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Abstract. Despite the development of advanced process-
based methods for estimating the discharge capacity of vege-
tated river channels, most of the practical one-dimensional
modeling is based on a relatively simple divided channel
method (DCM) with the Manning flow resistance formula.
This study is motivated by the need to improve the reliabil-
ity of modeling in practical applications while acknowledg-
ing the limitations on the availability of data on vegetation
properties and related parameters required by the process-
based methods. We investigate whether the advanced meth-
ods can be applied to modeling of vegetated compound chan-
nels by identifying the missing characteristics as parameters
through the formulation of an inverse problem. Six models of
channel discharge capacity are compared in respect of their
uncertainty using a probabilistic approach. The model with
the lowest estimated uncertainty in explaining differences be-
tween computed and observed values is considered the most
favorable. Calculations were performed for flume and field
settings varying in floodplain vegetation submergence, den-
sity, and flexibility, and in hydraulic conditions. The output
uncertainty, estimated on the basis of a Bayes approach, was
analyzed for a varying number of observation points, demon-
strating the significance of the parameter equifinality. The
results showed that very reliable predictions with low un-
certainties can be obtained for process-based methods with
a large number of parameters. The equifinality affects the
parameter identification but not the uncertainty of a model.
The best performance for sparse, emergent, rigid vegetation
was obtained with the Mertens method and for dense, flexible

vegetation with a simplified two-layer method, while a gen-
eralized two-layer model with a description of the plant flex-
ibility was the most universally applicable to different veg-
etative conditions. In many cases, the Manning-based DCM
performed satisfactorily but could not be reliably extrapo-
lated to higher flows.

1 Introduction

Compound channels consisting of a main channel and veg-
etated floodplains are commonly observed in both natural
and engineered settings. For instance, vegetated compound
(two-stage) channels have been recently proposed as an en-
vironmentally preferable alternative to conventional dredg-
ing in flood and agricultural water management (e.g., Västilä
and Järvelä, 2011). Such a nature-based solution (NBS) is
expected to allow combination of the technical needs, e.g.,
flow conveyance and channel bed stability, and the environ-
mental requirements, e.g., improved water quality and biodi-
versity (Rowiński et al., 2018), but requires reliable predic-
tions of the discharge capacity. Herein, the difficulty results
from the complex cross-sectional geometry and the compos-
ite roughness resulting from parts of channels with highly
different flow resistance. Floodplain vegetation is the main
factor complicating the predictions, particularly in small- to
medium-sized channels, where up to 90 % of the flow re-
sistance can be caused by plants (e.g., Västilä et al., 2016).
With an increase in computing power, two- and even three-
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dimensional models are gaining popularity in flood assess-
ments (Teng et al., 2017; Liu et al., 2019). In practice, one-
dimensional models, on which the present study focuses, still
play an important role, especially in tasks requiring long-
term or large spatial-scale simulations (e.g., Yu et al., 2019;
Chaudhary et al., 2019). In one-dimensional flow-routing
models the most widely used technique for predicting the dis-
charge capacity of compound channels is the divided channel
method (DCM) with the Manning formula, defined in 1960
(Posey, 1967). In this approach flow is computed separately
in channel zones with differing flow resistance, usually the
main channel and floodplains. The momentum exchange be-
tween areas of the higher and lower stream velocity, the so-
called kinematic effect, is represented by rough imaginary
walls at the interfaces (Sellin, 1964; Kubrak et al., 2019a,
b). Despite the well-known limitations of the DCM (Myers,
1978; Fread, 1989; Soong and DePue, 1996; Pasche, 2007),
the Manning formula is presently the basis for the majority
of practical models for flood hazard assessments, design of
hydraulic structures, and water management (Shields et al.,
2017).

To improve the reliability of practical discharge capacity
estimation in vegetated channels, the key vegetation prop-
erties controlling the reach-scale flow resistance should be
incorporated into the calculations (e.g., Yen, 2002; Luhar
and Nepf, 2013). One of the most sophisticated models of
the channel capacity can be attributed to Shiono and Knight
(1991), who on the basis of a turbulent flow theory, de-
rived equations for depth-averaged velocities in the cross-
sectional plane. Accompanied by an additional drag term,
the method was successfully used to model flow in a channel
with composite roughness consisting of vegetated and non-
vegetated zones (e.g., Zhang et al., 2018; Abril and Knight,
2004; Zinke et al., 2011; Tang and Knight, 2008; Kalinowska
et al., 2020). However, for a typical practical case, the Shiono
and Knight (1991) model is too complex, requiring much of
modelers’ efforts, especially in the presence of efficient two-
dimensional solutions.

Several approaches providing a physically based charac-
terization of vegetation and the flow–vegetation interactions
are available for straightforward one-dimensional discharge
capacity assessments in small- to medium-sized vegetated
channels. In these models, vegetation can be represented as
rigid or flexible, interacting with water streams as submerged
and emergent (Shields et al., 2017). There are many methods
explaining each of these types of vegetation, and a compre-
hensive review can be found in Aberle and Järvelä (2013).
Some of the most recognized methods include, e.g., those de-
veloped by Pasche (1984) and simplified by Mertens (1989)
to describe the flow in zones with unsubmerged (emergent)
vegetation; by Arcement and Schneider (1989), who pre-
sented empirical relationships for Manning roughness coef-
ficients and vegetation parameters; by Klopstra et al. (1997),
who derived a process-based model for rigid, submerged veg-
etation; by Järvelä (2004), who provided a process-based ap-

proach for emergent rigid and flexible vegetation; by Bap-
tist et al. (2007), who introduced a two-layer model for rigid
vegetation; and by Luhar and Nepf (2013), who developed
a two-layer model for submerged vegetation. Despite the re-
cent developments of these process-based methods, there is
a lack of knowledge on whether the state-of-the-art meth-
ods with a significant number of parameters are reliable in
common practical applications characterized by insufficient
information on vegetative properties and related model pa-
rameters.

An important drawback of vegetation models for hydraulic
resistance, from the practical (modeler’s) point of view, is
that they require much more data than traditional methods.
For example, with the DCM, in terms of roughness, the river
cross section can be usually characterized using three val-
ues of the Manning coefficient, for the main channel and
two floodplains. The vegetation models would require spe-
cific data on plant features, such as density, spacing, shape or
species, and leaf area indices. An exception may be channel
design assignments, where it is possible to assume a future
character of a plant cover after an intended intervention, and
necessary data on vegetation can be obtained through field
surveys, which noticeably increase costs of a model applica-
tion. A promising way for a more effective determination of
vegetation features might be remote sensing, and many stud-
ies were devoted to the use of these techniques in flood rout-
ing. For example, Casas et al. (2010), Forzieri et al. (2010),
Abu-Aly et al. (2014), and Wolski et al. (2018) investigated
the use of airborne laser scanning for determining vegeta-
tion classes, which corresponds to hydraulic features. The
obtained values of plant properties are however affected by a
strong uncertainty, resulting from classification itself but also
generalization and variation within a class, as demonstrated
by Straatsma and Huthoff (2011). Forzieri et al. (2012) ar-
gued that airborne laser scanning itself is not suitable for
measuring plant characteristics without extensive field ref-
erence data. Therefore more recent attempts focused on ap-
plication of terrestrial laser scanning (e.g., Antonarakis et al.,
2009; Jalonen and Järvelä, 2014; Jalonen et al., 2015; Kałuza
et al., 2018). However, the use of the remote sensing data in
vegetation models requires extensive field measurements to
establish a link between obtained data and hydraulic proper-
ties.

The aforementioned Straatsma and Huthoff (2011) study
showed that even with field measurements of vegetation
properties, generalization of acquired parameters is rather
unavoidable, especially when dealing with larger areas. Val-
ues characterizing vegetation, obtained in the field, have to
be attributed to a spatial unit usually representing a vege-
tation class. On the one hand, together with the nonlinear
form of the vegetation resistance models, such a generaliza-
tion introduces significant uncertainty. On the other hand, it
weakens the link between measured values and model pa-
rameters, which reflect the lumped hydraulic effect instead
of representing physical quantities. Such quantities are not
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measurable and depend on the structure of the flow model,
such as the governing equations or the simplification of the
flow dynamics made in the model. In still scarce studies
where flood routing is analyzed with the use of vegetation-
roughness models, some researchers tend to consider plant
properties to be model parameters that should be calibrated,
i.e., identified with respect to observations. So, treating them
similarly to Manning coefficients, which are usually obtained
by the model calibration, where their values are adjusted, en-
sures an agreement between computed and observed, e.g.,
water levels, stream velocities, or flow rates – by solving
the inverse problem (e.g., Khatibi et al., 1997; Marcinkowski
et al., 2018, 2019; Yu et al., 2019). The example is given by
Dalledonne et al. (2019), who identified vegetation parame-
ters describing, e.g., stem diameters, their heights, drag co-
efficients, and a leaf area index in the two-dimensional flow
model. Berends et al. (2019) directly addressed the problem
of parameter identifiability of vegetation-roughness models,
also using the two-dimensional model. It seems that when
vegetation resistance methods become more popular in prac-
tical codes for flood routing, this approach will become more
common.

Performing model calibration using parameters of
vegetation-roughness models raises at least four implica-
tions.

1. Is it possible to identify models for vegetation rough-
ness on the basis of the inverse task? The problem arises
from the larger number of parameters in vegetation-
roughness models, compared to traditional approaches,
based, e.g., on the Manning formula. The problem was
well demonstrated by Werner et al. (2005), who in-
vestigated the uncertainty and sensitivity of a hybrid
two-/one-dimensional model for a varying number of
parameters used to describe a channel and floodplain
roughness. Analyzing the parameter identification us-
ing a probabilistic approach, they showed that with an
increasing number of parameters, the obtained param-
eter distributions become less specific, suggesting the
same level of probability over a wide range of values.
Moreover, the obtained parameter distributions were
different from values suggested in the literature. Al-
though the Werner et al. (2005) study did not account
for vegetation-roughness models, the same effect was
observed in the case of these methods by Berends et al.
(2019) and Kiczko et al. (2017). This leads to the second
point.

2. Is it reasonable to apply process-based vegetation-
roughness models if the identification of their parame-
ters results in values differing from the real values mea-
sured at the field (Werner et al., 2005; Kiczko et al.,
2017; Berends et al., 2019)? Such a calibration proce-
dure gives an impression of using process-based meth-
ods as data-driven, black-box models common, e.g., in
rating curve assessments (Kiang et al., 2018). From this

perspective, the process-based methods with other than
measured parameters act as functions with a large num-
ber of parameters compared to traditional approaches
like the Manning-based DCM. The effect can proba-
bly be mitigated by applying constraints on the param-
eter values to ensure that they are within their physi-
cal bands. With additional information on channel veg-
etation, using, e.g., remote sensing or land use maps, it
might be possible to restrict their variability ranges fur-
ther. The advantage of process-based approaches might
come from the physical interpretability of their parame-
ters. For instance, too large stem diameters of plants are
easier to spot than too high values of Manning rough-
ness coefficients. However, still there is a lack of evi-
dence on whether it is beneficial to apply process-based
models instead of purely data-driven approaches.

3. The choice of the vegetation-roughness model, e.g., for
rigid or flexible vegetation, depends on the type of veg-
etation present in the channel. Is it then possible to
choose an appropriate model without knowledge of the
plant type? This issue should be considered in respect
of point 3 by analyzing whether it is possible to choose
an appropriate model structure by solving the inverse
problem.

4. Are the process-based models beneficial compared to,
e.g., the DCM-based Manning approach when there is a
need to extrapolate to higher flows? This is an issue well
recognized in hydrology (Kuczera and Mroczkowski,
1998), that identification of simpler models is much
more straightforward, but because process-based mod-
els incorporate casual interrelationships, they provide a
better basis for the extrapolation. It is of special impor-
tance in flood assessments, where the calibrated models
need to be extrapolated to higher flood flows.

The overall goal of the present paper is to investigate
the implications of the use of one-dimensional state-of-the-
art process-based methods in discharge capacity estimation
of small- to medium-sized vegetated compound channels.
These common practical applications are typically charac-
terized by insufficient data on vegetative properties, so that
models are identified in terms of the inverse problem. We
compare the model identifiability, uncertainty, and physical
interpretation of the parameters of discharge capacity meth-
ods characterized by different levels of parameterization. The
following methods were investigated: Manning-based DCM,
Pasche (Pasche, 1984), and Mertens (1989) methods de-
signed for emergent rigid vegetation, and three versions of
the two-layer model proposed by Luhar and Nepf (2013) as
modified by Västilä and Järvelä (2018), designed for flexi-
ble submerged or emergent vegetation. All the models were
applied to vegetation conditions differing in relative submer-
gence (covering both submerged and emergent conditions)
and density, as motivated by real cases where it is possible

https://doi.org/10.5194/hess-24-4135-2020 Hydrol. Earth Syst. Sci., 24, 4135–4167, 2020



4138 A. Kiczko et al.: Predicting discharge capacity of vegetated compound channels

that, e.g., a “rigid” vegetation model is applied for flexible
vegetation because of a lack of information on the vegetation
properties. Parameter identification was conditioned on wa-
ter depths instead of discharges to make the problem more
similar to practical cases, such as flood assessments, where
a model outcome is usually the water level. It is out of the
scope of the paper to provide a summary of all available
methods.

2 Methods

This section provides an overall description of the applied
methodology. In Sect. 2.2.2 the Pasche (1984) and Mertens
(1989) models for rigid emergent vegetation are presented.
Flexible vegetation models based on the two-layer assump-
tion of Luhar and Nepf (2013), generalized by Västilä and
Järvelä (2018), are provided in Sect. 2.2.3–2.2.4. Computa-
tions were performed for steady-state conditions by applying
vegetation-roughness models to find water levels in a channel
cross section.

Two experimental data sets collected from vegetated com-
pound channels were used: flume measurements with rigid
vegetation (Koziol, 2010; Kozioł, 2013, Sect. 2.3.1) and field
measurements with natural mostly grassy vegetation at Rito-
backen Brook (Västilä et al., 2016, Sect. 2.3.2). The process-
based models of vegetation roughness were compared with
the traditional DCM with Manning roughness coefficients.
For the purpose of the identification task it was necessary to
assume that parameters are constant and, for that reason, the
experimental data were divided into sets, where vegetation
features were as constant as possible. Therefore, the model
identification for the field data was performed separately for
each season.

Similarly to Werner et al. (2005) and Berends et al.
(2019), the parameter identification problem is defined in
the probabilistic manner, on the basis of Bayesian estima-
tion (Sect. 2.1). The adapted assumption is that the methods
can be compared in terms of assessed uncertainty: i.e., the
more appropriate the method is, the lower the uncertainty of
its predictions is. At this point it should be noted that with a
such problem statement the goal is the model identification
rather than parameter identification (Mantovan and Todini,
2006), as without knowledge of true parameter values, only
measures for model outputs are used in the calibration pro-
cess. The model identifiability in a probabilistic manner is
understood as the ability to determine the parameter distribu-
tion that explains the model uncertainty in relation to obser-
vations. An effort was made to ensure that uncertainty analy-
sis is objective and repeatable, despite different assumptions
about initial a priori parameter distributions for each method.

The identification was performed for a different number
of observations, similarly to hydrological studies of Her and
Chaubey (2015) and Her and Seong (2018). For calibration
the points of rating curves were used and the effect of dif-

Figure 1. Two ways to define the parameter identification problem
for process-based methods of channel discharge: (a) traditional ap-
proach; (b) adapted in the present study.

ferent possible combinations of observations in the identifi-
cation task was also investigated; e.g., the model was cali-
brated for a set of five lower flows but also for a set of five
higher and all intermediate sets. To address the issue of us-
ing simpler and more complex, process-based models for ex-
trapolation of the rating curve, a special focus was placed on
predictions of maximum flows with a model identified using
only lower flows.

2.1 Parameter identification and uncertainty analysis

River assessments using one-dimensional models with DCM,
based on the Manning formula, are usually performed with-
out detailed knowledge of vegetation properties. The Man-
ning roughness coefficients are considered model parame-
ters, identified in the inverse problem, where their values are
adjusted to ensure a satisfactory fit between model outputs
and observations, e.g., computed and measured water depths
H at given discharge Q. The vegetation-roughness models
provide a relationship between plant features and the water
flow. Vegetation characteristics that can be obtained by field
measurements or, e.g., design assumptions, are considered
model input. In discharge calculations, the use of such mod-
els can be illustrated with Fig. 1a, where vegetation prop-
erties are one of the model inputs. It is still necessary to
specify remaining parameters like roughness coefficients for
bed or drag coefficients for plants. The present study investi-
gates the approach given in Fig. 1b, where vegetation charac-
teristics in vegetation-roughness models are also considered
model parameters that have to be identified without knowl-
edge of channel vegetation. This makes the application of
vegetation-roughness models similar to the way Manning-
based approaches are used. From the practical point of view,
the difference, apart the model structure, comes from the
number of parameters that have to be identified.

In the probabilistic parameter identification approach, pa-
rameters are assumed to be random variables explaining the
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model uncertainty (Werner et al., 2005; Berends et al., 2019).
The model identification is performed along with the uncer-
tainty analysis and consists in a determination of parame-
ter distributions that translates to using the model for proba-
bilistic distributions of model outputs, here water depths H .
The results of parameter identification and uncertainty esti-
mation are usually presented in the form of confidence in-
tervals for model outputs and parameter marginal distribu-
tions. The problem was defined on the basis of Bayes esti-
mation using the generalized likelihood uncertainty estima-
tion (GLUE) approach (Beven and Binley, 1992; Romanow-
icz and Beven, 2006). Parameter distributions are obtained
using the Bayes formula:

P (θ/H)=
L(H/θ)P (θ)∫
L(H/θ)P (θ)dθ

, (1)

where θ stands for parameters,H water depths, P (θ) a priori
parameter distribution, P (θ/H) a posteriori parameter dis-
tribution, and L(H/θ) the likelihood function. The equation
is solved using Monte Carlo sampling of parameters within
the adapted a priori distributions P (θ) and model simula-
tions for given flow rates Q.

The choice of the likelihood function L(H/θ) depends on
the assumptions about the character of model errors. In the
present study it was assumed that models are unbiased and
errors between computed and observed water levels ζ are
independent and normally distributed: ζ ∼N (0, σ 2), where
σ 2 is unknown variance. The relationship between observed
water levels Ĥ and the computed H for a given flow rate Q
and parameters θ can be given as follows:

Ĥ =H (Q,θ)+ ζ. (2)

The error ζ explains all discrepancies between the model and
observations, as well as the measurement and model uncer-
tainty. Therefore the performed uncertainty analysis accounts
for the total uncertainty. When comparing different models
for the same observation set, the measurement uncertainty is
constant and differences result from the model uncertainty.
For independent and normally distributed errors ζ the like-
lihood function is given by (Romanowicz et al., 1996; Ro-
manowicz and Beven, 2006)

L(H/θ)=
1

√
2πσ 2

exp


−

m∑
i=1

(
Hi − Ĥi

)2

2σ 2

 , (3)

withm standing for the number of observation points Ĥi with
discharges Qi used in the parameter identification. It should
be noted that with the likelihood function given with Eq. (3)
the selection of a so-called behavioral set, common in GLUE
approaches, is not necessary.

The variance σ 2 is unknown and in GLUE approaches it
is usually estimated using model residuals (Romanowicz and

Beven, 2006; Stedinger et al., 2008). In the present study, σ 2

is determined on the basis of observations by ensuring that
the appropriate share is enclosed in confidence intervals (Bla-
sone et al., 2008) of modeled water depths H . The optimiza-
tion problem is defined in terms of scaling factor κ for the
variance of model residuals σ 2

r , used commonly in GLUE:

2σ 2
= κσ 2

r . (4)

The variance of model residuals σ 2
r is calculated using the

Monte Carlo sample (Romanowicz and Beven, 2006):

σ 2
r = var

(
1
m

m∑
i=1

∣∣∣Hi − Ĥi∣∣∣) . (5)

The purpose of Eq. (4) is to provide an initial guess on σ 2.
The κ scaling factor is computed on the basis of the mini-
mization task:

κ = argmin
κ

(
εκ +

∣∣∣∣∣p− 1
m

m∑
i=1

J
(
Ĥi

)∣∣∣∣∣
)
, (6)

J
(
Ĥi

)
=

{
0 if Ĥi ∈

[
H
qL
i ,H

qu
i

]
,

1 else,
(7)

where H qL
i and H qU

i denote the lower and upper quantiles
(qL, qU) of the calculated water levels from the a posteri-
ori distribution (Eq. 1), obtained with the likelihood func-
tion (Eq. 3); p stands for confidence interval, defined as
p = qU− qL. In the present study 95% confidence intervals
(p = 0.95) were used, with qL = 0.025 and qU = 0.975. ε is
a small number as a penalty for too wide confidence intervals
of water levels H . The minimum of the function given with
Eq. (6) should be the smallest value of κ for which the last
term in Eq. (6) equals zero:

p−
1
m

m∑
i=1

J
(
Ĥi

)
≤ 0. (8)

This is true when exactly p ·m observations fall within the
confidence intervals. For p = 0.95 and relatively small ob-
servation sets of m∼ 10 in the present study, a minimum
is found when all observations are enclosed by intervals.
In such a case, the sum term in Eq. (8) is equal to 1 and
the difference becomes negative. The procedure given with
Eqs. (6)–(8) allows for determination of the minimal value
of σ 2 (Eqs. 2 and 3), sufficient to explain model uncertainty
with respect to observations. It should be noted that for a
poor model and/or inappropriate variability ranges of a pri-
ori parameter distributions, such a solution might not exist.
The term given with Eq. (8) was therefore a criterion for the
model identifiability. The model was considered identifiable
if Eq. (8) was fulfilled.

The assumption of a priori parameter distributions P (θ)
has a significant effect on the a posteriori solution (Freni and
Mannina, 2010; Tang et al., 2016). In the present study, to
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obtain objective uncertainty estimates for different methods
and parameters, it was decided to apply uninformative and
relatively wide a priori distributions, assuming no knowledge
of channel vegetation, maintaining however physically inter-
pretable ranges (Table 1). The parameter ranges of uniform
distribution were chosen to ensure that the high-probability
region is enclosed by the Monte Carlo sample. The span of
this region links with confidence intervals comprising 95 %
of the a posteriori distribution, so it was assumed that the
sample should be noticeably larger. It was obtained by test-
ing whether it is possible to make confidence intervals wider
by increasing the κ coefficient determined using Eqs. (6)–
(8). This way it was possible to check whether confidence
intervals are not directly affected by the span of the Monte
Carlo sample. When confidence intervals were insensitive to
increasing values of κ , it was necessary to extend ranges of a
priori parameter distributions. It should be noted that it was
necessary only in the case of unsuitable models, where the
condition given by Eq. (8) was usually not fulfilled.

It is acknowledged that the parameter identification and
associated uncertainty depend on the size of the observation
data set. To address this issue, the model identification (Eq. 1)
was performed for a varying numberm of observation points:
Ĥ1, . . ., Ĥm and the corresponding flow rates Q1, . . .,Qm as
the input. The m included values from 1 to the total number
of available observationsM:m= 1, . . ., M . The calculations
included all possible combinations of observations with the
given m, i.e., M!

m! (M−m)!
. The number of all combinations is

then 2M − 1, excluding the empty set (m= 0). Such an ap-
proach allows us to eliminate the effect of non-representative
observation samples. The method was discussed previously
by Kiczko et al. (2017).

Observation points not used for identificationM−m act as
a verification set. In this analysis, both the proportion of veri-
fication points that fall within estimated confidence intervals
and the width of confidence intervals are used as measures of
model performance. The narrower the confidence bands and
the fewer observation points falling outside them, the better
a model is. On the opposite end, a less adequate model re-
quires a larger spread of the solution to enclose observations,
as it wrongly explains their variability. Because the different
combinations ofm points resulted in multiple uncertainty es-
timates, the results were presented in terms of statistical mo-
ments as a function ofm. For a detailed description of results
box-plots were used, where the median is given as a hori-
zontal line within a box that spans over the 25 % and 75 %
quantiles and whiskers indicate the result extent, excluding
extreme values given with cross marks.

As was mentioned before, it should be noted that by apply-
ing the Bayesian concept, the objective is the model identifi-
cation (see the comment on the purpose of the Bayesian iden-
tification of Mantovan and Todini, 2006). Parameter variabil-
ity is used to describe the uncertainty, specifically the error
ζ defined with Eq. (2). This comes from the form of the in-

verse problem, where likelihood measures depend only on
measured model outputs, here water depths, and it is possible
that parameters that are different from real ones but provide
a good model fit are considered likely (Werner et al., 2005;
Kiczko et al., 2017; Berends et al., 2019). To demonstrate
this effect and to discuss possible implications, the obtained
marginal a posteriori distributions of parameters P (θ/H)
were compared with values obtained by direct measurements
in analyzed case studies. A special focus was placed on ex-
trapolation capabilities of vegetation models with parameters
determined on the basis of the inverse problem, assuming a
lack of knowledge of channel vegetation properties.

Latin hypercube sampling (Budiman, 2017) was applied
to improve the performance of the Monte Carlo technique.
The size of the Monte Carlo sample (mmc, Table 1) was de-
termined in each case by trial and error to satisfy the conver-
gence of the solution. As the criterion for the convergence the
difference of estimated average water depth was used. The
number of simulations was considered sufficient when the
difference in subsequent ensembles stabilized below 10−5–
10−4 m.

2.2 Discharge capacity formulas

2.2.1 Divided channel method

In the DCM approach (Posey, 1967), the channel cross sec-
tion is divided into flow zones of similar hydraulic condi-
tions, typically the main channel and floodplain. The inter-
actions between the zones of significantly different mean ve-
locities are reproduced with a rough imaginary wall applied
to the zone with the higher velocity, i.e., the main channel. In
the present study, the roughness of the interface was assumed
to be equal to the roughness of the channel banks next to the
interface. Parameters of the method are the roughness coef-
ficients for each flow zone. In the present study, DCM was
based on the Manning formula, with the common approach
of having separate Manning coefficients for the main channel
(nc) and left (nL) and right floodplains (nR). The parameter
bands with mmc Monte Carlo sample sizes are provided in
Table 1 separately for flume and field experiments. For flume
data sets calculations were performed for a symmetric chan-
nel, which allowed us to reduce the number of parameters, as
the same values were used for the left and right floodplains.

2.2.2 Pasche and Mertens methods

A brief concept of the Pasche method is provided by Pasche
(1984) and Pasche and Rouvé (1985), and a detailed descrip-
tion of the algorithm used herein is provided in Kozioł et al.
(2004). The model describes the discharge capacity of the
compound cross section with rigid vegetation, derived for
steady flow conditions. Similarly to DCM, the model divides
the compound cross section into regions of the main channel
and floodplains, dominated by bottom and vegetation rough-
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Table 1. Parameter variability ranges (uniform P (θ) distribution) for the Ritobacken and flume experiments; numerals in parameter symbols
are used to distinguish properties on the left (1) and right (1) channel sides.

Ritobacken data Flume data

Model Parameter mmc Min. value Max. value mmc Min. value Max. value

DCM n1 (m−1/3 s) 2.5× 104 0.012 0.15 2.5× 104 0.012 0.06
n2, n3 (m−1/3 s) 0.012 0.15 0.012 0.12

Pasche and Mertens dp (m) 5× 104 0.004 0.100 5× 104 0.004 0.072
ax1,ax2 (m) 0.001 0.9 0.05 0.9
az1,az2 (m) 0.001 0.9 0.05 0.9
kch(m) 2.5×10−5 4.5×10−4 2.5× 10−5 4.5×10−4

kfp1,kfp2 (m) 0.005 0.09 0.005 0.09
biii/Bfp (−) 0.333 1 0.333 1

GTLM Cdx,F (−) 105 0.09 0.2 5× 104 0.001 1.5
Cdx,S (−) 0.82 1.03 0.001 1.5
χF (−) −1.21 −0.97 −1.21 −0.97
χS (−) −0.32 −0.2 −0.32 −0.2
Al/Ab (−) 0 30 0 30
As/Ab (−) 0 30 0 30
C∗ (−) 0.01 0.20 0.01 0.20
lL/LL, lR/LR (−) 0 1 0 1
hL,hR(m) 0 2.15 0 0.3

STLM C∗ 5× 104 0.01 0.20 2.5× 104 0.01 0.20
lL/LL, lR/LR (−) 0 1 0 1
hL,hR (m) 0 2.15 0 2.15

PTLM CDa 5× 104 0.01 100 5× 104 0.01 100
C∗ 0.01 0.20 0.01 0.20
h (m) 0 2.15 0 0.3

Note that in flume experiments the cross section was symmetric and that the same parameter values were used for the following parameters: lL/LL = lR/LR,
hL = hR, ax1 = ax2, and az1 = az2.

ness, respectively. It accounts additionally for the transition
region between these two main zones. As in the DCM, the
interactions between the main channel and floodplains are
modeled using an imaginary rough wall. For the resistance
of the imaginary wall, bed, and also vegetation stems, the
Darcy–Weisbach formula is used.

The Darcy–Weisbach friction coefficients are determined
using a set of semi-empirical equations for each zone and the
imaginary wall, including transitional regions. The method
explains the extent of the transition region within the vege-
tated region, affected by the higher flow velocity of the un-
vegetated main channel. The flow in the main channel de-
pends on the apparent resistance of the imaginary wall. There
is no general expression for the span of the transition region
in the main channel, and it has to be established for each case.

Velocities in the flow zones and transitional regions are
interrelated by the apparent resistance. Equations describing
these dependencies have an implicit form that requires iter-
ative methods for solving, so that the Pasche method has a
very complex numerical solution and may be affected by a
lack of convergence for unfeasible parameter sets. Mertens

(1989) attempted to improve the numerical efficiency of the
Pasche concept by simplifying most of the demanding im-
plicit formulas to less accurate but explicit ones, reducing
the number of terms requiring iterative numerical solving.

In the Pasche and Mertens methods, a detailed parame-
terization of the channel, including plant properties, surface
roughness, and the extent of the interaction zone in the main
channel, is used. Assuming that the modeler has only knowl-
edge of the geometry of the cross section, the following pa-
rameters have to be identified: ax and ay , longitudinal and
horizontal spacing of plant stems; dp, average diameter of
the stems; kf and kc, roughness heights of the floodplain and
the main channel bed; and bIII/Bc, ratio of the interaction
region width in the main channel (bIII) to the main channel
width (Bc). Assuming that the channel is symmetric, the total
number of parameters is six. Modeling different properties of
vegetation on the left (subscript L) and right (subscript R)
floodplains (ax,L : ax,R , az,L : az,R , dp,L : dP,R , kf,L:kf,R)
increases the number of parameters up to 10.
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2.2.3 Generalized and simplified two-layer model

In the present study, the two-layer model of Luhar and Nepf
(2013), generalized by Västilä and Järvelä (2018) for more
complex cross sections, is considered to be the state-of-the-
art approach for submerged vegetation. This generalized two-
layer model (GTLM) is based on the momentum balance
with drag coefficients at the interfaces between vegetated
and unvegetated areas of the channel cross section. Gener-
alization proposed to the original model (Luhar and Nepf,
2013) by Västilä and Järvelä (2018) consists in assuming a
non-rectangular cross section, so that the channel width is
replaced by the wetted perimeter (P ) and water depth by the
hydraulic radius (R).

The channel discharge capacity is computed on the basis
of equations for mean velocities in the unvegetated (u0) and
vegetated (uv) parts of the cross section (Västilä and Järvelä,
2018):

u0

(gSR)1/2
=

[
2P (1−BX)
C∗ (Lb+Lv)

]1/2

, (9)

uv

(gSR)1/2
=

[
2PBX +C∗Lv

(
u∗0
)2

CDaPRBX

]1/2

, (10)

where g is the gravitational constant, S the energy slope,
u∗0 =

u0
(gSR)1/2

the dimensionless velocity in the unvegetated
zone, C∗ the drag coefficient for shear stresses at the channel
bed and at the interface between the vegetated and unveg-
etated zones, and Lb and Lv the wetted lengths of the un-
vegetated channel margin and of the interface between the
vegetated and vegetated zones, respectively. BX denotes the
vegetative blockage factor in the cross section, defined as the
vegetated flow area divided by a total flow area. Physically,
there might be different values of drag coefficients for the
bed and interface of the vegetation zone. Following Luhar
and Nepf (2013); Västilä and Järvelä (2018), it was herein
assumed that the same value of C∗ can be used for both re-
gions.
Cda is the vegetative drag per unit water volume, ex-

pressed conventionally as the product of a drag coefficient
Cd and the frontal projected plant area per unit water vol-
ume a, assuming that plants are rigid simple-shaped objects.
To account for the presence of foliage and the flexibility of
the plants inducing bending and streamlining, the vegetative
drag per unit water volume can be parameterized as (Västilä
and Järvelä, 2018)

CDa = CDX,F

(
uC

uX,F

)χF AL

ABh
+CDχS

(
uC

uXS

)χS AS

ABh
, (11)

where uC is a characteristic approach velocity, taken here
as equal to the velocity in a vegetation layer: uC ≈ uv. AS
denotes total frontal projected areas of the plant stems and
AL the total one-sided leaf area per unit ground area AB.
CDX,S and CDX,F represent constant coefficients for the drag

Figure 2. Parameterization of the blockage factor BX; the cross
section for Ritobacken Brook (Västilä and Järvelä, 2014).

of stems and foliage, respectively. The effect of streamlining
and reconfiguration on the drag is described using exponents
χS and χF for stems and foliage, respectively. uX,F and uX,S
are reference velocities needed for determining the drag and
reconfiguration coefficients.

Equations (9) and (11) implicitly depend on each other and
require numerical solving. In the conservative approach veg-
etation parameters have to be known (Fig. 1a). The blockage
factor BX requires knowledge of the vegetation distribution
and/or height in the cross section. AS

AB
and AL

AB
ratios charac-

terizing the plant structure can be measured or typical val-
ues for certain plant communities can be adopted. Drag co-
efficients CDX,S, CDX , and F and reconfiguration exponents
χS and χF, along with their reference velocities (uX,F, and
uX,S), are factors specific for plant species or plant type and
can be determined on the basis of laboratory measurements.
Their values have been published for common plant species
(Västilä and Järvelä, 2014; Jalonen and Järvelä, 2015; Västilä
and Järvelä, 2018).

For channel flows with dense vegetation for which over
80 % of the discharge is conveyed in the unvegetated regions,
the GTLM approach can be simplified by assuming that dis-
charge in the vegetation layer is negligible with respect to the
total discharge: uv ≈ 0 m s−1 (Luhar and Nepf, 2013; Västilä
et al., 2016). The remaining Eq. (9) does not require numer-
ical solving. In the present study the above approach is re-
ferred to as the simplified two-layer model (STLM). It has to
be noted that, with this approach, up to 20 % of the discharge
is neglected, depending on the density and cross-sectional
blockage of vegetation. By neglecting Eq. (10), the STLM
requires five and the GTLM nine parameters.

Parameters of GTLM and STLM resulting from Eq. (9)
are the drag coefficient for shear stresses C∗ and blockage
factor BX. BX depends on the area occupied by the vegeta-
tion in the cross section. It changes with the water level and
therefore should not be represented as a constant value but
rather as the vegetation share in the cross-sectional area in the
function of the depth. In the present study, to obtain a general
parameterization, BX was described in terms of left–right ex-
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tents lL/LL, lR/LR and the height hL, hR of vegetation. LL,
LR stand for the cross section width from the left and right
banks, respectively, to the lowest elevation in the main chan-
nel. lL and lR denote vegetation extents, from banks towards
the main channel (Fig. 2). lL/LL is the vegetation extent on
the left side, starting form the top of the left bank towards the
channel middle point: 0 stands for clean bank, while 1 means
that the vegetation cover extends over the entire left side. The
same applies for lR/LR, where it is assumed that vegetation
zones start from the top of the right bank. The vertical range
of the vegetation in the cross section is obtained by adding
hL or hR to the value of the ground elevation. The adopted
parameterization for BX was verified with field estimates for
Ritobacken Brook (Västilä and Järvelä, 2018) and allowed to
obtain a fit with the linear correlation coefficient of 0.88.

It should be noted that by parameterizing the blockage fac-
tor, the parameter identification task is much more compli-
cated than in the conventional approaches. In the DCM the
vegetation extent is equivalent to the division into the main
channel and floodplains, which is known on the basis of the
cross-sectional geometry. Here, for GTLM and STLM it was
considered a part of the parameter identification problem.

2.2.4 Practical two-layer model

Luhar and Nepf (2013) derived a formula for the Manning
coefficient n for shallow channels lined with vegetation,
where the blockage factor can be approximated as BX ≈ h

H
:

n

(
g1/2

KR1/6

)
=
(gSR)

1
2

U
=

[(
2
C∗

) 1
2
(

1−
h

R

) 3
2

+

(
2

CDah

) 1
2
(
h

R

)]−1

, (12)

where h stands for the vegetation height and K = 1 m1/3 s−1

to ensure correct dimensions of the equation. In the presented
form of Eq. (12), following Västilä and Järvelä (2018), the
water depth H was replaced with the hydraulic radius R.

Equation (12) has a convenient form to be easily applied in
practical cases, where usually the Manning equation is used.
In the present study, this approach is called the practical two-
layer model (PTLM) as it requires fewer parameters influ-
enced by vegetation. In the present study this approach is
named the PTLM and is applied as a three-parameter model,
with the drag coefficient C∗, average vegetation height h in
the cross section and CDa.

2.3 Case studies

The analyses were conducted for a flume data set (Koziol,
2010) and a field data set (Västilä et al., 2016) collected from
vegetated compound channels, interpreted herein as five dis-
tinct case studies, as detailed below. To our knowledge, the
field cases are one of the most thorough characterizations of

Figure 3. Laboratory channel cross section (dimensions in centime-
ters); 1 – rigid cylinders simulating vegetation; 2 – wooden strips
supporting vegetation (Koziol, 2010); (a) case 1; (b) case 2.

the dependency between vegetation properties and discharge
capacity in natural compound channels, including spatially
averaged values for vegetation height, blockage factor, and
frontal area density in different seasons and flow conditions.
The flume cases are representative of typical experimental
arrangements where vegetation is simulated by rigid cylin-
drical elements at a uniform spacing.

2.3.1 Flume experiments

The experiments were conducted at the Warsaw University
of Life Sciences (WULS-SGGW) using a physical model of
a compound channel with rigid cylinders simulating vege-
tation. A detailed description of the data set can be found
in Kozioł and Kubrak (2015), Kozioł (2013), Kubrak et al.
(2019a), and Kubrak et al. (2019b).

The modeled channel was straight and 16 m long with
a slope of s = 5× 10−4. The cross section was trapezoidal
and wide for 2.10 m (Fig. 3). The main channel bottom was
made of smooth concrete with estimated roughness height
ks = 5× 10−5 m. Floodplain vegetation was simulated with
rigid cylinders of a diameter dp = 0.008 m and spacing ax =
ay = 0.1 m. There were two experimental variants of vegeta-
tion layout and floodplain roughness. In the first one (1) the
floodplain bottom was made of the same smooth concrete as
the main channel, with a single row of vegetation present also
on the channel bank (Fig. 3a). In the second one (2), vegeta-
tion was constrained on the floodplain by removing the chan-
nel bank stems, while floodplain surfaces were made rougher
using a layer of terrazzo concrete of grain sizes of 0.5 to 1 cm
(Fig. 3b).

Experiments were performed for steady and quasi-uniform
flow conditions (Kubrak et al., 2019a, b). The water surface
was kept parallel using a pressure gauge, measuring the dif-
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Figure 4. Ritobacken channel cross section (a) and a photograph,
autumn 2011 (b).

ferences in depths at cross sections located 4.8 and 12 m from
the flume inflow and a weir localized at the outflow. Water
discharge was measured using a circular weir and water lev-
els were recorded in the middle of the channel.

The data set used in the present study consisted of dis-
charge and water-level observations (Appendix A1) within
the range of 0.037–0.060 m3 s−1 (mean velocities: 0.2–
0.4 ms−1) and 0.2–0.3 m, respectively, which includes only
overbank flows. The number of observation points in the first
variant was 9 (M = 9) and in the second one 10 (M = 10).
The uncertainty calculations were performed for a symmet-
ric channel, which allowed us to reduce the number of pa-
rameters, as the same values were used for the left and right
floodplains.

2.3.2 Ritobacken field experiment

The field data with seasonally and annually varying vege-
tation were obtained from an 11 m wide compound chan-
nel, Ritobacken Brook (Finland, Fig. 4), where the flood-
plain was excavated on one side of the existing channel in
February 2010 (Västilä et al., 2016). Measurement series
with vegetated floodplain flows (Appendix A2) were avail-
able for three seasons, with the number of observations given
in brackets: spring 2011 (M = 6), autumn 2011 (M = 12),
and spring 2012 (M = 11). Vegetation consisted mainly of
different grassy species, with both stems and foliage, while
sparse woody vegetation covered 10 % of the total wetted
ground area.

Figure 5. Exemplary rating curves for m= 5, Ritobacken case
study (spring 2012): (a) GTLM, (b) STLM, (c) PTLM; the flume
data set, case 2: (d) Pasche, (e) Mertens, (f) DCM. Confidence in-
tervals and the median of the probabilistic solution are given with
dashed lines; red line denotes the best simulation in the Monte Carlo
ensemble. Observation points used for parameter identification are
marked with squares (�), while verification data points are marked
with circles (◦).

The respective mean floodplain vegetation heights were
h= 9, 47, and 24 cm, while the vegetative blockage factor
ranged at BX = 0.13–0.53. The taller vegetation in spring
2012 compared to spring 2011 was explained by the ongoing
succession phase after the floodplain excavation. Vegetation
was submerged under all examined flows in spring 2011 and
under 42 % and 64 % of the flows in autumn 2011 and spring
2012, respectively.

The discharge capacity at different flow conditions was ob-
tained from water-level data recorded at 5–15 min intervals
with pressure transducers at the upstream and downstream
ends of a 190 m long test reach. The discharge was obtained
from a rating curve determined for a culvert at the down-
stream end of the test reach. The stream is free flowing and
there are no hydraulic structures affecting the flow or water
levels at the investigated discharges. Flow conditions were
gradually varied, and therefore the energy slope S was used
instead of the bed slope in determining the flow resistance.

At floodplain flows, discharge and floodplain water depth
ranged at 0.19–1.59 m3 s−1 and 0.10–0.67 m, respectively,
with cross-sectional mean velocities of 0.11–0.30 ms−1. The
Manning coefficient of the narrow main channel as obtained
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from the highest flows not inundating the floodplain was
n= 0.08−0.12 m−1/3 s due to irregular main channel geom-
etry, woody debris, and some aquatic vegetation.

The calculations in the present study were performed for
the channel geometry and water depths, averaged over 190 m
of the stream reach.

2.3.3 Analysis of the numerical results

The numerical results were analyzed from four perspectives:
(1) identifiability of the model for the given vegetation con-
ditions; (2) width of estimated confidence intervals as a func-
tion of the number of observation points; (3) representation
of high flows with models identified for low overbank flows;
(4) the physical interpretation of the obtained parameter val-
ues.

The obtained parameter distributions were compared with
measured values, as in Berends et al. (2019), but using sev-
eral vegetation-roughness models. This way it was possible
to analyze the problem of parameter identifiability. In the sec-
ond step, the applicability of models, which parameters differ
from measured values, was discussed.

The obtained uncertainty estimates of computed water lev-
els allowed us to compare the efficiency of each model in ex-
plaining the rating curve. The same output was used to mea-
sure the selectivity of models when applied for inappropriate
cases, e.g., modeling of the rigid vegetation with the model
for flexible vegetation. It should be expected that the solution
for the model used for the inappropriate type of vegetation
should be characterized by the relatively high uncertainty.

The obtained results were also compared with other stud-
ies on vegetation model identification and uncertainty es-
timation, like already mentioned studies by Werner et al.
(2005), Dalledonne et al. (2019), and Berends et al. (2019),
but also Warmink et al. (2013), who compare the uncertainty
of a two-dimensional model for chosen methods of bed and
vegetation resistance.

3 Results

3.1 Computational output and general observations

The basic output of the computations which included Monte
Carlo simulations using channel discharge models and pa-
rameter identification on the basis of Eqs. (1)–(7) were rat-
ing curves. They were derived with a different number of
observation points m for the parameter identification, for all
possible combinations (see Sect. 2.1).

Exemplary curves are presented to highlight some general
observations (Fig. 5). We show chosen solutions form= 5 of
observation points used in the parameter identification for the
two-layer approaches (GTLM, STLM, and PTLM in Fig. 5a–
c) developed for dense, submerged vegetation corresponding
to the Ritobacken case study and for the Pasche, Mertens,
and Manning-based DCM models for rigid emergent vegeta-

tion corresponding to the flume conditions (Fig. 5d–f). In this
example, chosen to provide a background for the analysis of
extrapolation capabilities of models (Sect. 3.3), the parame-
ters for discharge curves were identified at lower overbank
flows, while the verification was conducted for the highest
flows. This represents the common practical way of using
hydraulic models to assess flood hazard at flows higher than
the ones the models were calibrated with. In terms of param-
eter identification results are considered successful, as all m
observation points were enclosed by the confidence intervals.
Except for the DCM model in the flume case study (Fig. 5f),
all the remaining points, i.e., the verification set with M −m
points, given in Fig. 5 as circles (◦), are enclosed, indicat-
ing good quality of the solutions. For the DCM (Fig. 5f) the
points used in the model identification are within confidence
intervals (the condition given by Eq. 8), but the verification
points are outside despite the wide confidence intervals. The
reason is that for the flume data with rigid vegetation, the
Manning formula with constant values of roughness coeffi-
cients is unable to correctly reproduce the rating curve and
fulfill the constraint given by Eq. (8), which is only possible
by extending the confidence intervals.

Along with the probabilistic solution, Fig. 5 presents a de-
terministic solution obtained as a computed rating curve with
the highest value of likelihood measure (Eq. 3). The deter-
ministic solution often deviates from the median of the prob-
abilistic one, as in the case of the GTLM and STLM (Fig. 5a–
b).

On the basis of the rating curves computed for each com-
bination of m observation points, it is possible to analyze the
estimated average widths of confidence intervals in a func-
tion of m observation points used in the identification. The
averaged confidence widths were provided for a given m in
relative sizes as W :

W =mean
m

[
1
m

m∑
i=1

H
qL
i −H

qU
i

median(H)i

]
, (13)

where H qL
i and H qU

i stand for the estimates of lower and up-
per confidence intervals for the calculated water level, nor-
malized for each i point of the rating curve by the median of
the probabilistic solution for the ith point: median(H)i . From
m rating curve points a mean value is computed with the term
1
m

m∑
i=1

H
qL
i −H

qU
i

median(H)i
for all possible combinations of m observa-

tions in the full set of size M . In the last step, mean values
of confidence interval widths were again averaged over sets
where the model was identified using m observations.

Chosen results on the influence of the number of observa-
tions used for identification of the widths of the confidence
intervals and the percentage of verification points included
within the intervals are provided in Figs. 6–8. In Fig. 6 for
GTLM applied for the Ritobacken case study for spring 2012
and also in Fig. 9 with the Pasche model used for the flume
data set in case 1, it can be noticed that (1) the relative confi-
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Figure 6. GTLM results for the Ritobacken case study, spring 2012:
(a) averaged relative confidence widthsW as a function of observa-
tion set sizem used for model identification; (b) percentage of veri-
fication points enclosed by the confidence intervals (100% denotes
all points within intervals, box spans over the 25 % and 75 % quan-
tiles, the median is given with horizontal line, whiskers indicate the
result extent, and cross marks are for extreme values).

dence interval widths (Figs. 6a, 7a) are high for a small m as
a result of the ill-posed inverse problem; i.e., the number of
observations is insufficient for unequivocal model identifica-
tion; (2) with additional data points, the solution converges
by reducing the span of intervals but also its variability due
to different combinations of observation points; (3) the width
of confidence intervals for the full data set m=M in both
cases is below 5 %; (4) the confidence intervals estimated for
a low number of observations (m< 4) have poor predictive
performance, as most of the observations in the verification
sets fall outside (Figs. 6b, 7b); (5) in both cases for m> 4
more than 50 % of the verification set is enclosed with the
estimated confidence intervals. Figure 8 shows an example
of a model with a poor performance, indicating the model’s
inadequacy for the given case. The confidence intervals are
extended withm (Fig. 8a), which form> 4 allows enclosure
of most of the verification set (Fig. 8b).

3.2 Model identifiability

Model identifiability is understood here as the ability to
determine the parameter a posteriori distribution that ex-
plains the model uncertainty in relation to observations (see
Sect. 2.1). This is satisfied by meeting the constraint given
in Eq. (8) as for cases presented in Fig. 5. The criterion of
Eq. (8) might be fulfilled even for a poor model by extend-
ing the parameter variability ranges (Table 1), specified with
a priori distribution P (θ). The only limitation could be the
physical meaning of the parameters.

Figure 9 shows exemplary results for a model that could
not be identified for a given data set. Values of J (Eq. 7) were
computed for observation points used in the parameter identi-
fication and averaged in respect of their count m. This model
was unable to correctly reproduce the rating curve over the

Figure 7. Pasche results for the flume data set, case 2: (a) averaged
relative confidence widthsW as a function of observation set sizem
used for model identification; (b) percentage of verification points
enclosed by confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure 8. Manning-based DCM results for the flume data set, case
2: (a) averaged relative confidence widths W as a function of ob-
servation set sizem used for model identification; (b) percentage of
verification points enclosed by confidence intervals (100% denotes
all points within intervals, box spans over the 25 % and 75 % quan-
tiles, the median is given with horizontal line, whiskers indicate the
result extent, and cross marks are for extreme values).

whole Monte Carlo ensemble of parameters. The computed
water levels did not follow the observed shape of the rating
curve, and as a result it was not possible to find such a so-
lution of Eq. (1) where identification data points would be
enclosed by the confidence intervals (Eq. 8). The constraint
given with Eq. (8) was fulfilled only form= 1, but not for all
points, as indicated with the single red cross in Fig. 9. This
indicates that not all observed water levels were covered by
the Monte Carlo sample of computed water levels. With an
increasing number of m, the number of observation points
enclosed by the confidence intervals depends on the combi-
nation of observation points. Some beneficial effects allow us
to fulfill the constraint given with Eq. (8), such as an extreme
value of 1 for m= 6, whereas others enclose only a small
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Figure 9. Portion of observation points within 95 % confidence in-
tervals for the Pasche method as a function of observation points
used in parameter identification, presented in the form of box-plots;
results for the unsuitable data set for the Pasche method of Rito-
backen, spring 2012.

share of observations. For m=M = 11, there is a single so-
lution, in which about 60 % of observations were enclosed by
confidence intervals. For an identifiable model, Fig. 9 would
consist of single horizontal lines between 0.95 and 1, indicat-
ing fulfillment of the constraint of Eq. (8) for all simulations.

The Pasche and Mertens models applied to the Rito-
backen case study were not identifiable even with relatively
large variability ranges of the parameters (Fig. 9). This is
likely explained by the fact that these methods were devel-
oped for rigid emergent vegetation, whereas the Ritobacken
had mostly dense submerged flexible vegetation. The PTLM
could be identified for the field site in spring 2011 and spring
2012 but not in autumn 2011. This result is likely explained
by the fact that the assumption of BX ≈ h

R
noticeably overes-

timates BX in compound channels with an unvegetated main
channel and high floodplain vegetation, as in autumn 2011
conditions.

By applying large parameter variability for the GTLM
and PTLM models, it was possible to meet Eq. (8) for the
flume case study, although these methods were not originally
designed for such emergent vegetation. The STLM model
failed for flume experiments, likely because the assumption
that> 80 % of flow should be conveyed in the non-vegetated
zones was not fulfilled. The rest of the models, including
DCM for all cases, were identifiable.

To compare the performance of the applied identifiable
discharge prediction methods, we show bar plots of the av-
erage percentage of verification set points enclosed by confi-
dence intervals and their relative widths as a function of ob-
servation points used in the model identificationm (Figs. 10–
14). The averaged values correspond to the mean values of
the box-plots in Figs. 6–8.

Figure 10. Percentage of the verification set (M −m) enclosed by
confidence intervals and average width of confidence intervals for
different numbers of data points for model identification (m); flume
data set, case 1.

Figure 11. Percentage of the verification set (M −m) enclosed by
confidence intervals and average width of confidence intervals for
different numbers of data points for model identification (m); flume
data set, case 2.

3.3 Widths of confidence intervals and quality of
uncertainty estimation

The values presented in Figs. 10–14 are averaged over all
uncertainty estimates at a given number of observations m.
Therefore, for m=M − 1, where there was always only one
verification point, the percentage for verification points can
be any value between 0 % and 100 %, not only 0 % or 100%.
An averaged ratio of verification points enclosed within con-
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Figure 12. Percentage of the verification set (M −m) enclosed by
confidence intervals and average width of confidence intervals for
different numbers of data points for model identification (m); results
shown for the identifiable models for Ritobacken, spring 2011.

fidence intervals, together with their relative widthW , should
be considered a two-criterion measure of how well the ob-
tained model reproduces the discharge curve. Narrow con-
fidence intervals indicate that the model uncertainty, esti-
mated using m observations, is small. The percentage of ob-
servations from the verification set enclosed within these in-
tervals informs how the estimated uncertainty is represen-
tative for other data sets than these used for identification.
The low percentage suggests that the model uncertainty for
the verification set is incorrectly predicted. Therefore, nar-
row confidence intervals for small m numbers, enclosing a
small amount of observations, should be considered unsuc-
cessful, as the uncertainty analysis appears to be too opti-
mistic. On the other hand, for larger m, good ratios might
be obtained with very wide confidence intervals, indicating a
poor model. The best solution is that one which has the nar-
rowest confidence intervals with a satisfactory percentage of
the verification set enclosed within it. We interpret the results
by analyzing both those criteria together.

Widths of confidence intervals in a function of the num-
ber m of observation points used in the model identifica-
tion (Figs. 10–14) allow for a qualitative analysis of the un-
certainty, resulting from the insufficient data for calibration.
Wide confidence intervals and their spread for the small ob-
servation number m= 1 should be attributed to the ill-posed
inverse problem. Additional data points allow narrow confi-
dence intervals and reduce their spread. The number of ob-
servations m at which the widths of confidence intervals sta-
bilize, in some cases obtaining minimal values, suggests the
point where the effect of the ill-posed inverse problem be-
comes a less significant source of uncertainty for computed

Figure 13. Percentage of the verification set (M −m) enclosed by
confidence intervals and average width of confidence intervals for
different numbers of data points for model identification (m); results
shown for the identifiable models for Ritobacken, autumn 2011.

water levels. In these qualitative analyses, its effect cannot be
excluded but rather should be considered less important.

General investigations of discharge models in respect of
obtaining confidence intervals were supplemented with the
analysis of their extrapolation capabilities for higher flows.
Figures 10–14 present averaged outcomes for models identi-
fied using all possible combinations of m observations. This
includes sets with only low or high but also mixed flow rates
(note that only overbank flows are considered). In Fig. 5
widths of confidence intervals and the percentage of the en-
closed verification set are presented for models identified
only for the lowest m= 5 flow rates. The number of m= 5
observations used for the model identification was chosen ar-
bitrarily, following the impressions that this size is sufficient
to minimize the uncertainty due to an insufficient number of
observations for the model identification (ill-posed inverse
problem), and for all case studies with m= 5 a reasonable
number (M −m) of observations for verification was avail-
able.

3.3.1 Flume data set, case 1

For the flume data in case 1 (Fig. 10), with rigid-high vege-
tation in floodplains and also channel banks, the best results
were obtained with the Mertens method. It is characterized
by the narrowest confidence intervals W with a good predic-
tive performance. Confidence intervals form> 1 were below
5 %, and for m> 3 they already enclosed more than 50 %
of the verification points. Almost similar performance was
found for the DCM method, with slightly wider confidence
intervals.
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Figure 14. Percentage of the verification set (M −m) enclosed by
confidence intervals and average width of confidence intervals for
different numbers of data points for model identification (m); results
shown for the identifiable models for Ritobacken, spring 2012.

Figure 15. Percentage of verification points for higher flows en-
closed within confidence intervals obtained with models identified
for five (m= 5) lower flows (note that only overbank flows were
considered): (a) flume experiment, case 1 (M = 9); (b) flume ex-
periment, case 2 (M = 10); (c) Ritobacken, spring 2011 (M = 6);
(d) Ritobacken, autumn 2011 (M = 12); (e) Ritobacken, spring
2012 (M = 11).

Surprisingly, both methods outperformed the Pasche
model that is a very similar approach to the Mertens method
but with a much more detailed description of the vegetation-
induced resistance. Estimated confidence intervals widths
were about 3 times larger than for the Mertens method and
DCM but included a similar number of verification points.
The reason could be the susceptibility of the Pasche method
to numerical instabilities. Because of vegetation present on
the channel banks, the floodplain region was extended above
geometrical channel banks. This introduces discontinuity to
the hydraulic radius in floodplains, as water levels slightly
exceed geometrical banks. Probably, this might lead to nu-
merical instability of implicit formulas used in the Pasche
method but not present in the Mertens method. GTLM and
PTLM confidence intervals were similar to the Pasche ones
but enclosed even more observations than Mertens. However,
confidence intervals for Mertens are almost 3 times narrower,
and this method should be considered to be the most appro-
priate in this case.

Figure 15a presents the results for models identified us-
ing the lowest m= 5 flow rates. The Mertens model with the
smallest estimated uncertainty was capable of explaining the
rating curve for all verification points. Other models, except
the DCM, allowed us to enclose the whole verification set but
with much wider confidence intervals.

3.3.2 Flume data set, case 2

For flume case 2 (Fig. 11), both the Pasche and Mertens
methods appear to be the most effective. Estimated widths
of confidence intervals do not exceed 4 %–5 % for m> 1
and fell below 1 %–2 % for a sufficient number of observa-
tions (m> 5). The predictive skills of the identified models
are high, with around 70 % of the verification set enclosed
by the confidence intervals at m> 4. GTLM has a simi-
lar uncertainty performance to the DCM, while PTLM pro-
vides noticeably much narrower uncertainty estimates. For
the GTLM and DCM, the final confidence widths form=M
are about 15 % and, for PTLM, 5 %. Because of their larger
extent, the estimated intervals enclose a slightly larger num-
ber of verification points than with the Pasche and Mertens
methods. The DCM has 3 times wider confidence intervals
than for flume case 1. The main difference between flume
cases 1 and 2 was the rough floodplain surface with grain
sizes of 0.5–1 cm for case 2 compared to the smooth flood-
plain of case 1, indicating that the DCM was not able to per-
form reliably for the combination of rough surface and emer-
gent vegetation.

Figure 11 highlights the specific dependency of DCM,
GTLM, and PTLM on m. For a small number of data points
for a model identification at m= 1, confidence widths are
high, because of the ill-posed inverse problem. With addi-
tional points, the effect is reduced, and for m= 2 the con-
fidence interval widths are at their smallest but with poor
predictive skills. With increasingm the uncertainty estimates
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are corrected by additional data points. The same pattern is
present but less noticeably for the Pasche and Mertens meth-
ods and for the other cases.

As in general output, the Pasche and Mertens models
provided the best results when identified for m= 5 lower
flows (Fig. 15b). Their confidence intervals, narrower for the
Mertens model, enclosed 100 % of the verification set. Per-
formances of the Manning-based DCM are poor here, as de-
spite relatively wide confidence intervals it appeared impos-
sible to explain any of verification points. In Fig. 5d–f rating
curves for the Pasche, Mertens, and Manning-based DCMs
were presented for this specific calibration case.

3.3.3 Ritobacken, spring 2011 case

The spring 2011 case study refers to flow conditions with
poorly developed vegetation 1 year after the floodplain ex-
cavation. These conditions with low vegetation with a mean
relative submergence (floodplain water depth divided by veg-
etation height) of 3.3 are reflected in the computational out-
put (Fig. 12), with process-based methods for vegetation re-
sistance characterized by a relatively poor fit.

All three two-layer models (GTLM, STLM, and PTLM)
have very similar performances but with noticeably wider
confidence intervals than the DCM, with W of 12 % to 3 %.
The percentage of enclosed verification points at m> 2 is
better for two-layer approaches, although the difference is
small (single observation point). The picture is different in
the case of Fig. 15c presenting the extrapolation capabili-
ties of the methods. Widths of confidence intervals of two-
layer models are similar to averaged values atm= 5 given in
Fig. 12 and enclose all verification points (note that for spring
2011,M = 6). The DCM’s narrow confidence intervals were
unable to enclose the verification points.

3.3.4 Ritobacken, autumn 2011 and spring 2012 cases

The Ritobacken autumn 2011 and spring 2012 case studies
reflect the influence of seasonal differences of vegetation on
the flow conditions. In autumn 2011 vegetation was higher
and denser than before and at the beginning of the growing
season in spring 2012. This can be seen in the performance of
the applied discharge methods. For the fully vegetated condi-
tions of autumn 2011 (Fig. 13), all the identified methods en-
closed over 70 % of the observations at m> 5 with M = 12.
STLM has the narrowest confidence intervals (4 %) when all
data were used for model identification. STLM had a slightly
lower percentage of enclosed verification points compared to
DCM with also very narrow confidence intervals and GTLM
with somewhat wider ones. For autumn 2011, it was not pos-
sible to identify the PTLM.

For spring 2012 (Fig. 14), DCM, STLM, and GTLM have
almost equal confidence widths and ratios of enclosed ver-
ification points, while PTLM has very wide confidence in-
tervals. The overall measures are similar to those from au-

tumn 2011. The confidence widths for DCM, GTLM, and
STLM are about 3 % and for m> 5, and more than 70 % of
points fall within confidence intervals. PTLM has a slightly
higher ratio of verification data enclosed compared to the
other methods because of notably wider confidence intervals
of 8 %–9 %.

In the calibration case with the lowest m= 5 flow rates,
for autumn 2011 (Fig. 15d), a high explanation of the rat-
ing curve was obtained with the STLM and Manning DCM.
Poorer results for the autumn 2011 set were obtained for
the GTLM, with a low percentage of verification points
enclosed. For spring 2012 all two-layer models (GTLM,
PTLM, and STLM) and also the Manning DCM allowed us
to obtain a very good explanation of the rating curve when
identified for the lowest m= 5 flow rates (Fig. 15e). The rat-
ing curves of the GTLM, STLM, and PTLM in this calibra-
tion case for spring 2012 were presented in Fig. 5a–c.

3.4 Physical interpretation of identified parameters

A posteriori parameter distributions P (θ/H) can be pre-
sented in a form of marginal cumulative distribution func-
tions (CDFs). The CDF is plotted over the sampled parame-
ter range, given in Table 1. The shape of the marginal CDF
indicates the likelihood of given parameter values. The linear
dependency would mean that all values are equally likely in
respect of the likelihood function (Eq. 3). On the other hand,
a strong CDF skewness characterizes regions of a high prob-
ability and larger model sensitivity on the parameter. The a
posteriori marginal CDFs of parameters were presented for
four vegetation-roughness models: Pasche, Mertens, GTLM,
and STLM. Parameters of the Pasche and Mertens models
(Fig. 16) were given for flume case 2, where both models
explained the rating curve very well. GTLM and STLM pa-
rameter estimates (Figs. 17–18) were compared for the Ri-
tobacken autumn 2011 and spring 2012 sets, as both models
were found here to be appropriate and, additionally, it was
possible to analyze the seasonal vegetative differences on pa-
rameter estimates (see Sect. 3.3.4). In all cases, solutions for
all observation points m=M were used.

In Fig. 16 the CDF for Pasche parameters for flume case
2 is given with black lines and green lines for Mertens. Mea-
sured values of parameters are provided with blue lines. The
steep shape of the CDF for the Pasche az indicates a strong
model sensitivity to the parameter and that the values above
∼ 0.3 m are unlikely. For the Mertens model, a similar effect
but with smoother CDF is present for both ax and az. The dif-
ferences in the case of these particular parameters come from
the more complex structure of the Pasche model, restricting
values of az, due to a lack of a numerical convergence for
its implicit formulas. For both models (Fig. 16) bIII/Bfp ap-
pears to be a sensitive parameter, while the response for the
remaining parameters is more uniform.

The strongest discrepancies between measured and identi-
fied values of parameters of the Pasche and Mertens models
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Figure 16. Marginal a posteriori distributions of Pasche (black lines) and Mertens (green lines) model parameters, identified using m=M
observation points for the flume experiment, case 2; measured parameter values were provided with blue lines.

(Fig. 16) are present for the stem diameter dp and longitudi-
nal stem spacing ax . A median (at CDF 0.5) of the proba-
bilistic solution for dp is close to 0.04 m, while the real diam-
eter was 0.008 m. In the case of ax it is 0.6 m for Pasche and
0.25 m for Mertens to 0.1 m. This has a clear physical sense,
as in terms of the model identification, small stem diameters
dp at dense spacing with small ax were equivalent to larger
dp and smaller ax . This finding is supported by much smaller
discrepancies in other parameters. It should be noted that the
measured parameter values provide a fit close to the best one
in a deterministic sense (Kiczko et al., 2017).

In Fig. 17 results for the GTLM model identified for
the Ritobacken autumn 2011 (black lines) and spring 2012
(green lines) are provided. It can be seen that in both cases
the identified values of the parameterization for flexible vege-
tation (Eq. 11) had a fairly narrow distribution for the recon-
figuration (χ ) of the foliage, which fell close to the values
observed for willows and other woody species (e.g., Västilä
and Järvelä, 2018). In the case of remaining parameters it
can be noticed that for the autumn 2011 set, the CDFs have
a step shape, clearly indicating more likely regions. For ex-
ample, the most probable values of the steam reconfiguration
coefficient χS for autumn 2011 are very close to the observed
ones. The same applies toCDx,S andCDx,F. In all these cases,
CDFs also suggest other highly probable regions, different
from expected ones; e.g., for χS values close to 0.3 were

also considered very likely. The effect, also seen clearly for
AS/AB, AL/AB, C∗, CDx,S, hL, and hR, is an example of
parameter equifinality. Distributions obtained for the spring
2012 set are much more uniform, without values that can be
considered highly probable.

Similarly to the Pasche method, not all distributions fol-
low the expected values. The CDF for C∗ in autumn 2011
shows notably larger values than experimentally derived ones
(C∗ ∼ 0.034–0.08, Västilä et al., 2016). For spring 2012 C∗

values are much closer to the expected ones, but it is hard
to find an explanation for the differences when the autumn
2011 case is considered, other than the effect of an ill-posed
inverse problem, where water depths are insufficient for iden-
tification of this parameter.

Wider ranges for the vegetation heights h, extents l/L, and
frontal projected areas of stems AS/AB and leafs AL/AB in
the spring 2012 set may be associated with lower vegetation
roughness in that period (Västilä et al., 2016). The solution
providing a good representation of water depths might be ob-
tained for different combinations of these parameters, such
as too small h with too large l/L. Higher autumn flow re-
sistance, resulting in a different shape of the rating curve,
appeared to be more restrictive for these parameters.

Parameters of the STLM are given in Fig. 18. As in this
approach flow in the vegetation layer is neglected, it in-
cludes fewer parameters than the GTLM: lL/L, lR/L, hL,
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Figure 17. Marginal a posteriori distributions of GTLM model parameters, identified using m=M observation points in the Ritobacken
case study; black lines stand for the autumn 2011 set and green for spring 2012; parameter values given by Västilä and Järvelä (2014) for
woody vegetation were provided with blue vertical lines.

Figure 18. Marginal a posteriori distributions of STLM model parameters, identified usingm=M observation points in the Ritobacken case
study; black lines stand for the autumn 2011 set and green lines for spring 2012.
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Figure 19. Blockage factor BX measured in the field and deter-
mined as an inverse solution of GTLM for the Ritobacken autumn
2011 (a) and spring 2012 (b) case studies; squares denote measured
values, dashed lines confidence intervals and the median of a proba-
bilistic solution, and red line the best simulation in the Monte Carlo
ensemble.

and hR used for parameterization of the blockage factor BX.
The obtained CDFs are very similar to those for the GTLM
(Fig. 17). As previously, parameters of autumn 2011 are
much better defined. Again a noticeable shift in C∗ can be
observed for autumn 2011. Such good agreement between
obtained parameters for GTLM and STLM, together with
very similar uncertainty estimates (Figs. 13–14), suggests
that flow within the vegetation layer was not significant for
the shape of the discharge curve under the analyzed condi-
tions. Otherwise, the shape of GTLM CDFs would be no-
ticeably different as a result of interactions with parameters
characterizing flow in the vegetation layer.

Studies by Västilä and Järvelä (2018) provided estimates
of the blockage factor BX which allow comparison to the
results of model identification by calculating confidence in-
tervals for modeled BX on the basis of identified parameters
lL/LL, lR/LL, hL, and hR for autumn 2011 and spring 2012
(Fig. 19). The confidence intervals for BX are wide and the
observed values are shifted from the median of a probabilistic
solution towards the 0.9 quantile. The noticeable underesti-
mation of BX by the model identification likely decreases the
performance of GTLM for the field case, since under partly
vegetated conditions the cross-sectional vegetative blockage
has been found to be the most important property in de-
termining the flow resistance (e.g., Green, 2005; Luhar and
Nepf, 2013). A large spread of values for BX with very small
variation of water levels for that solution (Fig. 13) suggests
a moderate model sensitivity to BX affected by interactions
with other parameters.

4 Discussion

The present study is according to our knowledge the first
one where different discharge capacity methods were com-
pared in respect of their uncertainty and estimated along with

model parameters using a probabilistic formulation of the
problem of the parameter identification. The noticeable fo-
cus was made to ensure that the uncertainty analysis was ob-
jective and repeatable. The novelty of the proposed approach
includes the analysis of obtained confidence widths together
with the percentage of independent observations explained
by them with respect to the number of observations used in
the model identification. The results confirm previous find-
ings of Kiczko and Mirosław-Świa̧tek (2018), Kiczko et al.
(2018), and Romanowicz and Kiczko (2016) that for dis-
charge formulas the probabilistic solution differs from the
deterministic one. This is evident from Fig. 5 for calculated
rating curves. This obvious behavior of nonlinear models
highlights the need for such uncertainty analyses.

Our results show that the number of parameters seems not
to be a factor precluding the identifiability of vegetation-
roughness models. It was possible to identify a model with
more than 10 parameters (i.e., GTLM accompanied by a pa-
rameterization of complex reconfiguring vegetation) almost
as well as three-parameter ones (DCM). In most cases, the
ill-posed inverse problem appears to affect the uncertainty
estimates only when the number of observation points was
very small, independent of the number of parameters. Widths
of confidence intervals stabilized close to the final extent at
about three to four observation points (m> 3, Figs. 10–14).
The process-based methods have more parameters than the
required number of observations necessary for the identifi-
cation. This suggests the ill-posed problem but might be ex-
plained by a low model sensitivity to groups of parameters
seen in the marginal CDF of the a posteriori parameter distri-
butions (Figs. 16–18) and in the result that the model fit de-
pends on only several parameters. The observations are how-
ever different for the field case with the most developed veg-
etation, Ritobacken in autumn 2011, where the uncertainty
estimated for the GTLM, with the largest number of parame-
ters, falls below levels obtained for the DCM only for the full
set of observations used for the model identification. In this
case the GTLM was found to be very sensitive to parameters
characterizing flow in the vegetation layer (Sect. 3.4), and a
noticeably larger number of observations was necessary to
restrict variability of parameters.

Our findings indicated that the performance of a model
depends on its adequacy for the given vegetative and flow
conditions. For emergent sparse rigid vegetation, the most
reliable method was the Mertens model with mostly ex-
plicit formulas. Because of a simpler numerical form than
in the Pasche method, the Mertens method was less vul-
nerable to numerical instabilities, which probably affected
the outcomes of the Pasche uncertainty estimation. In the
case of dense mostly grassy vegetation typically observed
on natural floodplains (Fig. 4), the most reliable perfor-
mance with respect to uncertainty estimates was obtained
with the simplified two-layer approach (STLM), which ne-
glects the flow in the vegetation layer (Figs. 12–14). The
full two-layer model (GTLM) also provided a reasonable
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representation of the rating curve for flexible vegetation, al-
though with higher estimated uncertainty, probably because
of a larger number of parameters. For all cases, except Rito-
backen spring 2011 with the least developed vegetation, the
best-performing process-based method produced narrower
confidence intervals than the DCM, when the models were
identified with all observation points. Further, for the field
conditions, the predictions of the validation data set were
notably better with the process-based models compared to
DCM when the number of data points used for model iden-
tification was low (2–4), while the confidence intervals were
reasonable for practical applications.

An important aspect when comparing the different meth-
ods is their general applicability for different channel condi-
tions. Despite the larger number of parameters, the process-
based methods were less generally applicable than the
Manning-based DCM approach, which could be identified
and thus applied in all cases. The Pasche and Mertens meth-
ods were only applicable for the sparse rigid emergent flume
vegetation for which they were derived. By contrast, the two-
layer approaches GTML and PTML, although it was possible
to identify them, had a less favorable performance when ap-
plied to the flume vegetation (Fig. 3). Further, our findings
appeared to confirm that the STLM is strict about the as-
sumption that less than 20 % of the flow is conveyed within
vegetation (Sect. 3.2). The STLM could not be identified for
the flume conditions with sparse vegetation likely resulting in
substantial flow on the floodplain. The results for the DCM
with constant values of the Manning coefficient were quite
good except for flume case 2, indicating that the process-
based methods are expected to perform better and more reli-
ably than the DCM when several important sources of flow
resistance, such as rough floodplain surface and sparse emer-
gent vegetation, are present. These methodological findings
suggest that it could be possible to choose an appropriate
method on the basis of its goodness-of-fit measures and un-
certainty estimates.

For practical channel design or flood inundation estima-
tion cases, the capability to extend the model calibrated with
observations at low flows to high flows is crucial. Of the six
models, none provided good extrapolation results under all
tested cases. GTLM was the most reliable model as it per-
formed reasonably in four of five cases and thus across a
wide range of vegetative conditions (Fig. 15). The GTLM
parameterized at low flows successfully predicted the more
rapid increase in discharge at water levels exceeding vegeta-
tion height (Fig. 5a), except for the autumn 2011 data set. For
instance, the DCM was in two of the five cases unable to reli-
ably predict the water levels at higher discharges when opti-
mized based on observations at lower discharges (Fig. 15).
The overestimation of channel flows (Fig. 5f) is a known
feature of the DCM with constant Manning coefficients, as
it does not account for the momentum transfer between the
main channel and floodplains (Myers, 1978).

The GTLM was in this paper amended with a vegetation
parameterization (Eq. 11) that describes the influence of the
plant streamlining and reconfiguration on flow resistance. Al-
though Eq. (11) has been developed for woody vegetation,
it was applicable to the predominantly grassed vegetation at
the field site. Field surveys indicated that much of the plants
consisted of a main stem and more flexible leaves, conceptu-
ally similar in behavior to foliated woody vegetation. Equa-
tion (11) describes the drag from stem and leaves and allows
us to set different values for the flexibility-induced reconfigu-
ration for the stem and foliage. By setting the reconfiguration
parameters to 0, the model can be used for rigid vegetation,
which might explain the applicability of the model in flume
cases with rigid vegetation.

Further justification of the wide applicability of the two-
layer modeling concept is not straightforward with the ob-
tained results. Shields et al. (2017) suggested that two-layer
models based on the Luhar and Nepf (2013) concept allow
for a better representation of the transition from the sub-
merged to emergent flows, in which case the cross-sectional
vegetative blockage and the bulk flow resistance typically
start to decrease. Obtained CDF of a posteriori parameter
distributions for STLM and GTLM suggest that this effect
might be important. For the autumn 2011 case, with well-
developed vegetation, the most probable solution included
moderated vegetation heights and larger extents (hL and hR,
Fig. 17), which ensures that transition from submerged to
emerged vegetation is present. On the other hand, this effect
was not observed for other cases.

Put together, our various analyses show the advantages of
the more complex process-based methods over the Manning-
based DCM. The results agree with Dalledonne et al. (2019),
who obtained the narrowest uncertainty estimates for the
more complex models. Besides being applicable to flood
water-level estimation, the described process-based models
allow prediction of the influence of different channel man-
agement scenarios on water levels. The methods are expected
to be helpful in planning common practical management
measures for vegetated compound channels, such as cutting
of the floodplain and bank vegetation as well as maintaining
the channel by dredging the main channel or lowering the
floodplain. Improved reliability of the discharge capacity es-
timates may help in decreasing unnecessary, environmentally
disruptive management actions and allow planning of more
sustainable alternatives, such as partial cutting.

We found that the differences between the one-
dimensional methods were notably larger than for the study
of Dalledonne et al. (2019) focusing on a two-dimensional
model. Further, the Warmink et al. (2013) study did not
consider the choice of the flow resistance parameterization
method to be crucial. The presently investigated flume and
field cases had a notable portion of the cross section cov-
ered by the floodplain vegetation, with Manning’s n rang-
ing at 0.017–0.150 m−1/3. Thus, our results indicate that the
choice of the resistance formula is important for cases where
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vegetative resistance dominates. On the other hand, one-
dimensional models may be more sensitive to uncertainty re-
lated to the identification of the resistance parameters than
are two-dimensional models.

The most important issue is the physical interpretation
of parameters obtained by the model identification. As ex-
pected, on the basis of previous studies of Werner et al.
(2005) and Berends et al. (2019), the obtained values, shown
in a form of CDF of marginal a posteriori distributions
in Figs. 16–18, differs from measured ones. This results
from the parameter equifinality. One of the reasons might
be insufficient observation sets used in model identifica-
tion. The likelihood function, conditioned only on water lev-
els, is not capable of restricting variability of parameters in
more complex vegetation-roughness models. It can be seen
in the shape of the marginal CDF of parameters, presented
in Figs. 16–18, suggesting small sensitivity of the model to
given parameters, except only the Ritobecken autumn 2011
case. Their variability can be probably reduced by additional
data sources, as discussed in hydrological studies of Her
and Chaubey (2015) and Her and Seong (2018). For chan-
nel flows it could be velocity measurements, used, e.g., by
Berends et al. (2019) for model identification. It should be
however noted that in practical assignments on a flood hazard
such data are rarely available. The other reason for param-
eter equifinality and therefore discrepancies with measured
values of parameters are parameter interactions. The shift in
a given parameter is compensated by others; e.g., the large
stem diameter dp, observed for the Pasche and Mertens mod-
els, comes along with too large spacing of plants ax and az.
Such an effect is probably present in all process-based mod-
els identified in terms of an inverse problem.

The inability to specify parameters of process-based meth-
ods by model identification is an argument against such an
approach, already signalized by Werner et al. (2005). More-
over, with parameters different from real values, the use of
these complex models gives the impression of black-box
modeling, as the identification goal is only to obtain a sat-
isfactory fit and uncertainty estimate. With outcomes of the
present study, it is hard to address this problem directly,
as it would require comparison of process-based methods
with a pure data-based model. However, the overall impres-
sion is that the application of models with numerous pa-
rameters seems to be inseparably connected with the prob-
lem of the equifinality. A similar behavior is known, e.g.,
for the Shiono–Knight model by Knight et al. (2007). For
vegetation-roughness models, it will apply not only in the
cases where parameters are identified purely in terms of the
inverse task, but also when available measurements of veg-
etation properties are uncertain and have to be generalized
over larger areas (Straatsma and Huthoff, 2011). In such
cases it will always be necessary to find values characterizing
hydraulic conditions rather than true vegetation features. The
difference is that even with very uncertain data, the identifi-

cation problem will be limited to relatively narrow parameter
ranges.

The parameter identification is expected to result in more
physically realistic values if at least some of the required veg-
etation properties or the channel bed roughness can be di-
rectly measured and used as the input. For instance, the veg-
etation extents of the two-layer models (Fig. 2) are straight-
forward to obtain at the field, or vegetation can be assumed to
cover all channel perimeters above the bankfull level. Typi-
cal heights of grassy floodplain vegetation in a given geo-
graphical area can be obtained through remote sensing cou-
pled with information on channel geometry, and these values
may be extrapolated to other sites where such information is
not available.

Process-based models introduce however physical con-
straints, providing, as mentioned before, a better basis for
extrapolation than purely data-driven approaches and, in this
study, better than a simpler model. In most of the cases an-
alyzed here, vegetation-roughness models, when applied for
the vegetation conditions they were originally developed for,
provided better predictions of higher flow than the Manning-
based DCM (Fig. 15). Some advantages of using the process-
based models, even without knowledge of parameters, might
also be their clear physical interpretation compared for ex-
ample with Manning coefficients. Nonphysical stem diame-
ters are more obvious to large values of the Manning coeffi-
cient. A modeler aware of parameter interactions can decide
whether, e.g., given discrepancies in vegetation characteris-
tics are important in an analyzed case.

Discharge formulas analyzed in the study are usually only
a part of the one-dimensional model. The uncertainty of such
models depends also on additional elements, like spatial vari-
ability of resistance and simplification of the channel geom-
etry. It should also be noted that the investigated cases had
a fairly regular cross section and homogeneous vegetation.
Therefore, care should be taken when attempting to general-
ize the presented findings to all one-dimensional approaches.
In complex real-world cases, it might be beneficial to include
several discharge formulas through an ensemble approach,
which is also used in other fields, such as climate modeling.

5 Conclusions

This study investigated the application of advanced process-
based methods for the discharge capacity estimation of veg-
etated compound channels in practical cases with limited in-
formation on the vegetation properties. We compared five
process-based methods with a physically based vegetation
characterization to the conventional Manning-based divided
channel method (DCM), focusing on their uncertainty. The
developed probabilistic approach and the used data covering
a range of conditions on floodplain vegetation submergence,
density, flexibility, and flow hydraulics allowed us to draw
the following conclusions.
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1. The calculations showed that it is possible to identify
process-based models with a large number of parame-
ters on the basis of the inverse problem with narrower
or similar uncertainty bands compared to the Manning-
based DCM.

2. The uncertainty related to the ill-posed inverse problem,
resulting from the insufficient number of observations,
is in most cases noticeable only when a small number
(three to four) of observations is used in the model iden-
tification. However, in the cases where the shape of the
rating curve is more sensitive to model parameters, the
results suggest that methods with more parameters have
wider uncertainty bands when identified with a small
number of observations.

3. The model identification resulted in some parameters
differing from their measured physical values, raising
doubts about the physical interpretation of obtained
models.

4. Despite unrealistic values of parameters, the process-
based models for vegetation roughness revealed good
extrapolation capabilities to high floodplain flows when
identified using only low floodplain flows.

5. Uncertainty estimates clearly indicate the applicability
of a given model to the analyzed case. Unsuitable mod-
els, e.g., those developed for non-submerged vegetation
but applied to submerged vegetation, have relatively
wide uncertainty estimates or lack a probabilistic solu-
tion. Therefore, the results showed that it is possible to
choose an appropriate model without prior knowledge
of vegetation properties in the channel, by comparing
obtained uncertainty widths.

6. The best results in terms of the lowest uncertainty es-
timates were obtained with the Mertens method for the
emergent, rigid vegetation case. For the dense flexible
vegetation, the simplified two-layer method (STLM) ne-
glecting the flow in the vegetation layer, had the most re-
liable performance across different seasons, functioning
under submerged and emergent conditions. The gener-
alized two-layer model (GTLM), of the process-based
approaches, amended with a vegetation parameteriza-
tion describing the flexibility and reconfiguration of the
plants was the most universally applicable to different
vegetative conditions.

7. In most cases, the Manning-based DCM also had satis-
factory performance, but results suggest it had poorer
capabilities for extrapolation to high floodplain flows
when calibrated with only low floodplain flows, in com-
parison to process-based models.

8. An open issue is the generalizability of the obtained re-
sults to spatially distributed one-dimensional models.

9. The proposed approach with the novelty of comparing
different models in terms of their uncertainty along with
the quality of the uncertainty estimation might be useful
in other similar studies.
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Appendix A: Measurement data used in computations

A1 Flume experiments

Table A1. Measured water depth H and flow rate Q for quasi-
uniform flow conditions in flume experiments with a constant slope
s = 5× 10−4 (Koziol, 2010; Kozioł, 2013; Kozioł and Kubrak,
2015).

No. Case 1 Case 2
H (m) Q (m3 s−1) H (m) Q (m3 s−1)

1 0.170 0.018 0.209 0.039
2 0.177 0.019 0.212 0.039
3 0.183 0.021 0.225 0.042
4 0.195 0.023 0.238 0.045
5 0.211 0.026 0.244 0.048
6 0.225 0.030 0.255 0.050
7 0.243 0.035 0.262 0.053
8 0.270 0.041 0.274 0.056
9 0.289 0.046 0.282 0.058
10 0.284 0.059

A2 Ritobacken field experiment

Table A2. Cross section for the Ritobacken Brook. Original data
collected by Västilä et al. (2016).

Station (m) 0.20 0.35 0.40 0.60 0.80 1.20 2.00 2.20 2.40 3.40 5.00 6.40 6.60 7.00
Elevation (m) 1.08 1.07 1.15 1.12 1.07 0.93 0.61 0.54 0.50 0.48 0.49 0.47 0.45 0.33

Station (m) 7.20 7.40 7.60 7.80 8.00 8.40 8.60 8.80 9.00 9.60 9.80 10.00 10.20
Elevation (m) 0.20 0.10 0.07 0.01 0.00 0.04 0.20 0.41 0.53 0.78 0.82 0.90 0.94

Obtained from field surveys for 2010–2012 for a 190 m river reach and averaged to obtain a single cross section; the number of measurement points was reduced
using the algorithm of recursive Douglas–Peucker polyline simplification (Schwanghart, 2010), with a tolerance of 0.01 m.
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Table A3. Data for the Ritobacken case study used in calculations: water depth H , flow rate Q, energy grade slope S, inundated vegetation
height hv,inud., and blockage factor BX . Water depths H were obtained by averaging upstream and downstream depths. Original data
collected by Västilä et al. (2016).

Case No. H (m) Q (m3 s−1) S (–) hv,inud. (m) BX (–)

Spring 2011 1 0.611 0.349 9.0 ×10−4 0.073 0.189
2 0.647 0.440 8.0× 10−4 0.081 0.197
3 0.694 0.565 7.0× 10−4 0.086 0.185
4 0.738 0.709 7.0× 10−4 0.086 0.166
5 0.785 0.844 6.0× 10−4 0.086 0.148
6 0.841 1.022 6.0× 10−4 0.086 0.130

Autumn 2011 1 0.583 0.184 1.6× 10−3 0.147 0.369
2 0.640 0.244 1.6× 10−3 0.204 0.433
3 0.698 0.316 1.7× 10−3 0.257 0.472
4 0.731 0.366 1.7× 10−3 0.288 0.487
5 0.776 0.459 1.8× 10−3 0.326 0.500
6 0.838 0.565 1.7× 10−3 0.374 0.527
7 0.894 0.684 1.6× 10−3 0.414 0.504
8 0.928 0.788 1.7× 10−3 0.438 0.504
9 0.968 0.901 1.7× 10−3 0.467 0.502

10 1.021 1.053 1.7× 10−3 0.505 0.500
11 1.071 1.218 1.7× 10−3 0.535 0.478
12 1.114 1.396 1.7× 10−3 0.552 0.476

Spring 2012 1 0.556 0.257 1.5 ×10−3 0.096 0.271
2 0.606 0.333 1.5× 10−3 0.135 0.332
3 0.629 0.402 1.5× 10−3 0.153 0.351
4 0.700 0.521 1.4× 10−3 0.201 0.379
5 0.743 0.635 1.4× 10−3 0.218 0.375
6 0.796 0.735 1.2× 10−3 0.233 0.362
7 0.834 0.872 1.3× 10−3 0.236 0.342
8 0.891 1.053 1.3× 10−3 0.236 0.311
9 0.944 1.218 1.3× 10−3 0.236 0.285

10 0.997 1.396 1.4× 10−3 0.236 0.264
11 1.047 1.587 1.4× 10−3 0.236 0.246
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Appendix B: Box-plots for analyzed methods and cases

Figure B1. DCM Manning results for flume case 1: (a) aver-
aged relative confidence widths W as a function of observation
set size m used for model identification; (b) percentage of verifi-
cation points enclosed by the confidence intervals (100% denotes
all points within intervals, box spans over the 25 % and 75 % quan-
tiles, the median is given with horizontal line, whiskers indicate the
result extent, and cross marks are for extreme values).

Figure B2. Pasche results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B3. Mertens results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B4. GTLM results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).
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Figure B5. PTLM results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B6. DCM Manning results for flume case 1: (a) aver-
aged relative confidence widths W as a function of observation
set size m used for model identification; (b) percentage of verifi-
cation points enclosed by the confidence intervals (100% denotes
all points within intervals, box spans over the 25 % and 75 % quan-
tiles, the median is given with horizontal line, whiskers indicate the
result extent, and cross marks are for extreme values).

Figure B7. Pasche results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B8. Mertens results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).
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Figure B9. GTLM results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B10. PTLM results for flume case 1: (a) averaged relative
confidence widths W as a function of observation set size m used
for model identification; (b) percentage of verification points en-
closed by the confidence intervals (100% denotes all points within
intervals, box spans over the 25 % and 75 % quantiles, the median
is given with horizontal line, whiskers indicate the result extent, and
cross marks are for extreme values).

Figure B11. Manning DCM results for the Ritobacken case study,
spring 2011: (a) averaged relative confidence widths W as a func-
tion of observation set size m used for model identification; (b)
percentage of verification points enclosed by the confidence inter-
vals (100% denotes all points within intervals, box spans over the
25 % and 75 % quantiles, the median is given with horizontal line,
whiskers indicate the result extent, and cross marks are for extreme
values).

Figure B12. GTLM results for the Ritobacken case study, spring
2011: (a) averaged relative confidence widths W as a function of
observation set size m used for model identification; (b) percentage
of verification points enclosed by the confidence intervals (100%
denotes all points within intervals, box spans over the 25 % and
75 % quantiles, the median is given with horizontal line, whiskers
indicate the result extent, and cross marks are for extreme values).
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Figure B13. STLM results for the Ritobacken case study,
spring 2011: (a) averaged relative confidence widths W as a func-
tion of observation set sizem used for model identification; (b) per-
centage of verification points enclosed by the confidence inter-
vals (100% denotes all points within intervals, box spans over the
25 % and 75 % quantiles, the median is given with horizontal line,
whiskers indicate the result extent, and cross marks are for extreme
values).

Figure B14. PTLM results for the Ritobacken case study,
spring 2011: (a) averaged relative confidence widths W as a func-
tion of observation set sizem used for model identification; (b) per-
centage of verification points enclosed by the confidence inter-
vals (100% denotes all points within intervals, box spans over the
25 % and 75 % quantiles, the median is given with horizontal line,
whiskers indicate the result extent, and cross marks are for extreme
values).

Figure B15. Manning DCM results for the Ritobacken case study,
autumn 2011: (a) averaged relative confidence widths W as a func-
tion of observation set sizem used for model identification; (b) per-
centage of verification points enclosed by the confidence inter-
vals (100% denotes all points within intervals, box spans over the
25 % and 75 % quantiles, the median is given with horizontal line,
whiskers indicate the result extent, and cross marks are for extreme
values).

Figure B16. GTLM results for the Ritobacken case study, autumn
2011: (a) averaged relative confidence widthsW as a function of ob-
servation set sizem used for model identification; (b) percentage of
verification points enclosed by the confidence intervals (100% de-
notes all points within intervals, box spans over the 25 % and 75 %
quantiles, the median is given with horizontal line, whiskers indi-
cate the result extent, and cross marks are for extreme values).
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Figure B17. STLM results for the Ritobacken case study, autumn
2011: (a) averaged relative confidence widthsW as a function of ob-
servation set sizem used for model identification; (b) percentage of
verification points enclosed by the confidence intervals (100% de-
notes all points within intervals, box spans over the 25 % and 75 %
quantiles, the median is given with horizontal line, whiskers indi-
cate the result extent, and cross marks are for extreme values).

Figure B18. Manning DCM results for the Ritobacken case study,
spring 2012: (a) averaged relative confidence widths W as a func-
tion of observation set sizem used for model identification; (b) per-
centage of verification points enclosed by the confidence inter-
vals (100% denotes all points within intervals, box spans over the
25 % and 75 % quantiles, the median is given with horizontal line,
whiskers indicate the result extent, and cross marks are for extreme
values).

Figure B19. GTLM results for the Ritobacken case study, spring
2012: (a) averaged relative confidence widths W as a function of
observation set size m used for model identification; (b) percentage
of verification points enclosed by the confidence intervals (100%
denotes all points within intervals, box spans over the 25 % and
75 % quantiles, the median is given with horizontal line, whiskers
indicate the result extent, and cross marks are for extreme values).

Figure B20. STLM results for the Ritobacken case study, spring
2012: (a) averaged relative confidence widths W as a function of
observation set size m used for model identification; (b) percentage
of verification points enclosed by the confidence intervals (100%
denotes all points within intervals, box spans over the 25 % and
75 % quantiles, the median is given with horizontal line, whiskers
indicate the result extent, and cross marks are for extreme values).
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Figure B21. PTLM results for the Ritobacken case study, spring
2012: (a) averaged relative confidence widths W as a function of
observation set size m used for model identification; (b) percentage
of verification points enclosed by the confidence intervals (100%
denotes all points within intervals, box spans over the 25 % and
75 % quantiles, the median is given with horizontal line, whiskers
indicate the result extent, and cross marks are for extreme values).

Hydrol. Earth Syst. Sci., 24, 4135–4167, 2020 https://doi.org/10.5194/hess-24-4135-2020



A. Kiczko et al.: Predicting discharge capacity of vegetated compound channels 4165

Data availability. Measurement data used in this research are pro-
vided in the Appendix.

Author contributions. AK was responsible for the manuscript text,
implementation of discharge formulas in Matlab, and the numeri-
cal experiments; KV was responsible for the manuscript text, the
methodology for two-layer models, the Ritobacken field experi-
ment, and analysis of numerical outputs; AK was responsible for the
flume experiments and, together with JK, the Pasche and Martens
methodology including the computation algorithm; EK and MK
were responsible for the flume experiments, measurement data anal-
ysis, and improving the article’s text.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge the Academy of Finland
(grant no. 133113), Maa- ja vesitekniikan tuki ry, and the Finnish
Ministry of Agriculture and Forestry for funding the collection of
the original field data.

Financial support. This research has been supported by
the National Science Centre (Poland) (Miniatura 1, grant
no. 2017/01/X/ST10/00987), the Maa- ja vesitekniikan tuki ry
(Finland) (grant no. 33271), the Maj and Tor Nessling Foundation
(grant no. 201800045), and the National Centre for Research
and Development (Poland) (grant no. 347837/11/NCBR/2017,
“Technical innovations and system of monitoring, forecasting and
planning of irrigation and drainage for precise water management
on the scale of drainage/irrigation system”).

Review statement. This paper was edited by Insa Neuweiler and re-
viewed by three anonymous referees.

References

Aberle, J. and Järvelä, J.: Flow resistance of emergent rigid and
flexible floodplain vegetation, J. Hydraul. Res., 51, 33–45, 2013.

Abril, J. B. and Knight, D. W.: Stage-discharge prediction for rivers
in flood applying a depth-averaged model, J. Hydraul. Res., 42,
616–629, 2004.

Abu-Aly, T. R., Pasternack, G. B., Wyrick, J. R., Barker,
R., Massa, D., and Johnson, T.: Effects of LiDAR-
derived, spatially distributed vegetation roughness on two-
dimensional hydraulics in a gravel-cobble river at flows of
0.2 to 20 times bankfull, Geomorphology, 206, 468–482,
https://doi.org/10.1016/j.geomorph.2013.10.017, 2014.

Antonarakis, A. S., Richards, K. S., Brasington, J., and
Bithell, M.: Leafless roughness of complex tree morphol-
ogy using terrestrial lidar, Water Resour. Res., 45, W10401,
https://doi.org/10.1029/2008WR007666, 2009.

Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning’s
roughness coefficients for natural channels and flood plains,
vol. 2339, United States Geological Survey Water-Supply Paper
2339, https://doi.org/10.3133/wsp2339, 1989.

Baptist, M. J., Babovic, V., Rodriguez Uthurburu, J., Keijzer, M.,
Uittenbogaard, R. E., Mynett, A., and Verwey, A.: On inducing
equations for vegetation resistance, J. Hydraul. Res., 45, 435–
450, 2007.

Berends, K. D., Straatsma, M. W., Warmink, J. J., and Hulscher,
S. J. M. H.: Uncertainty quantification of flood mitigation
predictions and implications for interventions, Nat. Hazards
Earth Syst. Sci., 19, 1737–1753, https://doi.org/10.5194/nhess-
19-1737-2019, 2019.

Berends, K. D., Ji, U., Penning, W., and Warmink, J. J.: In-
verse modelling for vegetation parameters estimation,
Human intervention in rivers: quantifying the uncertainty
of hydraulic model predictions, PhD thesis, 106–127,
https://doi.org/10.3990/1.9789036548823, 2019.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, 1992.

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson,
B. A., and Zyvoloski, G. A.: Generalized likelihood uncertainty
estimation (GLUE) using adaptive Markov Chain Monte Carlo
sampling, Adv. Water Resour., 31, 630–648, 2008.

Budiman, M.: Latin Hypercube Sampling, available at:
https://www.mathworks.com/matlabcentral/fileexchange/
4352-latin-hypercube-sampling, last access: 16 January 2017.

Casas, A., Lane, S. N., Yu, D., and Benito, G.: A method for param-
eterising roughness and topographic sub-grid scale effects in hy-
draulic modelling from LiDAR data, Hydrol. Earth Syst. Sci., 14,
1567–1579, https://doi.org/10.5194/hess-14-1567-2010, 2010.

Chaudhary, H. P., Isaac, N., Tayade, S. B., and Bhosekar, V. V.:
Integrated 1D and 2D numerical model simulations for flushing
of sediment from reservoirs, ISH J. Hydraul. Eng., 25, 19–27,
https://doi.org/10.1080/09715010.2018.1423580, 2019.

Dalledonne, G. L., Kopmann, R., and Brudy-Zippelius, T.:
Uncertainty quantification of floodplain friction in hydro-
dynamic models, Hydrol. Earth Syst. Sci., 23, 3373–3385,
https://doi.org/10.5194/hess-23-3373-2019, 2019.

Forzieri, G., Moser, G., Vivoni, E. R., Castelli, F., and Canovaro,
F.: Riparian vegetation mapping for hydraulic roughness estima-
tion using very high resolution remote sensing data fusion, J. Hy-
draul. Eng., 136, 855–867, 2010.

Forzieri, G., Castelli, F., and Preti, F.: Advances in remote sensing
of hydraulic roughness, Int. J. Remote Sens., 33, 630–654, 2012.

Fread, D.: Flood routing models and the Manning n, in: Inter-
national Conference for Centennial of Manning’s Formula and
Kuichling’s Rational Formula, 699–708, 1989.

Freni, G. and Mannina, G.: Bayesian approach for un-
certainty quantification in water quality modelling: The
influence of prior distribution, J. Hydrol., 392, 31–39,
https://doi.org/10.1016/j.jhydrol.2010.07.043, 2010.

Green, J. C.: Comparison of blockage factors in modelling the re-
sistance of channels containing submerged macrophytes, River
Res. Appl., 21, 671–686, 2005.

Her, Y. and Chaubey, I.: Impact of the numbers of observations and
calibration parameters on equifinality, model performance, and

https://doi.org/10.5194/hess-24-4135-2020 Hydrol. Earth Syst. Sci., 24, 4135–4167, 2020

https://doi.org/10.1016/j.geomorph.2013.10.017
https://doi.org/10.1029/2008WR007666
https://doi.org/10.3133/wsp2339
https://doi.org/10.5194/nhess-19-1737-2019
https://doi.org/10.5194/nhess-19-1737-2019
https://doi.org/10.3990/1.9789036548823
https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling
https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling
https://doi.org/10.5194/hess-14-1567-2010
https://doi.org/10.1080/09715010.2018.1423580
https://doi.org/10.5194/hess-23-3373-2019
https://doi.org/10.1016/j.jhydrol.2010.07.043


4166 A. Kiczko et al.: Predicting discharge capacity of vegetated compound channels

output and parameter uncertainty, Hydrol. Process., 29, 4220–
4237, https://doi.org/10.1002/hyp.10487, 2015.

Her, Y. and Seong, C.: Responses of hydrological model equi-
finality, uncertainty, and performance to multi-objective
parameter calibration, J. Hydroinform., 20, 864–885,
https://doi.org/10.2166/hydro.2018.108, 2018.

Jalonen, J. and Järvelä, J.: Estimation of drag forces caused by nat-
ural woody vegetation of different scales, J. Hydrodyn., 26, 608–
623, 2014.

Jalonen, J. and Järvelä, J.: Erratum to Estimation of drag forces
caused by natural woody vegetation of different scales, J. Hydro-
dyn., 27, p. 319, https://doi.org/10.1016/S1001-6058(15)60487-
5, 2015.

Jalonen, J., Järvelä, J., Virtanen, J.-P., Vaaja, M., Kurkela, M., and
Hyyppä, H.: Determining characteristic vegetation areas by ter-
restrial laser scanning for floodplain flow modeling, Water, 7,
420–437, 2015.

Järvelä, J.: Determination of flow resistance caused
by non-submerged woody vegetation, International
Journal of River Basin Management, 2, 61–70,
https://doi.org/10.1080/15715124.2004.9635222, 2004.

Kalinowska, M. B., Västilä, K., Kozioł, A. P., Rowinski, P. M.,
Kiczko, A., and Kubrak, J.: Modelling of velocity distribu-
tion in a channel partly covered by submerged vegetation, in:
Recent Trends in Environmental Hydraulics, edited by: Kali-
nowska, M. B., Mrokowska, M. M., and Rowinski, P. M., Geo-
Planet: Earth and Planetary Sciences. Springer, Cham, 91–101,
https://doi.org/10.1007/978-3-030-37105-0_8, 2020.

Kałuza, T., Sojka, M., Strzeliński, P., and Wrózyński, R.: Ap-
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Kiczko, A. and Mirosław-Świa̧tek, D.: Impact of Un-
certainty of Floodplain Digital Terrain Model on 1D
Hydrodynamic Flow Calculation, Water, 10, 1308,
https://doi.org/10.3390/w10101308, 2018.

Kiczko, A., Kozioł, A., Kubrak, J., Krukowski, M., Kubrak, E., and
Brandyk, A.: Identification of vegetation parameters for com-
pound channel discharge as inverse problem, Annals of Warsaw
University of Life Sciences – SGGW, Land Reclamation, 49,
255–267, https://doi.org/10.1515/sggw-2017-0020, 2017.

Kiczko, A., Szela̧g, B., Kozioł, A., Krukowski, M., Kubrak, E.,
Kubrak, J., and Romanowicz, R. J.: Optimal Capacity of a
Stormwater Reservoir for Flood Peak Reduction, J. Hydrol.
Eng., 23, 4018008, https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001636, 2018.

Klopstra, D., Barneveld, H. J., Van Noortwijk, J. M., and Van
Velzen, E. H.: Analytical model for hydraulic roughness of sub-
merged vegetation, in: Proceedings of the 27th Congress of
the International Association for Hydraulic Research, Theme
A, Managing Water: Coping with Scarcity and Abundance, San
Francisco, 775–780, 1997.

Knight, D. W., Omran, M., and Tang, X.: Modeling depth-averaged
velocity and boundary shear in trapezoidal channels with sec-
ondary flows, J. Hydraul. Eng., 133, 39–47, 2007.

Koziol, A.: Czasowa i przestrzenna makroskala turbulencji stru-
mienia w dwudzielnym trapezowym korycie z drzewami na ter-
enach zalewowych, Acta Scientiarum Polonorum, Formatio Cir-
cumiectus, 9, 25–34, 2010.

Kozioł, A. P.: Three-dimensional turbulence intensity in a com-
pound channel, J. Hydraul. Eng., 139, 852–864, 2013.

Kozioł, A. P. and Kubrak, J.: Measurements of Turbulence
Structure in a Compound Channel, in: Rivers–Physical,
Fluvial and Environmental Processes, Springer, 229–254,
https://doi.org/10.1007/978-3-319-17719-9_10, 2015.

Kozioł, A. P., Kubrak, J., and Ciepielowski, A.: A hydraulic model
of discharge capacity for rivers with forest vegetation on flood
lowland, in: Model application for wetlands hydrology and hy-
draulics, edited by: Kubrak, J., Okruszko, T., and Ignar, S., Cen-
ter of Excellence in Wetland Hydrology Wethydro, Warsaw, War-
saw Agricultural University Press, Warsaw, 103–111, 2004.

Kubrak, E., Kubrak, J., Kozioł, A., Kiczko, A., and Krukowski,
M.: Apparent Friction Coefficient Used for Flow Calcu-
lation in Straight Compound Channels, Water, 11, 745,
https://doi.org/10.3390/w11040745, 2019a.
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