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Text S1: Confidence boundaries of correlation values

To calculate the significance of correlation values, several statistical tools are available, as described in Rahman and Zhang

(2016). In this study we use an adapted form of the t-test approach, because of it’s computational efficiency: the confidence

boundaries only depend on the number of samples. Therefore, these boundaries can be determined prior to the calculation of

the correlations. This approach, however, needs to be adapted slightly as the samples within each window are not independent.5

To do that, we introduce a dfoffset parameter in the calculation of the degrees of freedom (see main text). This parameter is

determined by comparing this methodology to two other ways of calculating confidence boundaries for correlation values: a

permutation test and bootstrapping. The permutation test shuffles the data randomly and recalculates the correlation. By repeat-

ing this a thousand times a normal distribution (around zero) can be constructed. Everything above two standard deviations is

considered statistically significant. For the bootstrapping the data is sampled with replacement, while keeping the connection10

between the data points. In doing so another normal distribution is created (centered around the true correlation value). Again

we take two standard deviations as the threshold for significance. Both methods are applied to all the windows without missing

data, and thus containing 225 data points. The thresholds for both methods are calculated as the median of the significance

threshold for each window, to minimise the number of both false positives and false negatives. The final threshold value, used

in this study is set to the average of these values. This approach is used for both the correlation between WTD and fAPAR, and15

between P/PET and fAPAR. The obtained threshold values are correlation values, which are converted to dfoffset by matching

them to the critical correlation values with the t-test for different number of samples. The final distributions of the permutation

test and bootstrapping, as well as the final chosen thresholds are depicted in Figure S7. To test the accuracy of this approach,

the classification as described in the main text is done for South America (while not overlapping the moving window, to reduce

computational burden), using all three methods. The overlap between the adapted t-test approach and the permutation test is20

92 percent, and between the t-test and bootstrapping 95 percent (see Figure S8). This high degree of overlap convinced us of

the independence of the main conclusions of the chosen metric.
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Text S2: Landscape classification

The landscape classes used in the study are based on the water table depth data of Fan et al. (2017). On this datasets two

filters were applied; a mean (µ) and a standard deviation (σ) kernel with a window size of 5 grid cells. These two maps were25

combined with the decision tree as shown in Figure S10. Wetlands (and open water) are classified according to the threshold

chosen by Fan et al. (2013). The other classes are separated based on the local standard deviation with the following rational.

(1) Water table depth mirrors altitude, especially in hilly and mountainous areas. (2) The standard deviation is a measure of the

slope of the terrain. (3) Even in the Himalayas, every window of 5 by 5 grid cells contains a cell with surface water; with the

rule that the maximum range should be 6 times the standard deviation, the highest class (High mountainous) should cover both30

surface water and a mountain of at least a 900 meters high. It is a relatively rough classification but it is visually acceptable

when compared to global maps of wetlands and digital elevation models (two country scale visual validation examples are in-

cluded in Figure S11 and S12). Changing the thresholds in the decision tree did not substantially change the main conclusions

of the paper. The final map with landscape classes is shown in Figure S13.
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Figure S7. Significant correlation values for the correlation between WTD and fAPAR, and P/PET and fAPAR. The chosen threshold is the

average of the median values, as obtain by performing a bootstrapping analysis and permutation test on all windows without missing data

(225 data points).
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Figure S8. Classification of the correlation as described in the main text. The confusion matrices describe respectively a 92 and 95 percent

overlap between the adapted t-test approach and bootstrapping / permutation test.
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Figure S10. Decision tree used to create global landscape classes as depicted in Figure S13. The building blocks µ and σ are two datasets

created by applying a sliding windows on the dataset of water table depth depicted in Figure S3. µ corresponds with a mean kernel, σ with a

standard deviation kernel.
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Figure S11. Landscape class validation example showing The Netherlands. The biggest landscape unit, the wetland and open water class,

defines most of the west and north of the Netherlands, the areas with extensive lowland polders (Hartemink and Sonneveld, 2013). Smaller

landscape units are visible as well; the coastal dunes in the west of the Netherlands and the individual push moraines in the Veluwe complex

(central Netherlands) can be distinguished (for referhence see Van Overmeeren (1998)). Also, smaller units are visible such as the river levees

of both the Meuse and Waal (the last part of the Rhine)
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Figure S12. Landscape class validation example showing northern Italy. The Alps show up as the highest locations in this example, with

some detail in this mountainous area. The Apennines appear as mountainous but clearly lower than the Alps. In between, the Po valley shows

up as low lying area and the delta (close to Venice) shows up as wetland and open water. Smaller landscape units are picked up as well, e.g.

Lago di Garda, one of the biggest lakes in this region, and the Euganean Hills (protrusions in the Po valley of volcanic origin).
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Figure S18. These maps depict the Mississippi river valley on the left and the southern part of the American East Coast on the right. For the

interpretation of these figures see the main text.
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Figure S19. These maps depict South-Eastern Europe with the Alps. For the interpretation of these figures see the main text.
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Figure S20. These maps depict the Congo river basin. For the interpretation of these figures see the main text.
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Figure S21. These maps depict Eastern Australia. For the interpretation of these figures see the main text.
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Figure S22. Subset of the data at their original resolution of 30 arc-seconds. The map depicts a part of the State of Amazonas in the west of

Brazil. It displays a part of Figure 4 of the main paper of section 3.2, where the patterns displayed here are discussed.
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Figure S23. Subset of the data at their original resolution of 30 arc-seconds. The map depict a part of India, a subset of the maps displayed

in Figure 5 of the main paper. In section 3.2 the patterns displayed here are discussed.
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Figure S24. Mean fAPAR in different climate and landscape positions. White signifies that the combination of landscape and climate did

not appear in the data.

Figure S25. Mean WTD in different climate and landscape positions. White signifies that the combination of landscape and climate did not

appear in the data.

Figure S26. Prevalent class in different climate and landscape positions. For an explanation of the different classes see Figure 1 of the main

text. White signifies that the combination of landscape and climate did not appear in the data or two classes are present in equal amounts.
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Figure S27. Distribution of ecohydrological classes in the four climate zones discussed in the main text.
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