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Abstract. Profile soil moisture (SM) in mountainous areas is
important for water resource management and ecohydrolog-
ical studies of downstream arid watersheds. Satellite prod-
ucts are useful for providing spatially distributed SM in-
formation but only have limited penetration depth (e.g., top
5 cm). In contrast, in situ observations can provide measure-
ments at several depths, but only with limited spatial cov-
erage. Spatially continuous estimates of subsurface SM can
be obtained from surface observations using multiple meth-
ods. This study evaluates methods to calculate subsurface
SM from surface SM and its application to satellite SM prod-
ucts, based on a SM observation network in the Qilian Moun-
tains (China) that has operated since 2013. Three different
methods were tested to estimate subsurface SM at 10 to 20,
20 to 30, 30 to 50, and 50 to 70 cm, and, in a profile of 0 to
70 cm, from in situ surface SM (0 to 10 cm): the exponential
filter (ExpF), the artificial neural network (ANN), and the
cumulative distribution function (CDF) matching methods.
The ANN method had the lowest estimation errors (RSR),
while the ExpF method best captured the temporal variation
of subsurface soil moisture; the CDF method is not recom-
mended for the estimation. Meanwhile the ExpF method was
able to provide accurate estimates of subsurface soil mois-
ture at 10 to 20 cm and for the profile of 0 to 70 cm using
surface (0 to 10 cm) soil moisture only. Furthermore, it was
shown that the estimation of profile SM was not significantly
worse when an area-generalized optimum characteristic time
(Topt) was used instead of station-specific Topt for the Qilian
Mountains. The ExpF method was applied to obtain profile

SM from the SMAP_L3 surface soil moisture product, and
the resulting profile SM was compared with in situ obser-
vations. The ExpF method was able to estimate profile SM
from SMAP_L3 surface data with reasonable accuracy (me-
dian R of 0.65). Also, the combination of the ExpF method
and SMAP_L3 surface product can significantly improve the
estimation of profile SM in mountainous areas compared to
the SMAP_L4 root zone product. The ExpF method is use-
ful and has potential for estimating profile SM from SMAP
surface products in the Qilian Mountains.

1 Introduction

Soil moisture (SM) is considered to be an essential climate
variable (Bojinski et al., 2014) because of its critical role
in the water, energy (Jung et al., 2010), and carbon cycles
(Green et al., 2019). In particular, knowledge of profile SM
is important for runoff modeling (Brocca et al., 2010), water
resource management (Gao et al., 2018), drought assessment
(Jakobi et al., 2018), and climate analysis (Seneviratne et al.,
2010). Methods for SM measurements include ground-based
measurements and satellite-based measurements (Dobriyal et
al., 2012). Most ground-based methods enable the determi-
nation of SM changes with high temporal resolution at dif-
ferent depths but with limited spatial coverage (Jonard et al.,
2018). Especially in mountainous regions, measuring SM in
situ for a large area is difficult, and thus these measurements
are scarce (Ochsner et al., 2013). In addition, strong SM het-
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erogeneity in complex mountainous areas makes SM estima-
tion over large areas more difficult (Williams et al., 2009).
By comparison, satellite estimates of SM, such as those from
the Soil Moisture Active & Passive (SMAP) mission, pro-
vide spatial SM coverage for large areas (Entekhabi et al.,
2014; Brocca et al., 2017). Unfortunately, SMAP and other
microwave-based SM products from spaceborne sensors only
provide SM estimates for a limited depth up to ∼ 5 cm (Es-
corihuela et al., 2010). Thus, a gap exists with respect to the
availability of subsurface SM information with adequate spa-
tial coverage.

Previous studies have shown that subsurface SM is of-
ten related to surface and near-surface SM (Mahmood and
Hubbard, 2007; Wang et al., 2017). A variety of methods
for estimating subsurface SM from surface SM informa-
tion have been developed, including data assimilation of
remote sensing data into land surface models (Han et al.,
2013), physically based methods (Manfreda et al., 2014),
(semi-)empirical methods (Albergel et al., 2008), data-driven
methods (Kornelsen and Coulibaly, 2014; Zhang et al.,
2017a), and statistical methods (Gao et al., 2019). Among
them, the application of both data assimilation and physically
based methods are limited to data-rich areas due to the large
amount of required input data, e.g., soil properties, which are
often not available for data-scarce mountainous areas (Jin et
al., 2015; Li et al., 2017; Dai et al., 2019). The cumulative
distribution function (CDF) matching method is a statistical
method developed to adjust systematic differences in differ-
ent SM datasets (e.g., in situ observations and satellite prod-
ucts) based on observation operators (Drusch et al., 2005;
Peng et al., 2017). CDF matching can also be used for upscal-
ing of SM (Han et al., 2012) and estimating subsurface SM
from surface SM (Gao et al., 2019). The artificial neural net-
work (ANN) method is an effective and powerful data-driven
tool for nonlinear estimation problems and has been widely
used to estimate subsurface SM from surface SM measure-
ments (Kornelsen and Coulibaly, 2014; Pan et al., 2017). The
exponential filter (ExpF) method is a semi-empirical model-
ing approach and relies on a two-layer SM balance equation
(Wagner et al., 1999). This method has been widely applied
with both in situ observations and satellite products, and the
performance of the ExpF method for estimating subsurface
SM varied considerably over regions with different environ-
mental conditions (Ford et al., 2014; González-Zamora et al.,
2016; Tobin et al., 2017; Wang et al., 2017; Zhang et al.,
2017a). Ford et al. (2014) found that root zone SM estimated
from SMOS satellite products had a mean R2 of 0.57 (rang-
ing from 0.00 to 0.86) and 0.24 (ranging from 0.00 to 0.51)
for SM networks in Oklahoma and Nebraska, respectively. In
addition to surface SM data, the ExpF method requires only
one additional parameter (T , the characteristic time) that re-
flects the combined influence of local conditions on the tem-
poral characteristics of SM (Albergel et al., 2008; Ceballos et
al., 2005). Previous studies have shown that T varied among
different stations, and several methods have been developed

to estimate T (Wagner et al., 1999; Albergel et al., 2008;
Brocca et al., 2010; Qiu et al., 2014).

Methods for estimating subsurface SM from surface SM
have not previously been evaluated for high and cold moun-
tainous areas using in situ SM observations across a wide
area. In the absence of in situ SM observation networks over
a wide area, satellite SM products can be an alternative for
providing surface SM information for a wide area (Ochsner
et al., 2013). Although SM estimation from spaceborne sen-
sors is especially challenging for mountainous regions, some
validation studies have shown adequate accuracy (Pasolli et
al., 2011; Rasmy et al., 2011; Zhao et al., 2014; Zeng et al.,
2015; Zhao and Li, 2015; Colliander et al., 2017; Ullah et
al., 2018; Qu et al., 2019; Liu et al., 2019). Nevertheless, the
accuracy of profile SM estimation from remotely sensed SM
products is currently unknown for mountainous regions.

In this study, we focus on the Qilian Mountains, which
is a water source for several key inland rivers with terminal
lakes in Northwest China, including the Heihe, Shiyang, and
Shule rivers (He et al., 2018). Water scarcity threatens both
food and ecosystem security in these endorheic basins (Feng
et al., 2019). At the northeastern border of the Tibet–Qinghai
Plateau, with its significant role in the Asian monsoon, pro-
file water content in the Qilian Mountains is a key variable
in ecohydrological studies on water resources and exchange
processes in these basins (Zhao et al., 2013). Therefore, the
aim of this study is to use in situ SM observations from 35
stations and remotely sensed SM data from the Qilian Moun-
tains, a prime example of a high and cold mountainous area,
to characterize the relationship between surface SM and sub-
surface SM in order to obtain the spatial distribution of pro-
file SM. We first evaluated the performance of the different
methods for estimating subsurface SM. We then employed
the best method with SMAP surface SM products to evaluate
the utility of this method for estimating profile SM in moun-
tainous regions.

2 Study area

This study was carried out in the upland area of the Heihe
River basin, which is a typical terminal lake basin of an arid
region (Liu et al., 2018) (Fig. 1). It is located in the Qilian
Mountains at the northeastern border of the Qinghai–Tibet
Plateau. It covers approximately 2.7× 104 km2, and the ele-
vation ranges from about 2000 to 5000 m (Yao et al., 2017).
The region has an annual precipitation ranging from 200 to
500 mm (Luo et al., 2016), annual potential evapotranspira-
tion ranging from 700 to 2000 mm, and an annual mean tem-
perature ranging from −3.1 to 3.6 ◦C from 1960 to 2012 (He
et al., 2018). The main land covers are grassland, forestland,
and sparsely vegetated land (Zhou et al., 2016). The main
soil types are Calcic Chernozems, Kastanozems, and Gelic
Regosols. The main soil texture classes are silt loam, silt,
and sandy loam (Tian et al., 2017, 2019).
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Figure 1. (a) Study area and (b) distribution of the SM stations
with spatial distribution of annual average precipitation from 2014
to 2016.

3 Data and methods

3.1 Datasets

We established a SM monitoring network in September 2013
in the Qilian Mountains. The network is composed of 35 SM
stations distributed over the entire study area (Fig. 1). At each
station, SM profiles from 0 to 70 cm were measured by soil
moisture probes (ECH2O 5TE, METER Group Inc., USA)
at 30 min intervals. These probes were installed at depths
of 5 (representing a depth of 0 to 10 cm, SM5 cm), 15 (10
to 20 cm, SM15 cm), 25 (20 to 30 cm, SM25 cm), 40 (30 to
50 cm, SM40 cm), and 60 cm (50 to 70 cm, SM60 cm) below
the soil surface. Soil-specific sensor calibrations were per-
formed with the direct calibration method using soil samples
taken from each station (Cobos and Chambers, 2010; Zhang
et al., 2017b). The profile-integrated SM (SM0–70 cm) was
calculated by the method of González-Zamora et al. (2016):

SM0–70 cm

=
SM5 cm × 10+SM15 cm × 10+SM25 cm × 10+SM40 cm × 20+SM60 cm × 20

70
.

(1)

The entire dataset used in this study thus consists of six in situ
SM time series at depths of 5, 15, 25, 40, 60, and 0 to 70 cm
for each of the 35 stations. Due to the influence of soil freez-
ing in winter, the soil moisture time series was limited to the
growing seasons (May to October, Tian et al., 2019) of 2014,
2015, and 2016. The measurements were averaged to obtain
daily SM, following the approach of Wagner et al. (1999).
Data quality management was performed for each station,
and data gaps existed in the harsh mountainous environment,
as described in detail in Tian et al. (2019). Time series where
more than 50 % of observations were missing were excluded
from further analysis. The final dataset after processing is
presented in Fig. 2. The surface SM measured at 5 cm was
used to predict the subsurface SM at depths of 15, 25, 40,
and 60 cm and the profile average (0 to 70 cm).

Soil cores were taken to measure soil properties, includ-
ing soil organic carbon (SOC), saturated hydraulic conduc-
tivity (KS), soil particle composition, and bulk density for
each layer during the sensor installation. Detailed descrip-
tions of the soil properties can be found in Tian et al. (2017,
2019). The statistics of the soil physical characteristics are
provided in Table 1. Daily reanalysis precipitation product
(Chen et al., 2011) and Landsat-based continuous monthly
30 m×30 m resolution NDVI data for the period 1986 to
2017 (Cihlar et al., 1994; Huete et al., 2002; Wu et al., 2019)
were acquired from the National Tibetan Plateau Data Centre
(https://data.tpdc.ac.cn/en/, last access: 18 September 2020).

The widely used higher-level SMAP_L3 Global Daily
9 km product for the growing seasons of 2015 to 2017 was
used in this study. This product is distributed by NASA
(http://nsidc.org/, last access: 18 September 2020) and de-
scribed by O’Neill et al. (2018). SMAP descending node ob-
servations acquired near 06:00 local solar time have been
combined with global daily composites in order to reduce
the impact of Faraday rotation and to consider the assump-
tion of uniform temperature profiles in the vegetation cover
during morning overpasses. It has to be noted that the data
are provided on a 9 km grid but that this is a result of a
Backus–Gilbert optimal interpolation at brightness tempera-
ture level. The actual spatial resolution is coarser (O’Neill et
al., 2018). The SMAP_L3 surface soil moisture product was
also used to estimate the subsurface soil moisture (layer 2: 10
to 20 cm, layer 3: 20 to 30 cm, layer 4: 30 to 50 cm, layer 5:
50 to 70 cm) and profile soil moisture (0 to 70 cm) during the
growing seasons of 2015 and 2016 in the mountainous area.

SMAP_L4 provides estimates of both surface and root
zone SM products based on the assimilation of brightness
temperature into the NASA land-surface model and has a
spatial and temporal resolution of 9 km and 3 h, respectively
(Reichle et al., 2017). SMAP_L4 is a widely used root zone
SM product (Pablos et al., 2018). Here, the SMAP_L4 data
were averaged to a daily resolution in order to compare it
with the profile SM estimates from the SMAP_L3 surface
product obtained in this study. In particular, the SMAP_L4
SM products with both surface (0 to 5 cm, sm0–5) and root
zone (0 to 100 cm, sm0–100) information were used to calcu-
late SM of the 0 to 70 cm profile (sm0–70) using

sm0–100 = (5 · sm0–5+ 95 · sm5–100)/100, (2)
sm0–70 = (5 · sm0–5+ 65 · sm5–100)/70. (3)

3.2 Exponential filter (ExpF) method

The ExpF method predicts the dynamics of subsurface SM
using an exponential filter function of the surface SM dy-
namics (Wagner et al., 1999; Albergel et al., 2008). First, SM
(cm3 cm−3) is transformed into a soil water index (SWI) with

SWIi =
θi − θi,min

θi,max− θi,min
, (4)
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Table 1. Statistics of the physical characteristics of the soil at the 35 soil moisture stations: mean (standard deviation).

Layer Depth Bulk density KS SOC Sand Silt Clay
(cm) (g cm−3) (cm h−1) (g 100 g−1) (%) (%) (%)

Layer 1 0 to 10 1.13(0.28) 3.87(4.11) 4.35(4.11) 26.6(11.9) 66.2(10.9) 7.2(1.6)
Layer 2 10 to 20 1.14(0.24) 4.61(4.53) 3.9(3.87) 24.5(11.9) 68.6(11.2) 6.9(1.2)
Layer 3 20 to 30 1.18(0.32) 4.78(6.22) 3.63(3.54) 27.0(15.2) 66.5(14.3) 6.5(1.4)
Layer 4 30 to 50 1.29(0.3) 3.94(4.68) 2.21(2.28) 29.5(15.3) 63.8(14.5) 6.5(1.6)
Layer 5 50 to 70 1.34(0.3) 1.85(2.35) 2.34(2.47) 26.9(17.1) 66.5(15.9) 6.7(1.9)

Note: KS is the saturated hydraulic conductivity; SOC is the soil organic carbon.

where θi,min and θi,max are the minimum and maximum SM
in the time series collected since installation for each layer
at each station (Ford et al., 2014). The ExpF method then
estimates subsurface SM from surface SM using

SWIm,tn = SWIm,tn−1 +Ktn(mstn −SWIm,tn−1), (5)

where SWIm,tn−1 and SWIm,tn are the predicted subsurface
SWI at time tn−1 and tn, respectively. mstn is the observed
surface SWI at time tn, and Ktn represents the gain at time tn
calculated by

Ktn =
Ktn−1

Ktn−1 + e
−
tn−tn−1

T

, (6)

where Ktn−1 is the gain at time tn−1 and T is the char-
acteristic time in days. The equation was initialized with
SWIm,t1 =mst1 and Kt1 = 1 (Albergel et al., 2008). This
method is particularly useful as T is the only unknown pa-
rameter. The optimum T (Topt) was determined by optimiza-
tion using the highest Nash–Sutcliffe score for each specific
depth at each station.

3.3 Artificial neural network (ANN) method

The ANN method is a data-driven method to predict sub-
surface SM from surface SM (Zhang et al., 2017a). If prop-
erly trained, an ANN can describe nonlinear relationships
between dynamics of SM at different depths (Kornelsen
and Coulibaly, 2014). The commonly used feed-forward
ANN (with one hidden layer and 10 neurons, Levenberg–
Marquardt algorithm, Ford et al., 2014) was used in this
study. The ANN modeling was carried out using MATLAB
(neural network time series tool, R2017b, The MathWorks).
The output of the ANN was calculated using

y = f
[
W2g (W1X+ b1)+ b2

]
, (7)

where y is the output (the estimated subsurface soil mois-
ture), f and g are the activation functions of the hidden layer
and the input layer (the surface soil moisture), respectively,
W1 and W2 are the weights of the input layer and the hid-
den layer, respectively, and b1 and b2 are the biases of the
input layer and the hidden layer, respectively. The tangent

sigmoid function was used as the activation function as it has
shown good performance in hydrological studies (Yonaba et
al., 2010). As suggested by Zhang et al. (2017a), 70 % of the
data were selected for training the ANN and the remaining
30 % were used for validation. A separate ANN model was
developed for every depth combination and every site.

3.4 Cumulative distribution function (CDF) matching
method

In this study, the following procedure for CDF matching was
used.

(1) Rank the surface (θ1) and the subsurface SM (θ2) time
series.

(2) Calculate the difference between the two observation
time series:

1i = θ1,i − θ2,i . (8)

(3) Use a cubic polynomial fit to relate the difference (1) to
surface SM (θ1) as recommended by Gao et al. (2019):

1̂=K0+K1 · θ1+K2 · θ
2
1 +K3 · θ

3
1 , (9)

where 1̂ is the predicted difference between surface and sub-
surface SM, and Ki (i = 0,1,2,3) are parameters.

(4) Calculate CDF-matched subsurface SM (θCDF) with

θCDF = θ1− 1̂. (10)

Similarly to the ANN method, 70 % of the data were used to
calibrate the approach, and the remaining 30 % of the data
were used for validation of the CDF matching method.

3.5 Statistical analysis

Boxplots were used to show the scatter of the data. The dif-
ference between data in different groups was examined us-
ing a one-way analysis of variance (ANOVA) with the post
hoc Bonferroni test when the normality and homogeneity of
variance of the datasets were satisfied. The Kruskal–Wallis
ANOVA with a post hoc Dunn’s test was used in cases where
these conditions were not satisfied (Lange et al., 2008). The
statistical analysis was performed in SPSS (SPSS 18.0, SPSS
Inc.) and Matlab (R2017b, The MathWorks). The signifi-
cance level was 0.05 for all statistical tests.
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Figure 2. Daily soil moisture (vol. %) time series during the growing season of 2014 to 2016 for the five layers (layer 1, 0 to 10 cm; layer 2,
10 to 20 cm; layer 3, 20 to 30 cm; layer 4, 30 to 50 cm; layer 5, 50 to 70 cm) in the 35 soil moisture stations. Gaps exist for some stations due
to missing data.

4 Results and discussion

4.1 Comparison of different methods

The ExpF method estimates subsurface SM based on SWI,
while the ANN and CDF methods are based on volumet-
ric soil moisture. Following Moriasi et al. (2007), the Nash–
Sutcliffe efficiency (NSE), the ratio of RMSE to the standard
deviation of the observations (RSR, an error statistic that nor-

malizes the RMSE), and the Pearson correlation coefficient
(R) were used to evaluate the performance of different meth-
ods with different units. To ensure that the comparison be-
tween the three methods is made under the same conditions,
we divide the datasets into training data (the first 70 % of the
data) and validation data (the remaining 30 % of the data) for
all three methods. Figure 3 and Table 2 summarize the met-
rics (NSE, RSR, and R) for the subsurface SM estimates at
different depths derived by the three different methods for the
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growing seasons of 2014, 2015, and 2016. Results show that
ANN performed better than ExpF for the individual layers
(layers 1 to 5) in terms of both NSE and RSR (Table 2 and
Fig. 3), while ExpF performed better than ANN in estimat-
ing soil moisture for the entire soil profile. Additionally, the
comparison of the performances between the ExpF and ANN
methods was non-significant (p>0.05) for all the layers, but
ExpF showed a significantly (p<0.05) higher R value com-
pared to ANN for all the layers (with a median value of 0.97,
0.93, 0.84, 0.74, and 0.96 for layers 2, 3, 4, and 5, and profile
SM, respectively). The good performance for R suggests that
the ExpF method had the best ability to describe the temporal
variability in SM. Furthermore, Table 2 and Fig. 3 indicate
that CDF provided the worst performance among the three
methods and thus cannot be recommended.

As expected, all metrics showed that the performance of
the three methods decreased with depth. The results indicate
that for two out of the three statistical measures (i.e., RSR
and NSE), the ANN method was statistically superior to the
other two methods. Specifically, the ANN method resulted
in the lowest estimation error, while the ExpF method was
better able to capture the SM dynamics. A similar finding
was reported by Zhang et al. (2017a), who found that the
ExpF method had a significantly higher correlation coeffi-
cient along with a higher mean bias compared to the ANN
method. Furthermore, the ExpF method is a simpler approach
as it only needs one parameter (Topt) and can thus be easily
applied in data-scarce mountainous areas, while the estab-
lishment of the ANN method is much more complicated. In
addition, the ExpF method is a process-based method, while
ANN is a machine learning method. Therefore, the ExpF
method was used to estimate the subsurface SM in the re-
mainder of this study.

4.2 Evaluation of Topt for the ExpF method

4.2.1 Variation of Topt with depth

In the method comparison, the first 70 % and the remaining
30 % of data were selected as training and validation data,
respectively, to ensure the comparison was under the same
condition. However, for the standard procedure of the ExpF
method in earlier studies, the entire dataset is always used
to derive the Topt and validate the ExpF method (e.g., Wag-
ner et al., 1999; Albergel et al., 2008; De Lange et al., 2008;
Ford et al., 2014; Wang et al., 2017). Thus, the ExpF method
is evaluated and analyzed using the entire dataset as well
(performance of the ExpF method using the entire dataset
was shown in Table 3 and Fig. S1 in the Supplement). Re-
sults indicate that the performances of ExpF in both layer 2
and profile are significantly higher than that of other layers.
Moreover, results also indicate that the ExpF method showed
good performance for layer 2 and profile SM (with median
NSE>0.65, median RSR<0.60, Moriasi et al., 2007).

The accuracy of the ExpF method varied with the selected
T value, and higher T values resulted in more stable esti-
mations of SM time series (Wagner et al., 1999; Albergel et
al., 2008). Furthermore, it was found that each station had
an optimum T (Topt) as determined by the best match with
observations in terms of NSE. The variation of NSE with T
(ranging from 0 to 68 d) for different layers for each station
is shown in Fig. 4 and Table 4. The sensitivity of high values
of NSE to changes in T decreased with increasing depth, in-
dicating that the range of T values with high NSE was larger
deeper in the soil. This was also observed in previous studies
(e.g., Wang et al., 2017).

Results of a two-way ANOVA showed that the differ-
ence of Topt is not significant between different years (p =
0.06), while differences were significant between layers
(p<0.001). Furthermore, Topt increased with depth from
layer 2 to layer 5. The median of Topt ranged from 1.5 d for
layer 2 to 12.5 d for layer 5. The median Topt for profile SM
was 3.5 d. Significant differences in Topt were obtained for
layer 2, layer 3, and layer 4, but the difference between lay-
ers 4 and 5 was not significant. The increase in Topt with
depth has already been observed in many studies and is re-
lated to the greater temporal stability of SM in deeper soil
layers (Wang et al., 2017; Tian et al., 2019).

4.2.2 Evaluation of alternative methods for Topt
estimation

Previous studies have used various methods to estimate Topt.
For example, Albergel et al. (2008) and Ford et al. (2014)
found that using a single representative value for Topt (e.g.,
average or median) for all stations did not significantly re-
duce the accuracy of the SM estimates. Wagner et al. (1999)
recommended a common value of Topt = 20 (d) to estimate
root zone SM, and this value has been widely adopted (e.g.,
Lange et al., 2008; Muhammad et al., 2017). Qiu et al. (2014)
proposed to estimate Topt using the station-specific long-
term mean NDVI using Topt =−75.263×NDVI+ 68.171
(R = 0.5, p<0.01). This approach has also been applied in
another study (Tobin et al., 2017).

Here, we evaluated four different methods to estimate Topt
in our study region for estimating profile SM (0 to 70 cm,
SWI) from surface SM (5 cm, SWI). In the first method, Topt
was estimated from the NDVI-based regression of Qiu et
al. (2014) to provide TQiu. In the second method, Topt was set
to 20 d as recommended by Wagner et al. (1999) to provide
TWagner. In the third method, an area-generalized Topt was ob-
tained from the median value for the profile SM in our study
region (3.5 d) to provide Tgeneral. In the fourth method, the
original station-specific Topt parameter for profile SM was
used (Tspecific). The accuracy of the SM estimates obtained
using the different methods to estimate Topt was again eval-
uated using NSE, R, and RMSE (Fig. 5). The performance
metrics show that Tspecific performed best (mean RSR of 0.58,
R of 0.88, and NSE of 0.61), followed by Tgeneral (mean RSR
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Figure 3. Boxplot of the metrics (NSE, RSR, R) to compare the subsurface SM estimation using the surface SM by the three methods (ExpF,
ANN, CDF) with the observations of the 35 stations during the growing seasons of 2014 to 2016. Different letters above the box indicate the
significant difference (p<0.05) among the different methods.

Table 2. The median of the performance (RSR, R, and NSE) of the three different methods (ExpF, ANN, and CDF) for estimating the
subsurface SM using the surface SM for each layer of 35 stations during the growing seasons of 2014, 2015, and 2016.

Layer RSR R NSE

ExpF ANN CDF ExpF ANN CDF ExpF ANN CDF

Layer 2 0.650 0.587 0.646 0.973 0.906 0.941 0.577 0.656 0.583
Layer 3 1.031 0.961 1.195 0.931 0.771 0.811 −0.063 0.076 −0.429
Layer 4 1.155 1.334 1.863 0.840 0.620 0.571 −0.334 −0.804 −2.474
Layer 5 1.676 1.540 2.258 0.742 0.553 0.503 −1.811 −1.375 −4.267
Profile 0.709 0.811 1.033 0.959 0.890 0.929 0.498 0.341 −0.068

of 0.61, R of 0.85, and NSE of 0.58), TWagner (mean RSR of
0.79, R of 0.69, and NSE of 0.32), and TQiu (mean RSR of
0.89,R of 0.59, and NSE of 0.17). However, the difference in
performance between Tspecific and Tgeneral is not significantly
different. The TWagner and TQiu approaches performed worse,
and the metrics (NSE, R, RSR) are significantly (p<0.001)
lower than those of the Tgeneral and Tspecific methods. Our re-
sults suggest that a site-specific Topt significantly improves
the performance of the ExpF method compared to the use
of the universal Topt recommended by Wagner et al. (1999)
or the regression of Qiu et al. (2014). Similarly, Lange et
al. (2008) also found a significant improvement when us-
ing a station-specific Topt instead of Topt = 20 d. It should be
mentioned that the estimation depth in the method of Wag-
ner et al. (1999) was 0 to 100 cm, while that of our study
was 0 to 70 cm. This may partly explain the poor perfor-

mance of the TWagner approach in this study. The use of an
area-generalized Topt (3.5 d) is a suitable alternative to Topt
estimation in our study area and provides similar estimation
performance. Other studies have also found a good perfor-
mance when using an area-generalized Topt (e.g., Albergel et
al., 2008; Brocca et al., 2010; Ford et al., 2014).

4.3 Estimating profile soil moisture using SMAP

The ExpF method is suitable for estimating the profile SM
from the surface SM and the median of Topt is suitable for
estimating subsurface soil moisture. Thus, in this section, we
evaluate the utility of the ExpF method (with the median of
Topt from SMAP) in combination with SMAP surface prod-
ucts for estimating subsurface SM in mountainous areas.
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Table 3. The statistics (mean±standard deviation and median) of the performance (RSR, R, and NSE) of the ExpF method for estimating
the subsurface SM using the surface SM for each layer of 35 observation stations during the growing seasons of 2014, 2015, and 2016.

Layer Layer 2 Layer 3 Layer 4 Layer 5 Profile

RSR Mean±SD 0.55± 0.25 0.72± 0.27 0.83± 0.27 0.97± 0.29 0.58± 0.22
Median 0.48224 0.67035 0.8264 0.97253 0.54006

R Mean±SD 0.89± 0.10 0.81± 0.19 0.70± 0.31 0.57± 0.39 0.88± 0.11
Median 0.9279 0.86705 0.81155 0.7274 0.91141

NSE Mean±SD 0.63± 0.36 0.41± 0.50 0.24± 0.47 −0.03± 0.61 0.61± 0.32
Median 0.76744 0.55063 0.31706 0.05419 0.70833

Figure 4. Variation of NSE with T of the exponential filter method for different layers at each station during the growing seasons of 2014,
2015, and 2016. The vertical axis is the NSE value. The frequency distribution curve and histogram show the distribution of Topt with depth
for all stations.

4.3.1 Assessment of the SMAP surface SM product

The observed surface SM of each station was compared with
the SMAP_L3 soil moisture product that overlapped with the
corresponding station for the growing seasons of 2015 and
2016 for all stations to evaluate the accuracy of the SMAP
measurements (Pablos et al., 2018). The root mean square
error (RMSE), mean bias error (MBE), unbiased RMSE
(ubRMSE), and R were adopted as metrics to evaluate accu-
racy. The relationship between the SMAP_L3 SM data prod-

uct and the in situ observations at 5 cm depth are presented in
Fig. 6. Clearly, the larger deviation from linearity in the rela-
tionship is due to the scale discrepancy between the relatively
large satellite footprints and the point location of in situ SM
measurements. Nevertheless, the statistical metrics still in-
dicate a significant relationship between the SMAP_L3 SM
data product and the in situ observations at 5 cm depth. The
time series of the two datasets for each station are provided
in Fig. S2. Figures 6 and S2 show that the performance was
low at two stations (D13 with R of 0.18, D15 with R of
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Table 4. The statistics of Topt (day) for each layer and different year for all stations.

Year Statistics Layer 2 Layer 3 Layer 4 Layer 5 Profile

2014 Mean (SD) 2.72 (2.22) 8.32 (8.39) 13.18 (12.52) 16.81 (16.70) 4.73 (4.16)
Median 2.00 5.50 9.50 12.75 4.00

2015 Mean (SD) 2.56 (2.54) 7.78 (8.04) 15.77 (15.87) 23.15 (19.61) 5.23 (4.51)
Median 1.50 5.00 9.00 12.00 3.75

2016 Mean (SD) 2.23 (2.13) 6.13 (9.80) 9.26 (9.43) 17.74 (18.93) 3.32 (2.56)
Median 1.50 4.00 6.50 12.50 2.75

Summary Mean (SD) 2.48(2.26)a 7.29(8.85)b 12.37(12.67)c 18.93(18.43)c 4.32(3.77)ab

median 1.50 4.50 8.50 12.50 3.50

Note: SD represents the standard deviation. This summary represents the statistical result of the 3 years. Letters in the summary row
indicate significant difference between respective layers: the same letter in each column indicates that the difference is nonsignificant,
while different letters indicate a significant difference between the two layers (p<0.05).

Figure 5. The boxplot of NSE, Pearson’s R, and RSR for the Topt
generated from different schemes. The different letters above each
box indicate the significant difference for different schemes.

0.08) with scrubland and relatively high soil moisture. The
poor performance at scrubland sites is consistent with re-
sults presented by Zhang et al. (2017b) for this study re-
gion. Results showed that the MBE varied from −0.23 to
0.07 cm3 cm−3 with a median of −0.021 cm3 cm−3. This in-
dicates that SMAP underestimated surface SM over the study
region, which is consistent with previous studies in the area
(Chen et al., 2017; Zhang et al., 2017b). The RMSE varied
between 0.026 and 0.250 cm3 cm−3 between sites with a me-
dian value of 0.052 cm3 cm−3. After removing the bias, the
SMAP product had a median ubRMSE of 0.036 cm3 cm−3

(range from 0.024 to 0.083 cm3/cm3). Therefore, the SMAP
product achieved the accuracy requirement of 0.04 cm3 cm−3

(Chan et al., 2016) in this study area. The R value ranged
from 0.075 to 0.81 with a median value of 0.59. The relation-
ship between SMAP-derived and in situ observed surface SM
was significant (p<0.05) at all but one station. This suggests
that the SMAP surface product can represent the temporal
dynamics of the observed surface SM time series.

Figure 6. The SMAP_L3 surface SM (cm3 cm−3) versus in situ
observations at the surface (5 cm) for the 35 soil moisture stations.
Color indicates station. The averaged metrics (RMSE, MBE, R,
ubRMSE) are for all 35 stations during the growing seasons of 2015
and 2016.

4.3.2 SMAP-based estimation of subsurface soil
moisture

For the estimation of subsurface soil moisture from the
SMAP_L3 surface product, the site-specific Topt was calcu-
lated based on the best match between SMAP estimations
and in situ observations in terms of NSE. The median values
of Topt for the layers 2, 3, 4, and 5 and the profile are 7, 12,
22, 35, and 10 d, respectively. The subsurface SWI estimated
from the combination of SMAP surface SM with the ExpF
method (with the median values of Topt) were compared with
the in situ observations. A comparison of the subsurface SWI
time series for different layers at each station are provided in
Figs. S3 to S7. Figure 7 shows the measured SWI plotted
against the predicted SWI. The performance metrics of these
comparisons for each layer are summarized in Table 5.
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Figure 7. Comparisons of SMAP_L3 estimated–observed subsurface SWI for all stations during the growing seasons of 2015 to 2016. The
smoothed color density in the scatter plot shows the density of points more clearly. The dash and solid lines are the best-fitted curve and
“y = x” line, respectively.

Table 5. Performance metrics (RSR, R, NSE) for the comparison of SMAP estimated and observed SWI at different layers for the 35 stations
during the growing seasons of 2015 to 2016.

Layer RSR R NSE

Mean±SD Median Mean±SD Median Mean±SD Median

Layer 2a 1.24± 1.31 0.92 0.58± 0.28 0.69 0.06± 0.37 0.18
Layer 3ab 1.28± 0.83 1.11 0.45± 0.35 0.55 −0.08± 0.41 −0.02
Layer 4b 1.49± 1.21 1.12 0.28± 0.46 0.31 −0.18± 0.37 −0.13
Layer 5b 1.96± 3.43 1.17 0.24± 0.5 0.34 −0.15± 0.39 −0.15
Profilea 1.22± 0.82 0.92 0.55± 0.3 0.65 0.08± 0.41 0.14

Note: the different letters after the layers indicate that the difference is significant at p<0.05 (Kruskal–Wallis ANOVA).

As expected, the estimation accuracy of subsurface SM de-
creased with depth. The ANOVA results showed that the sub-
surface SM estimation accuracy for layer 2 (median value of
RSR= 0.92, R = 0.69, NSE= 0.18) and profile SM (RSR=
0.92, R = 0.65, NSE= 0.14) was significantly higher than
for layer 4 (RSR= 1.12, R = 0.31, NSE=−0.13) and layer
5 (RSR= 1.17, R = 0.34, NSE=−0.15) (p<0.05). The
NSE values were positive for layer 2 and profile SM, while
the NSE values for the other layers were negative. The neg-
ative MBE shows that subsurface SM was underestimated.
The relationship between SMAP-derived and in situ ob-
served subsurface SM for layer 2 and profile SM was signifi-
cant (p<0.01) at all but one station (D15). Thus, the SMAP
surface product and ExpF method can be used to estimate the

subsurface SM in the study area, especially for layer 2 (10 to
20 cm) and profile (0 to 70 cm) SM.

As suggested by Ford et al. (2014), we partitioned the er-
ror in the SMAP-based estimation of profile SWI (“SMAP-
observed profile SWI”, Fig. S8c) into errors associated
with the ExpF method and errors due to SMAP observa-
tion differences to gain some insight into the error sources
of SMAP-based estimates of profile SWI. For this, pro-
file SWI estimated using the ExpF method from observed
surface SWI was compared with in situ observed profile
SWI (“estimated–observed profile SWI”) to assess errors
of the ExpF method (Fig. S8a). In addition, SMAP-based
and in situ observed surface SWIs (“SMAP-observed surface
SWI”) were compared to assess inherent errors of the SMAP
product (Fig. S8b). RMSE, R, and MAE were used as the
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Table 6. Statistics of the metrics (RSR,R, NSE) of the comparisons of estimated–observed profile SWI datasets, SMAP_L3-observed surface
SWI datasets, SMAP_L3-observed profile SWI datasets, and SMAP_L4-observed profile SWI datasets for the 35 stations during the growing
seasons of 2015 and 2016.

Comparisons RSR R NSE

Mean±SD Median Mean±SD Median Mean±SD Median

Estimated–observed PSWI 0.86± 1.00 0.68 0.88± 0.11 0.9 0.56± 0.32 0.64
SMAP_L3-observed SSWI 1.13± 0.49 1.01 0.57± 0.17 0.59 −0.09± 0.52 −0.07
SMAP_L3-observed PSWI 1.22± 0.82 0.92 0.55± 0.3 0.65 0.08± 0.41 0.14
SMAP_L4-observed PSWI 1.42± 0.76 1.25 0.47± 0.31 0.55 −0.49± 0.68 −0.3

Note: e.g., estimated–observed PSWI means the comparison of the estimated profile SWI and observed profile SWI.

Figure 8. The spatial distribution of the monthly averaged profile SWI product estimated from the SMAP_L3 surface product during the
growing seasons from 2015 to 2017. The title of each subplot provides the month and year.
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metrics to assess accuracy. The results of this analysis are
summarized in Table 6.

Figure S8 and Table 5 show that the SMAP-observed SWI
had lower performance metrics for surface SWI (median val-
ues of RSR, R, and NSE are 1.01, 0.59, and −0.07, respec-
tively) than for profile SWI (median values of RSR, R, and
NSE are 0.88, 0.72, and 0.19, respectively), which was sim-
ilar to the results obtained from the Nebraska SM network
(Ford et al., 2014). This may be because the profile SWI was
estimated based on the SMAP surface SWI and Topt, which
was determined by optimization using the maximum NSE.
This may have improved the performance of profile SWI es-
timation. In addition, the performance metrics for SMAP–
observed SWI comparisons for both surface and profile SWI
were significantly (p<0.001) lower than those of estimated–
observed profile SWI (median values of RSR, R, and NSE
are 0.68, 0.90, and 0.64, respectively). Thus, the major er-
ror in SMAP-based profile SWI estimates stems from the
SMAP satellite product and is not derived from the ExpF
method, which is also supported by previous studies (e.g.,
Ford et al., 2014; Pablos et al., 2018). As mentioned before,
the scale mismatch between point measurements and satellite
footprints will introduce additional errors in the validation of
the satellite-derived subsurface products (Jin et al., 2017).

Subsequently, the SMAP_L4 and SMAP_L3 estimated
profile SWIs were compared to the in situ observed pro-
file SWI (see Fig. S9 and Table 5). Table 5 shows that the
performance of profile soil moisture estimation using the
SMAP_L3 surface product and the ExpF method (median
RSR, R, and NSE of 0.92, 0.65, and 0.14, respectively) was
significantly (p<0.01) better than that of the SMAP_L4
product (median RSR, R, and NSE of 1.25, 0.55, and −0.3,
respectively). The low performance of the SMAP_L4 profile
product may be associated with uncertainty in the meteoro-
logical driving forces and the soil parameters in the NASA
catchment model for cold mountainous areas (Reichle et al.,
2017; Zhao et al., 2018; Dai et al., 2019). Thus, our results
suggest that combining the exponential filter method with the
SMAP_L3 product significantly improves the estimation of
profile SM for the data-scarce cold arid mountainous areas.

Finally, the spatial distribution of profile soil moisture dur-
ing the growing seasons of 2015, 2016, and 2017 was ob-
tained using the median value of Topt and the SMAP_L3
product to get the spatial distribution of profile SM in the
study area (Fig. 8). Profile SM is higher in the southeast and
lower in the northwestern part of the study area. This dis-
tribution coincides with the spatial distribution of precipita-
tion and surface SM. The temporal variations of profile SWI,
surface SWI, and precipitation are shown in Fig. S10. Fig-
ure S10 shows that the temporal variation of the SM profile
corresponded well to the occurrence of precipitation: pro-
file SM increased from May (mean SM of 0.27) to Septem-
ber (0.533) and then decreased until October (0.304). Pro-
file SWISMAP (define SWISMAP before using it) was lower
than surface SWISMAP from May to August, while profile

SWISMAP was higher than surface SWISMAP from September
to October. This can be attributed to the higher sensitivity of
surface SM dynamics to precipitation and evapotranspiration
(ET). During the months of September and October, less pre-
cipitation and higher ET caused a faster decrease in surface
SM compared to profile SM.

Previous studies have shown the difficulty of applying
the ExpF method to satellite products in mountainous areas,
where complex topography (Paulik et al., 2014), snow, and
soil freezing (Ford et al., 2014; Pablos et al., 2018) cause
large errors and poor performance of the filtering method
(Albergel et al., 2008). Ford et al. (2014) found an improve-
ment of performance after removing the effects of snow from
the data in the SCAN network, USA. In contrast, the present
study showed that the ExpF method is useful in estimating
profile SM from SMAP surface products in the growing sea-
son in high and cold mountainous areas, based on in situ SM
observations.

5 Conclusions

We used three methods (the exponential filter (ExpF), the ar-
tificial neural network (ANN), and the cumulative distribu-
tion function matching (CDF) methods) to calculate subsur-
face SM from in situ surface SM observations at 5 cm depth
in the Qilian Mountains (China). We also evaluated the util-
ity of the ExpF method to estimate profile SM from SMAP
surface products in the study area. Our main findings are the
following.

1. With increasing depth of the predicted soil layer, the
accuracies of all three methods decreased. The ExpF
methods showed good performance for the estimation
of SM down to 20 cm and profile.

2. The ANN method exhibited the lowest estimation error,
while the ExpF approach captures the temporal varia-
tion of subsurface SM better than other methods.

3. The area-generalized Topt value of the ExpF method
can be used in the study area to estimate the subsur-
face SM without significantly reducing the performance
compared to a station-specific Topt.

4. Subsurface SM derived from the SMAP_L3 surface
SM product using the ExpF method showed less de-
viation from the in situ observations compared to the
SMAP_L4 root zone product for the study area.

We anticipate that our findings can improve the estima-
tion of subsurface SM for large regions in mountainous ar-
eas, which in turn will support ecohydrological research and
water resource management in inland river basins.
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