. 2.1 and 2.2 for the MK and LR tests and introduced in
Sect. 2.3 for AICR . Based on these thresholds, we exploited
the generation of series from a stationary model (ζ1 = 0) in
order to numerically evaluate the rate of rejection of the null
hypothesis, i.e., the actual significance level of the tests con-
sidered in the numerical experiment, following the procedure
described in Sect. 2.5.

Table 1 shows the numerical values of the actual level of
significance, obtained numerically, to be compared with the
theoretical value of 0.05 for all of the sets of parameters and
sample sizes considered. Among the three measures for trend
detection, the LR shows the worst performance. The results
in Table 1 show that the rejection rate of the (true) null hy-
pothesis is systematically higher than it should be, and it
is also dependent on parent parameter values. This effect is
exalted when the parent distribution has an upper boundary
(ε =−0.4) and for shorter series (L= 30). In practice, this
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Figure 2. Distributions of the differences between the power of AICR evaluated with the AIC and AICc for ε = 0.4.

Figure 3. Dependence of test power on the trend coefficient, sample size, scale, and shape of the parent parameters.

implies that when using the LR test, as described in Sect. 2.2,
there is a higher probability of rejecting the null hypothesis
of stationarity (if it is true) than expected or designed.

Conversely, the performance of MK with respect to the de-
signed level of significance is less biased and is independent
of the parameter set. Similar good performance is trivially

obtained for the AICR , whose rejection threshold is numeri-
cally evaluated.

The plot in Fig. 4 is displayed in order to focus on the
actual value of the level of significance and, in particular,
on the LR approximation D ∼ χ2

m as a function of the sam-
ple length L. The difference between the theoretical and nu-
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Table 1. The actual level of significance of the tests for different sample sizes, scales, and shapes of the parent parameters.

ε =−0.4 ε = 0 ε =+0.4

σ = 10 σ = 15 σ = 20 σ = 10 σ = 15 σ = 20 σ = 10 σ = 15 σ = 20

L= 30

MK 0.048 0.047 0.047 0.047 0.050 0.050 0.046 0.049 0.048
AICR 0.050 0.046 0.052 0.051 0.052 0.045 0.052 0.054 0.051
LR 0.104 0.103 0.115 0.061 0.064 0.060 0.084 0.081 0.083

L= 50

MK 0.050 0.047 0.046 0.044 0.047 0.050 0.049 0.044 0.048
AICR 0.053 0.053 0.046 0.051 0.051 0.057 0.050 0.050 0.053
LR 0.079 0.078 0.074 0.060 0.063 0.063 0.070 0.069 0.070

L= 70

MK 0.050 0.052 0.054 0.052 0.051 0.047 0.049 0.048 0.046
AICR 0.047 0.051 0.051 0.058 0.058 0.052 0.050 0.054 0.051
LR 0.069 0.069 0.073 0.063 0.065 0.058 0.062 0.062 0.063

Figure 4. Enlargement of the power test curves in the case (σ = 15, ε =−0.4), with focus on the actual level of significance (ζ1 = 0).

merical values of the significance level is represented by the
distance between the bottom value of the curve (obtained
for ζ1 = 0, i.e., the stationary GEV model) and the chosen
level of significance 0.05, represented by the horizontal dot-
ted line. In particular, in Fig. 4, results for the parameter set
(σ = 15, ε =−0.4) show that the actual rate of rejection is
always higher than the theoretical one and changes signifi-
cantly with the sample size; this means that the χ2

m approx-
imation leads to a significant underestimation of the rejec-
tion threshold of the D statistic. Moreover, it seems that the
LR power curves (in red) are shifted toward higher values

as a consequence of the significance level overestimation,
meaning that the LR test power is also overestimated due
to the approximation D ∼ χ2

m. These results suggest the use
of a numerical procedure for the LR test (such as that intro-
duced for AICR in Sect. 2.3) for evaluating theD distribution
and the rejection threshold.

Other considerations can be made regarding the use of
AICR . As explained in Sect. 2.3, we empirically evaluated
the AICR,α threshold value using numerical generations with
a significance level 0.05 for each of the parameter sets and
sample sizes considered. Similar results were obtained us-
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Table 2. Actual level of significance of the AICR test for AICR,α = 1.

ε =−0.4 ε = 0 ε =+0.4

σ = 10 σ = 15 σ = 20 σ = 10 σ = 15 σ = 20 σ = 10 σ = 15 σ = 20

L= 30 0.246 0.254 0.261 0.188 0.191 0.181 0.220 0.221 0.215
L= 50 0.213 0.209 0.206 0.171 0.175 0.170 0.188 0.207 0.195
L= 70 0.192 0.192 0.201 0.168 0.169 0.173 0.184 0.204 0.184

Figure 5. AICR,α thresholds for different parameter sets vs. sample size.

ing the AICc, which are not shown for brevity. We found a
significant dependence of AICR,α on the sample size. Fig-
ure 5 shows the AICR,α curves obtained for each of the pa-
rameter sets vs. sample size. It is also worth noting that all
curves asymptotically trend to 1 as L increases. This prop-
erty is due to the structure of the AIC and the peculiarity
of the nested models used in this paper: while using a sam-
ple generated with weak nonstationarity (i.e., when ζ1→ 0
in Eq. 9), the maximum likelihood of the model shown in
Eq. 7, l(θ̂st), tends toward l(θ̂ns) of the model shown in Eq. 8,
leaving only the bias correction (2k in equation 4) to discrim-
inate between competing AIC values in model selection ap-
plications. As a consequence, the AICR,α should always be
lower than 1; however, when increasing the sample size, both
the likelihood terms −2l(θ̂st) and −2l(θ̂ns) in Eq. (4) will
also increase, pushing AICR toward the limit 1. Conversely,
Fig. 5 shows that the threshold value AICR,α is significantly
smaller than 1 up to L values well beyond the length usually
available in this kind of analysis. Hence, the numerical evalu-
ation of the threshold has to be considered as a required task
in order to provide an assigned significance level to model
selection. In contrast, the simple adoption of the selection
criteria AICR < 1 (i.e., AICR,α = 1) would correspond to

an unknown significance level that is dependent on the par-
ent distribution and sample size. In order to highlight this
point, we evaluated the significance level α corresponding to
AICR,α = 1, following the procedure described in Sect. 2.5,
by generating N = 10000 synthetic series (from a station-
ary model) for any parameter set and sample length. The re-
sults, provided in Table 2, show that α ranges between 0.16
and 0.26 in the explored GEV parameter domain and mainly
depends on the sample length and the shape parameter of the
parent distribution.

3.4 Sample variability of parent distribution
parameters

In our opinion, the results shown above, with respect to the
performance of parametric and nonparametric tests, are quite
surprising and important. It is proved that the preference
widely accorded to nonparametric tests, due to the fact that
their statistics are allegedly independent from the parent dis-
tribution, is not well founded. Conversely, the use of para-
metric procedures raises the problem of correctly estimat-
ing the parent distribution and, for the purpose of this pa-
per, its parameters. Moreover, as the trend coefficient ζ1 is a
parameter of the parent distribution under nonstationary con-
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Figure 6. Sample variability of ML-ζ1 and δ vs. the trend coefficient ζ1.

ditions, the proposed parametric approach provides a max-
imum likelihood-based estimation of the same trend coeffi-
cient, which is hereafter referred to as ML-ζ1. For a compar-
ison with nonparametric approaches, we also evaluated the
sample variability of the Sen’s slope measure (δ) of the im-
posed linear trend. Furthermore, in order to provide insights
into these issues, we analyzed the sample variability of the
maximum likelihood estimates ML-ε and ML-σ (from the
same sets of generations exploited above) for different pa-
rameter sets and sample lengths.

We evaluated sample variability s[·], as the standard devi-
ation of the ML estimates of parameter values obtained from
synthetic series. In the upper panels of Fig. 6, we show s[ML-
ζ1], and in the lower panels, we show the Sen’s slope median
s[δ]. In both cases, the sample variability of the linear trend is
strongly dependent on sample size and independent from the
true ζ1 value in the range examined [−1, 1]. It reaches high
values for short samples and, in such cases, its dependence on
the scale and shape parent parameters is also relevant. The
ML estimation of the trend coefficient is always more effi-
cient than Sen’s slope, and this is observed for heavy-tailed
distributions in particular.

In Fig. 7, we show the empirical distributions of the Sen’s
slope δ and ML-ζ1 estimates obtained from samples of size
L= 30 with a parent distribution characterized by σ = 15
and ε = [−0.4, 0, 0.4], providing visual information about

the range of trend values that may result from a local evalua-
tion. Similar results, characterized by smaller sample vari-
ability, as shown in Fig. 6, are obtained for L= 50 and
L= 70 and are not shown for brevity.

Figure 8 shows the sample variability of ML-ε and ML-σ ,
which is still independent of the true ζ1 for values of ε = 0
and 0.4, whereas for the upper-bounded GEV distributions
(ε =−0.4) it shows a significant increase for higher values
of σ and high trend coefficients (|ζ1|> 0.5). The randomness
of results for L= 30 and σ = [15, 20] is probably due to the
reduced efficiency of the algorithm that maximizes the log-
likelihood function for heavy-tailed distributions.

In order to better analyze such patterns, for the scale and
shape parent parameters we also report the distribution of
their empirical ML estimates for different parameter sets
vs. the true ζ1 value used in generation. The sample distri-
bution of ML-ε for σ = 15 is shown in Fig. 9 for L= 30
and L= 70. The sample distribution of ML-σ for σ = 15 is
shown in Fig. 10 for L= 30 and L= 70. The panels show
that the presence of a strong trend coefficient may produce
significant loss in the estimator efficiency, which is probably
due to deviation from the normal distribution of the sample
estimates for long samples. This suggests the need for more
robust estimation procedures that provide higher efficiency
for estimates of ε and σ in the case of a strong observed trend.
It should be highlighted that efficiency in the parameter esti-
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Figure 7. Empirical distributions of δ and ML-ζ1 evaluated from samples with L= 30 and σ = 15 vs. the trend coefficient ζ1.

Figure 8. Sample variability of ML-ε and ML-σ vs. the trend coefficient ζ1.
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Figure 9. Empirical distributions of ML-ε evaluated for σ = 15 from samples with L= 30 and L= 70 vs. the trend coefficient ζ1.

Figure 10. Empirical distributions of ML-σ evaluated for σ = 15 from samples with L= 30 and L= 70 vs. the trend coefficient ζ1.

mation increases with sample size for ε = [0, 0.4], whereas
it decreases for both ε and σ in the case of ε =−0.4, where
the trend of the location parameter implies a shift in time of
the distribution upper bound.

4 Conclusions

The results shown have important practical implications.
The dependence of test power on the parent distribution pa-
rameters may significantly affect results of both parametric
and nonparametric tests, including the widely used Mann–
Kendall test.

Considering the feasibility of the numerical evaluation of
power, allowed by the parametric approach, we observe that,
while awareness of the crucial role of type II error has been
growing in recent years in the hydrological literature, a com-
mon debate would deserve more development about which
power values should be considered acceptable. Such an is-
sue is much more enhanced in other scientific fields where
the experimental design is traditionally required to estimate
the appropriate sample size to adequately support results and
conclusions. In psychological research, Cohen (1992) pro-
posed 0.8 to be a conventional value of power to be used
with level of significance of 0.05, thus leading to a 4 : 1 ra-
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tio between the risk of type II and type I error. The conven-
tional value proposed by Cohen (1992) has been taken as a
reference by thousands of papers in social and behavioral sci-
ences. In pharmacological and medical research, depending
on the real implications and the nature of the type II error,
conventional values of power may be as high as 0.999. This
was the value suggested by Lieber (1990) for testing a treat-
ment for patients’ blood pressure. The author stated, while
“guarding against cookbook application of statistical meth-
ods”, “it should also be noted that, at times, type II error may
be more important to an investigator then type I error”.

We believe that, when selecting between stationary and
nonstationary models for extreme hydrological event predic-
tion, a fair comparison between the null and the alternative
hypotheses of α = β = 0.05 should be utilized, which pro-
vides a power value of 0.95. In our discussion, we consid-
ered 0.8 to be a minimum threshold for acceptable power
values.

For all of the generation sets and tests conducted, under the
null hypothesis of stationarity, the power has values ranging
between the chosen significance level (0.05) and 1 for large
(and larger) ranges of the trend coefficient. The test power al-
ways collapses to very low values for weak (but climatically
important) trend values (e.g., in the case of annual maximum
daily rainfall, ζ1 was equal to 0.2 or 0.3 mm yr−1). In the
presence of a trend, the power is also affected by the scale
and shape parameters of the GEV parent distribution. This
observation can be made with reference to samples of all of
the lengths considered in this paper (from 30 to 70 years of
observations), but the use of smaller samples significantly re-
duces the test power and dramatically extends the range of ζ1
values for which the power is below the conventional value of
0.8. The use of this sample size is not rare considering that
significant trends due to anthropic effects are typically inves-
tigated in periods following a changing point often observed
in the 1980s.

These results also imply that in spatial fields where the al-
ternative hypothesis of nonstationarity is true but the parent’s
parameters (including the trend coefficient) and the sample
length are variable in space, the rate of rejection of the false
null hypothesis may be highly variable from site to site and
the power, if left without control, de facto assumes random
values in space. In other words, the probability of recog-
nizing the alternative hypothesis of nonstationarity as true
from a single observed sample may unknowingly change (be-
tween 0.05 and 1) from place to place. For small samples
(e.g., L= 30 in our analysis) and heavy-tailed distributions,
the power is always very low for the entire investigated range
of the trend coefficient.

Therefore, considering the high spatial variability of the
parent distribution parameters and the relatively short pe-
riod of reliable and continuous historical observations usu-
ally available, a regional assessment of trend nonstationarity
may suffer from the different probability of the rejection of
the null hypothesis of stationarity (when it is false).

These problems affect both parametric and nonparametric
tests (to slightly different degrees). While these considera-
tions are generally applicable to all of the tests considered,
differences also emerge between them. For heavy-tailed par-
ent distributions and smaller samples, the MK test power
decreases more rapidly than for the other tests considered.
Low values of power are already observable for L= 50. The
LR test slightly outperforms the AICR for small sample sizes
and higher absolute values of the shape parameter. Neverthe-
less, the higher value of the LR power seems to be overes-
timated as a consequence of the χ2

m approximation for the
D statistic distribution (see Sect. 3.3).

Results also suggest that the theoretical distribution of the
LR test-statistic based on the null hypothesis of stationarity
may lead to a significant increase in the rejection rate com-
pared with the chosen level of significance, i.e., an abnormal
rate of rejection of the null hypothesis when it is true. In this
case, the use of numerical techniques, based on the imple-
mentation of synthetic generations performed by exploiting
a known parent distribution, should be preferred.

In light of these results, we conclude that the assessment
of the parent distribution and the choice of the null hypoth-
esis should be considered as fundamental preliminary tasks
in trend detection on annual maximum series. Therefore, it
is advisable to make use of parametric tests by numerically
evaluating both the rejection threshold for the assigned sig-
nificance level and the power corresponding to alternative hy-
potheses. This also requires the development of robust tech-
niques for selecting the parent distribution and estimating its
parameters. To this end, the use of a parametric measure such
as the AICR , may take different choices for the parent distri-
bution into account and, even more importantly, allow one to
set the null hypothesis differently from the stationary case,
based on a priori information.

The need for robust procedures to assess the parent dis-
tribution and its parameters is also proven by the numer-
ical simulations that we conducted. Sample variability of
parameters (including the trend coefficient) may increase
rapidly for series with L values as low as 30 years of the
annual maxima. Moreover, we observed that, in the case of
high trends, numerical instability and non-convergence of
algorithms may affect the estimation procedure for upper-
bounded and heavy-tailed distributions. Nevertheless, the
sample variability of the ML trend estimator was always
found to be smaller than the Sen’s slope sample variability.
Finally, it is worth noting that the nonparametric Sen’s slope
method, applied to synthetic series, also showed dependence
on the parent distribution parameters, with sample variability
being higher for heavy-tailed distributions.

This analysis shed light on important eventual flaws in the
at-site analysis of climate change provided by nonparametric
approaches. Both test power and trend evaluation are affected
by the parent distribution as is also the case for paramet-
ric methods. It is not by chance, in our opinion, that many
technical studies that have recently been conducted around
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the world provide inhomogeneous maps of positive/negative
trends and large areas of stationarity characterized by weak
trends that are not considered statistically significant.

As already stated, an advantage of using parametric tests
and numerical evaluation of the test statistic distribution is
given by the possibility of assuming a null hypothesis based
on a preliminary assessment of the parent distribution, in-
cluding trend detection via the evaluation of nonstationary
parameters. This could lead to a regionally homogeneous and
controlled assessment of both the significance level and the
power in a fair mutual relationship. With respect to the es-
timation of the parameters of the parent distribution, results
suggest that at-site analysis may provide highly biased re-
sults. More robust procedures are necessary, such as hier-
archic estimation procedures (Fiorentino et al., 1987), and
procedures that provide estimates of ε and σ from detrended
series (Strupczewski et al., 2016; Kochanek et al., 2013).

As a final remark, concerning real data analysis, in our nu-
merical experiment we showed that a weak linear trend in
the mean suffices to reduce power to unacceptable values in
some cases. However, we explored the simplest nonstation-
ary working hypothesis by introducing a deterministic linear
dependence of the location parameter of the parent distribu-
tion on time. Obviously, when making inference from real
observed data, other sources of uncertainty may affect sta-
tistical inference (trend, heteroscedasticity, persistence, non-
linearity, and so on); moreover, if considering a nonstation-
ary process with underlying deterministic dynamics, the pro-
cess becomes non-ergodic, implying that statistical inference
from sampled series is not representative of the process’s en-
semble properties (Koutsoyiannis and Montanari, 2015).

As a consequence, when considering a nonstationary
stochastic process as being produced by a combination of
a deterministic function and a stationary stochastic process,
other sources of information and deductive arguments should
be exploited in order to identify the physical mechanism un-
derlying such relationships. Also, in this case observed time
series have a crucial role in the calibration and validation of
deterministic modeling; in other words, they are important
for confirming or disproving the model hypotheses.

In the field of frequency analysis of extreme hydrological
events, considering the high spatial variability of the sample
length, the trend coefficient, the scale, and the shape parame-
ters, among others, physically based probability distributions
could be further developed and exploited for the selection
and assessment of the parent distribution in the context of
nonstationarity and change detection. The physically based
probability distributions we refer to are (i) those arising from
stochastic compound processes introduced by Todorovic and
Zelenhasic (1970), which also include the GEV (see Madsen
et al., 1997) and the TCEV (Rossi et al., 1984), and (ii) the
theoretically derived distributions following Eagleson (1972)
whose parameters are provided by clear physical meaning
and are usually estimated with the support of exogenous in-
formation in regional methods (e.g., Gioia et al., 2008; Ia-

cobellis et al., 2011; see Rosbjerg et al., 2013 for a more
extensive overview).

Hence, we believe that “learning from data” (Sivapalan,
2003), will remain a key task for hydrologists in future years,
as they face the challenge of consistently identifying both
deterministic and stochastic components of change (Monta-
nari et al., 2013). This involves crucial and interdisciplinary
research to develop suitable methodological frameworks for
enhancing physical knowledge and data exploitation, in order
to reduce the overall uncertainty of prediction in a changing
environment.
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