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Abstract. Snow models are usually evaluated at sites pro-
viding high-quality meteorological data, so that the uncer-
tainty in the meteorological input data can be neglected when
assessing model performances. However, high-quality input
data are rarely available in mountain areas and, in practical
applications, the meteorological forcing used to drive snow
models is typically derived from spatial interpolation of the
available in situ data or from reanalyses, whose accuracy can
be considerably lower. In order to fully characterize the per-
formances of a snow model, the model sensitivity to errors in
the input data should be quantified.

In this study we test the ability of six snow models to re-
produce snow water equivalent, snow density and snow depth
when they are forced by meteorological input data with grad-
ually lower accuracy. The SNOWPACK, GEOTOP, HTES-
SEL, UTOPIA, SMASH and S3M snow models are forced,
first, with high-quality measurements performed at the ex-
perimental site of Torgnon, located at 2160 ma.s.l. in the
Italian Alps (control run). Then, the models are forced by
data at gradually lower temporal and/or spatial resolution,
obtained by (i) sampling the original Torgnon 30 min time
series at 3, 6, and 12 h, (ii) spatially interpolating neighbour-
ing in situ station measurements and (iii) extracting infor-
mation from GLDAS, ERAS and ERA-Interim reanalyses at

the grid point closest to the Torgnon site. Since the selected
models are characterized by different degrees of complexity,
from highly sophisticated multi-layer snow models to sim-
ple, empirical, single-layer snow schemes, we also discuss
the results of these experiments in relation to the model com-
plexity.

The results show that, when forced by accurate 30 min res-
olution weather station data, the single-layer, intermediate-
complexity snow models HTESSEL and UTOPIA provide
similar skills to the more sophisticated multi-layer model
SNOWPACK, and these three models show better agree-
ment with observations and more robust performances over
different seasons compared to the lower-complexity models
SMASH and S3M. All models forced by 3-hourly data pro-
vide similar skills to the control run, while the use of 6- and
12-hourly temporal resolution forcings may lead to a reduc-
tion in model performances if the incoming shortwave radi-
ation is not properly represented. The SMASH model gen-
erally shows low sensitivity to the temporal degradation of
the input data. Spatially interpolated data from neighbouring
stations and reanalyses are found to be adequate forcings,
provided that temperature and precipitation variables are not
affected by large biases over the considered period. However,
a simple bias-adjustment technique applied to ERA-Interim
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temperatures allowed all models to achieve similar perfor-
mances to the control run. Regardless of their complexity, all
models show weaknesses in the representation of the snow
density.

1 Introduction

A wide range of snow models with different degrees of com-
plexity have been developed for hydrological applications,
avalanche risk forecasting and climate studies. Some of them
are also integrated within modelling chains for numerical
weather forecasts or climate modelling. The degree of com-
plexity of the snow schemes depends on the specific pur-
pose for which they have been developed (Magnusson et al.,
2015). Simple temperature-index snow models are employed
in applications requiring a coarse estimate of snow depth
or snow water equivalent. Physical, energy-balance, but still
rather simple snow models are often used in complex mod-
elling chains, i.e. in numerical weather prediction systems
and in Earth system models, to limit the computational costs.
Sophisticated multi-layer snow models are typically used to
reconstruct the vertical structure of the snowpack with a high
level of detail and high accuracy, as needed for avalanche
warning applications.

Snow models are generally evaluated at a number of sites
providing high-quality forcing and verification data. Exten-
sive literature documents the underlying physics and the per-
formances of single snow models (e.g. Dutra et al., 2010;
Vionnet et al., 2012; Bartelt and Lehning, 2002), and sev-
eral studies compare a limited number of snow models with
each other (Boone and Etchevers, 2001; Kumar et al., 2013).
A few large intercomparison studies benchmarked multiple
snow models, including the PILPS2d, PILPS2e, Rhone-Agg,
SNOWMIP and SNOWMIP2 coordinated intercomparison
projects.

PILPS2d (Slater et al., 2001; Schlosser et al., 2000) and
PILPS2e (Bowling et al., 2003) aimed at evaluating snow
water equivalent (SWE) simulations provided by different
land surface schemes (LSSs) in Russian and Swedish snow-
dominated catchments respectively. PILPS2d evaluated 21
land surface schemes forced by 18 years of observed me-
teorological data from a grassland catchment in Russia to in-
vestigate the reasons for model scatter in the output snow-
pack variables. Weaknesses in reproducing mid-season abla-
tion were shown to produce systematic scatter between the
models. Albedo and fractional snow cover were both key
variables for an accurate representation of the amount of en-
ergy absorbed by the snowpack. The ablation during the early
snow season is another major source of divergence between
models: in early winter a thin snow cover is highly sensi-
tive to changes in the forcings, and the resulting differences
in snowpack conditions tend to persist throughout the whole
snow season if temperatures remain too cold for melt.
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PILPS2e showed the difficulty of reproducing spring melt-
ing. Errors in winter snow sublimation mainly impacted the
runoff simulations, while the retention of meltwater within
the snowpack affected the timing of the peak in runoff rather
than its magnitude. For both PILPS2d and PILPS2e the dif-
ferences in model complexity did not fully explain the differ-
ences in model results.

The Rhone-AGG experiment (Boone et al., 2004) em-
ployed 15 LSSs to address the impact of the model struc-
ture and of the spatial resolution of the forcing data on the
simulations of the water balance. LSSs with an explicit (bulk
or multi-layer) snow scheme provided better SWE simula-
tions than LSSs with a composite snow scheme (i.e. with
a mixed snow—soil-vegetation layer). LSSs with composite
snow schemes showed early snow ablation and early runoff
peaks compared to observations, owing to missing represen-
tation of key processes such as ripening and to inadequate
representation of albedo and thermal conductivity in a mixed
snow—soil-vegetation layer. SWE was strongly affected by
the spatial resolution of the meteorological forcing. In fact,
when high-resolution meteorological forcings were aggre-
gated from 8km to a coarser grid of 1° (about 69 km), the
simulated SWE was reduced by 25 %—60% in 13 out of
15 LSSs. A single model explicitly considering subgrid el-
evation effects on the forcing was found to minimize the im-
pact of scaling on the simulated snow water equivalent.

SnowMIP (Etchevers et al., 2002, 2004) performed an
intercomparison of snow models of different complexities,
used for different applications, including hydrology, global
circulation models, snow monitoring, snow physics and
avalanche forecasting, with the aim of identifying key pro-
cesses for each application. Model complexity was found to
have a strong impact on the simulation of the net longwave
radiation, which strongly affects snowmelt dynamics. Mod-
els relying on the explicit simulation of the internal snow pro-
cesses represented snow surface temperature and the long-
wave radiation budget more accurately. By contrast, model
complexity had a smaller impact on the net shortwave ra-
diation, whose accuracy was dependent on the simulation
of albedo. Complex models taking into account snow mi-
crostructure were able to properly represent the albedo vari-
ability (as a function of grain size and type), but simple snow
models with an appropriate parameterization of albedo dy-
namics also guaranteed reliable estimates of this variable.

SnowMIP2 (Rutter et al., 2009) built upon SnowMIP and
focused on the simulation of snowpack properties in forested
areas compared to open sites, across different climatic condi-
tions. Single models showed low correlations between differ-
ent years in forested sites and low correlations also between
forested and open sites, suggesting that no single best model
for all years and all sites could be easily identified. Calibra-
tion allowed reduction of root mean square error (RMSE)
in forested sites, but the benefits from calibration at forested
sites did not transfer to nearby non-forested sites.
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The mentioned studies shed light on the critical snow pro-
cesses that produce the largest differences between LSS sim-
ulations. However, they could not clearly define an optimal
set of parameterizations for a given application, such as nu-
merical weather predictions and climate simulations, or the
minimum level of model complexity needed to achieve sat-
isfactory skills in a given application (Slater et al., 2001).
A step forward in this direction was obtained by employ-
ing a single model with several options to represent each
of the most snow-relevant processes and then testing the ef-
fect of parameterizations with different degrees of complex-
ity on the skill of the model (Essery et al., 2013; Clark et al.,
2011). The best results were obtained with models having a
prognostic representation of snow albedo and density, with
at least a simple representation of water retention and re-
freezing in the snowpack. The ongoing coordinated initiative
ESM-SnowMIP (Krinner et al., 2018) is expected to provide
important information on the key snow processes that should
be included in global climate models.

A common characteristic among past model intercompar-
ison initiatives is the interest in testing the skills of the mod-
els in experimental sites where high-quality meteorological
forcings are available, to perform a controlled evaluation of
the model performances. However, such a context does not
represent the typical conditions occurring in practical appli-
cations, where snow models are run over large climate model
grid cells, and they are coupled to atmospheric models that
likely provide biased driving data (Essery et al., 2013). More-
over, reliable modelling of snowpack dynamics in mountain
regions is hindered by the high spatial and temporal variabil-
ity of the meteorological forcings, entailing that observations
and reanalysis data at a given location are scarcely repre-
sentative of the conditions of the surrounding area. A recent
review paper on the European mountain cryosphere (Benis-
ton et al., 2018) states that disentangling the uncertainties
related to the model structure from those related to the mete-
orological input data is one of the major challenges for snow
modelling at the catchment scale relevant for hydrological
applications. A sensitivity analysis performed on a single,
physically based snow model showed that the uncertainty of
snow simulations due to the forcing can be comparable to or
even larger than the uncertainty due to the model structure
(Raleigh et al., 2015). That analysis also showed that biases
in the forcing data have a larger effect than random errors.
Building on the results of previous studies, we now expand
the perspective by considering an ensemble of snow mod-
els with different degrees of complexity, and we investigate
their sensitivity to the quality of the meteorological forcing,
with the aim of providing information on their performances
when they are forced with inputs at gradually lower temporal
and/or spatial resolution.

We devised a set of experiments with six snow models
with different degrees of complexity in the Alpine measure-
ment site of Torgnon, located at 2160 ma.s.l. in the Aosta
Valley, Italy. First, we evaluate each model forced by accu-
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rate station measurements at 30 min temporal resolution (we
refer to this as “optimal” forcing). Second, we test the re-
sponse of each model when forced by data at gradually lower
temporal resolution and/or lower accuracy. To this end, we
employ data from spatial interpolation of neighbouring sta-
tion measurements and from three gridded global reanaly-
ses, and we extract the meteorological time series at the grid
point closest to the Torgnon station. The site of Torgnon has
been selected because it provides high-quality meteorolog-
ical measurements, in particular for precipitation which is
usually poorly measured in high-elevation sites, and a de-
tailed characterization of snowpack properties in terms of
depth, mass and surface temperature. Moreover, the Torgnon
site usually experiences low wind speeds, so that the snow-
drift effect is very limited. The combination of these three
conditions is rare in high-elevation measurement sites but
essential to reduce the uncertainties on input and validation
data and to allow for a reliable estimation of the error due to
model structure. Repeating this effort at multiple test sites,
for example in other alpine sites at different elevations and
latitudes, or at non-alpine sites (i.e. in the Arctic), would ex-
pand the results provided by the present paper. Of course, this
would come at the cost of larger uncertainties in the forcings,
which propagate across the modelling exercise and compli-
cate the interpretation and the comparison of the model out-
puts. For this reason, we leave this more complex investi-
gation for a separate paper. Here we employ a multi-model
and multi-forcing framework to (i) assess the performances
of each snow model when forced with inputs at gradually
lower temporal and/or spatial resolution, (ii) discuss the re-
lation between model performances and model complexity,
and (iii) provide model users with information for practical
applications.

This paper is structured as follows: Sect. 2 presents the
snow models employed in the study, while Sect. 3 describes
the station of Torgnon and the datasets employed for the ex-
periments. Section 4 describes in detail the set of 12 devised
experiments and, for each experiment, the method employed
to derive the forcing. Section 5 focuses on the evaluation of
snow model outputs against observations, and finally Sects. 6
and 7 discuss the results and draw the conclusions.

2  Snow models

The six models considered in this study, together with a com-
pact overview of their characteristics, are listed in Table 1 and
summarized in the following.

SNOWPACK is a highly sophisticated, multi-purpose
snow and land-surface model, with a detailed description of
the mass and energy exchange between the snow, the atmo-
sphere and optionally the vegetation cover and the soil. It
provides a detailed description of snow properties, including
weak layer characterization, phase changes and water trans-
port in snow (Hirashima et al., 2010). A particular feature is
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Table 1. Features of snow models in terms of model complexity following Slater et al. (2001), snow albedo («) parameterization, explicit
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representation of meltwater retention and refreezing in the snowpack (My) and a main reference.

Snow model ~ Complexity a* My Reference

SNOWPACK  multi-layer 111  Yes Bartelt and Lehning (2002)
GEOTOP multi-layer 011 Yes Endrizzi et al. (2014)
HTESSEL single-layer 110 Yes Dutraetal. (2012)
UTOPIA single-layer 110 Yes Cassardo (2015)

SMASH up to three layers 110 No  Piazzi et al. (2018, 2019)
S3M single-layer 010 No  Bonietal. (2010)

* The three-digit combinations of 1 and 0 represent the dependence or not of the albedo parameterization
respectively on surface temperature, snow age, and grain size. 000 means fixed albedo.

the treatment of soil and snow as a continuum with a choice
of a few up to several hundred layers (Bartelt and Lehning,
2002).

GEOTOP 2.0 is a sophisticated snow and hydrological
process-based model. Its strength is an integrated approach
that takes into account the interactions between hydrological,
cryospheric and geomorphological processes (Endrizzi et al.,
2014). The snowpack evolution is dynamically managed by
the model through a snow layering scheme which splits and
merges the layers depending on their mass. The model also
takes into account snow metamorphism and water percola-
tion into the snowpack.

HTESSEL is the land-surface model of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) Inte-
grated Forecasting System (IFS), controlling the evolution
of the snow and soil fields and the exchanges of heat and
moisture between the land surface and the atmosphere above
(Balsamo et al., 2009). HTESSEL includes a process-based
single-layer snow scheme to represent the grid cell fraction
(tile) that is covered by snow (Dutra et al., 2010). In this
scheme, the snowpack is characterized by a prognostic tem-
perature, mass, density and albedo, updated at each time step.
The liquid water content is diagnosed based on the other
snow fields (temperature, density and mass), allowing repre-
sentation of the interception of rainfall by the snowpack and
internal melting/refreezing processes (Dutra et al., 2012).

UTOPIA is a land-surface process model representing the
physical processes at the interface between surface, vegeta-
tion and soil layers, including a scheme which accounts for
the main processes occurring in the snowpack (Cassardo,
2015). The snowpack is considered a single homogenous
layer placed on the land surface, and its mass, thermal and
hydrological balances are analysed. The model takes into ac-
count the partition of soil coverage fractions (bare soil, veg-
etated soil, soil or vegetation covered by snow) and is able to
simulate snow water equivalent, depth, density, albedo and
coverage. Snow metamorphism is parameterized.

SMASH is a two-layer snow model that reproduces some
of the main physical processes occurring within the snow-
pack, including accumulation, density dynamics, melting,
sublimation, radiative balance, heat and mass exchange (Pi-
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azzi et al., 2019). The model can be coupled with multivari-
able data assimilation schemes (Piazzi et al., 2018, 2019)
allowing the joint assimilation of several snow-related ob-
servations to produce SWE and runoff estimates. To facili-
tate the implementation of the assimilation algorithms, the
complexity of the modelling scheme is limited (e.g. liquid
water storage and refreezing process are neglected). In the
present study no assimilation scheme has been implemented
in SMASH (open-loop configuration).

S3M is a spatially distributed, empirical snow model re-
quiring only a few input variables (precipitation, tempera-
ture, incoming shortwave radiation and air humidity) to com-
pute the water mass conservation equation and to produce
a first estimate of SWE (Boni et al., 2010). A second, op-
tional, independent estimate of the SWE field, obtained by
combining spatial interpolation of surface snow depth obser-
vations and MODIS snow cover, is assimilated into the snow
model using a nudging scheme. The result of the data assimi-
lation is an updated SWE map exploiting different sources of
information, modelling, remote sensing and surface station
network measurements. In the use of the model for the ex-
periments proposed in this paper the assimilation scheme is
switched off and the model runs in open-loop configuration.

In the proposed experiment all the models are used in their
default configurations, so no special tuning of the model pa-
rameters is made to improve the results over the Torgnon site.
All the models calculate snow water equivalent and snow
density as primary variables, while snow depth is derived
from them.

3 Study site and data
3.1 Torgnon station data

Meteorological forcing data are provided by a fully
equipped weather observation station located at Torgnon,
2160ma.s.l. (45°50'N, 7°34’E) in the Aosta Valley,
western Italian Alps. The experimental site belongs to
the ICOS (IT-Tor, https://www.icos-cp.eu/, last access:
20 June 2020) and LTER (lter_eu_it_077, https://Iter-europe.
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net/lter-europe, last access: 20 June 2020) networks, and it is
described in detail by Galvagno et al. (2013), Filippa et al.
(2015) and Piazzi et al. (2019). The location is a subalpine
grassland, an abandoned pasture located a few kilometres
from the village of Torgnon. The site is characterized by
an intra-Alpine semi-continental climate, with mean annual
temperature and precipitation of 3.1 °C and 880 mm respec-
tively (Galvagno et al., 2013). During the cold season most
precipitation falls as snow and, on average, from the end of
October to late May, the site is snow covered with snow
depths reaching 90-120 cm (Galvagno et al., 2013). Wind-
induced phenomena are limited in this site, since it experi-
ences low winds, with an average half-hourly wind speed of
1.6+ 1.3ms™! over the 2012-2014 period.

The station measures all the input variables needed to
force the snow models, including air temperature, total pre-
cipitation, shortwave (SWIN) and longwave (LWIN) incom-
ing radiation, wind speed, relative humidity, surface pres-
sure and ground temperature at 2 cm depth (the last variable
is employed by the SNOWPACK model only). These vari-
ables are measured at high frequency and then aggregated
at 30 min temporal resolution. Precipitation measurements
are performed with an OTT Pluvio2 Weighing Rain Gauge,
which employs a weight-based technique to measure both
liquid and solid fractions (i.e. the total precipitation amount).
This is a consolidated technique that provides higher confi-
dence in the reliability of precipitation data than standard rain
gauges (Kochendorfer et al., 2017a). Despite the station be-
ing equipped with a reliable pluviometer and being exposed
to low wind speeds, possible issues of precipitation under-
catch can be present. The uncertainty associated with pre-
cipitation measurement has been estimated and the impact
of the uncertainty of the precipitation input on snow model
simulations is assessed and discussed in Appendix A. As the
OTT pluviometer has been operational since mid-2012, in
our analysis we consider the dataset spanning the period from
1 October 2012 to 30 June 2017, covering five complete snow
seasons.

The Torgnon station also provides snow-related variables
useful for model evaluation, including snow depth measure-
ments, obtained by an ultrasonic distance sensor, surface
temperature, snow and soil temperatures at different depths,
and outgoing shortwave and longwave radiation, all of them
available at 30 min resolution. Snow density and snow water
equivalent are measured manually in snow pits several times
per snow season during dedicated field campaigns. During
the analysis period 20 manual measurements of snow density
and snow water equivalent are available. Additionally, since
January 2016 snow water equivalent has been automatically
monitored by a Campbell CS725 sensor that passively mea-
sures the attenuation of naturally existing electromagnetic
radiation (potassium-40 and thallium-208) emitted from the
soil or bedrock below the sensor. The higher the water con-
tent of the snowpack, the higher the attenuation of the radia-
tion. The measurement is performed every 6 h and averages
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the SWE over an area of about 100 m?. Combining automatic
snow water equivalent measurements and the corresponding
snow depth measurements, additional daily snow density es-
timates useful for model validation have been derived for the
last two snow seasons.

3.2 Spatial interpolation of meteorological forcings
from neighbouring stations

The spatial interpolation of ground meteorological observa-
tions represents one of the most commonly used practices in
the operational applications of hydrological models. In order
to test the performances of the models in this condition, an
interpolated dataset has been generated for the Torgnon mon-
itoring site by using the MeteolO library (Bavay and Egger,
2014). Meteorological data from six neighbouring stations
have been interpolated over a squared digital elevation model
of 16km? with a grid resolution of 50 m centered on the co-
ordinates of Torgnon (Appendix B Fig. B1 and Table B1).
The algorithm used for the interpolation is the inverse dis-
tance weight (IDW) as the first choice for all the meteoro-
logical variables. The interpolation accounts also for verti-
cal gradients of both temperature and precipitation, assuming
constant lapse rates of —6.5°Ckm™! for air temperature and
+8.5mm km™~! for precipitation. Further details are provided
in Appendix B.

3.3 Reanalysis data

In many remote mountain areas, in situ observations to force
snow models are unavailable. In this study we explore the use
of reanalysis datasets extracted at the Torgnon grid point.

GLDAS (Global Land Data Assimilation System) is a
global dataset exploiting satellite and ground-based obser-
vational data combined with advanced modelling and data
assimilation techniques in order to generate optimal fields
of surface variables (Rodell et al., 2004). In particular, the
GLDAS-2.1 archive used in this study contains 36 land sur-
face fields from January 2000 and is updated regularly at
0.25° (long—lat) spatial and 3 h temporal resolutions (Rui and
Beaudoing, 2018).

ERA-Interim (Dee et al., 2011) is a global reanalysis in-
cluding a variety of 3-hourly surface parameters describ-
ing atmospheric and land-surface conditions, and 6-hourly
upper-air parameters covering the troposphere and strato-
sphere. ERA-Interim has a spatial resolution of 0.75°, at
the latitude of Torgnon corresponding to about 59 km in the
zonal and 83 km in the meridional direction. This coarse grid,
which is comparable to those of state-of-the-art global cli-
mate models, implies a smooth representation of the topog-
raphy and coarse information on climate variables.

ERAS5 (Hersbach and Dee, 2016) is the latest ECMWF
global reanalysis product, providing data at higher resolu-
tion than ERA-Interim, both in space (30km) and in time
(1 h). ERAS uses one of the most recent versions of the
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Earth system model and data assimilation methods applied at
ECMWF and modern parameterizations of Earth processes
compared to older versions used in ERA-Interim. With re-
spect to ERA-Interim, ERAS also has an improved global
hydrological and mass balance, reduced biases in precipita-
tion, and refinements of the variability and trends of surface
air temperature (Hersbach and Dee, 2016).

4 Experimental design

We devised a set of 12 experiments at the Torgnon site em-
ploying snow models in stand-alone mode, i.e. in which the
meteorological forcing is prescribed. The list of experiments
is summarized in Table 2. The first experiment is a control
run (CTL) in which the models are forced by optimal input
data provided by the Torgnon station at 30 min temporal res-
olution. This run allows testing of the accuracy of the mod-
els in describing the temporal evolution of the snow-related
variables in optimal conditions, namely when high-quality,
high-frequency point measurements are available.

Experiments RAD-ERAI and SWIN-CLS assess the sen-
sitivity of the models to the radiation input. As most stations,
the Torgnon site is equipped with an unheated radiation sen-
sor, which is likely to provide unreliable measurements when
obstructed by snow during snowfall events. Therefore, in ex-
periment RAD-ERAI we take into account the shading of the
radiation sensor in case of snowfall by replacing radiometer
measurements with ERA-Interim reanalysis data. In the third
experiment, SWIN-CLS, we employ external SWIN data re-
sulting from the clear-sky radiation (Yang et al., 2001, 2006)
attenuated through the cloud masks from the Meteosat Sec-
ond Generation (MSG) satellite in the following way. For
each of the 34 radiometers in the Aosta Valley, an averaged
attenuation factor F' is computed as

1 R
F=—Y —%_ 1
N;SWIN’ M

where N is the number of cloud-covered stations determined
from the MSG cloud mask, R, is the measured radiation at
the ith station and SWIN' is the corresponding modelled ra-
diation in clear-sky conditions. The incident solar radiation
in cloudy conditions at location j is given by

R/ = SWIN/F. )

Experiments TIME-3h, TIME-6h and TIME-12h investi-
gate the sensitivity of the models to the temporal resolution
of the meteorological forcing, since the temporal resolution
of many available datasets is coarser than that employed in
the CTL run. We have employed the Torgnon data every 3,
6 and 12h since 1 October 2012, time 00:00 UTC+1, and
linearly interpolated them at the 30 min time step for all
variables except for total precipitation. Precipitation is ac-
cumulated over 3, 6 or 12h time periods and the totals are
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equally distributed among the corresponding 30 min subpe-
riods. Incoming shortwave radiation is linearly interpolated
at the 30 min time step for all experiments, i.e. TIME-3h,
TIME-6h and TIME-12h. However, when we apply linear
interpolation to derive the forcing for the TIME-12h exper-
iment, we obtain poor SWIN estimates, with a large differ-
ence between the estimated and CTL average SWIN fluxes
(497 W m~2). In order to better estimate the SWIN forcing
for the TIME-12h experiment, we employ a method based
on the potential (clear-sky) radiation at 30 min temporal res-
olution (Knauer et al., 2018) at the site of Torgnon. For
each day of the year, the 48 values of potential radiation are
rescaled according to the observed SWIN at 12:00 UTC+H-1.
With this method the estimated average SWIN flux is com-
parable to that of the CTL forcing, with a difference of
—0.87 W/m~2, showing a remarkable improvement with re-
spect to the use of the linear method (more details are pro-
vided in Appendix C). We run the TIME-12h experiment
twice, either employing the SWIN derived from the linear
interpolation method (TIME-12h-LIN) or that derived from
the potential radiation method (TIME-12h-SWINPOT)

Four additional experiments, namely MeteolO, GLDAS,
ERAS and ERAI test the case in which no surface station
measurement is available and one has to rely on external
data. The MeteolO experiment employs a forcing dataset ob-
tained through the spatial interpolation of data provided by
the neighbouring stations (see Sect. 3.2 and Appendix B).
GLDAS, ERAS and ERAI experiments use different reanal-
ysis products described in Sect. 3.3, namely GLDAS-2.1,
ERAS and ERA-Interim. Both MeteolO and reanalysis data
had to be rearranged and interpolated to 30 min resolution
in order to be used as forcings for snow models. In the case
of ERA-Interim, for example, forecasts are initialized only
twice a day at 00:00 and 12:00 UTC, and accumulated fluxes
of total precipitation, surface solar and thermal downward
radiation are available as forecasts at 3h intervals for the
following 12 h. From these forecasts we derive the average
fluxes over 3 h intervals and we assume the fluxes to be con-
stant during each interval. For the other ERA-Interim param-
eters, namely 2 m temperature, dew-point temperature, sur-
face pressure, and 10m U and V wind components, we con-
sider the analyses at 00:00, 06:00, 12:00, and 18:00 UTC and
the forecasts at +3 h. These data are linearly interpolated in
time to the integration time step (30 min) of the snow models.
Some calculations are necessary to obtain all the variables
required by the models. For example, ERA-Interim does not
directly provide relative humidity, which we derive using the
Magnus formula from the dew-point temperature and the 2 m
air temperature (Lawrence, 2005).

The last two experiments, ERAI-LR and ERAI-BIAS,
investigate whether bias-correcting (some of) the reanaly-
sis drivers improves the snow model performance. To this
end, we bias-correct air temperature (and indirectly the ratio
of solid to total precipitation that depends on temperature)
while keeping all other variables unchanged. The idea is to
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Table 2. Overview of the experiments and their characteristics in terms of forcing data, temporal and spatial resolutions and gap-filling data
employed where necessary. For reanalysis datasets, the elevation of the grid point closest to the Torgnon station is reported.

Experiment  Forcing Temporal ~ Spatial Gap filling
resolution  resolution

CTL Torgnon station (2160 m a.s.1.) 30/ Point ERAT*
RAD-ERAI  CTL except SWIN and LWIN from ERAI in case of snowfall 30’ Point ERAI
SWIN-CLS  CTL except SWIN from the Clearsky algorithm 30/ Point ERAI
TIME-3h Torgnon station 3h Point ERAI
TIME-6h Torgnon station 6h Point ERAI
TIME-12h Torgnon station 12h Point ERAI
MeteolO Six stations close to Torgnon (see Appendix A) 1h Point None
GLDAS GLDAS-2.1 (2297 ma.s.1.) 3h 25km None
ERAS ERAS (2302ma.s.l.) 1h 30km None
ERAI ERA-Interim(1480ma.s.1.) 3h 80 km None
ERAI-LR ERALI lapse-rate correction of air temperature 3h 80km None
ERAI-BIAS ERALI bias adjustment of air temperature 3h 80 km None

* % of missing values for each variable: air temperature 0.24 %; surface air pressure 1 %; wind speed 1.65 %; total precipitation 0.25 %; shortwave
incoming radiation 0.33 %; relative humidity 0.24 %; longwave incoming radiation 0.31 %.

test whether (i) the adjustment of air temperature (and the
rainfall-snowfall partition) only can improve model perfor-
mances and to what extent and whether (ii) very simple bias-
correction methods can be sufficient or more sophisticated
ones are necessary.

In the ERAI-LR experiment we take into account the fact
that ERA-Interim has a smoothed topography and the alti-
tude of the grid point closest to the Torgnon station is 680 m
lower than the actual elevation of the station. In the ERAI-LR
experiment we adjust the temperature data assuming a fixed
moist lapse rate of —6.5°Ckm™'. This correction results in
a cooling of 4.4 °C with respect to the original temperature
data. In the ERAI-BIAS experiment we correct ERA-Interim
air temperature using the difference in the climatological av-
erages between ERA-Interim data and the Torgnon station
observations, which was found to be 2 °C. This bias is as-
sumed to be constant in time, and it is subtracted from the
original ERA-Interim temperature time series.

A desirable feature of each experiment is that the differ-
ences in the model outputs are mainly due to the internal
model characteristics rather than to the different parameteri-
zations used by the models to derive the solid and liquid pre-
cipitation fractions from the total precipitation input. To this
end, for each experiment, we estimate externally the rainfall
and the snowfall amounts using a fixed threshold on wet-bulb
temperature. Specifically, precipitation is considered snow-
fall when the wet-bulb temperature is lower than or equal to
1°C and as rainfall otherwise. A slightly different approach
was used for GEOTOP which requires precipitation totals
(rather than solid and liquid precipitation separately), and
then it separates rainfall and snowfall through an internal pa-
rameterization based on a fixed threshold on dew-point tem-
perature. In this case the dew-point temperature threshold has
been calibrated to obtain approximately the same seasonal
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accumulated snowfall as that obtained with the method based
on wet-bulb temperature. This condition is satisfied with a
dew-point temperature threshold of 1.2 °C. Both approaches
rely on the fact that the temperature interval where rain and
snow coexist is narrower for wet-bulb temperature and dew-
point temperature than for air temperature. Using the wet-
bulb or dew-point temperature allows reduction of the range
for which the precipitation phase is uncertain (Sims and Liu,
2015; Endrizzi et al., 2014). With this procedure all the mod-
els are driven with the same rainfall and snowfall inputs and
the differences in the model simulations are assumed to de-
pend mainly on the model structure and on the estimated
snow ablation through melting, evaporation and direct air—
snow sublimation (Slater et al., 2001). This procedure is ap-
plied to the total precipitation forcing of each experiment,
and so also to the reanalyses, even though they provide sep-
arate snowfall and rainfall among their output variables.

5 Results
5.1 CTL - impacts of the snow model structure

We run the six models driven by the best forcing available for
the Torgnon site, namely the station measurements at 30 min
resolution. Figure 1 shows the simulated SWE, snow den-
sity (p) and snow depth (SD) time series provided by each
model compared to the observations, over the period 2012—
2017.

All the models are able to reproduce the overall variabil-
ity of snow characteristics, although with different accuracy.
The agreement between simulations and observations is eval-
uated in terms of centered pattern root mean square error,
standard deviation and temporal correlation, and the result-
ing statistics are summarized through Taylor diagrams (Tay-
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Figure 1. Results of the CTL experiment: (a) snow water equivalent (SWE), (b) snow density and (c¢) snow depth simulated by the six models
considered in the analysis, driven by optimal forcing, i.e. Torgnon station measurements at 30 min resolution, over the period 2012-2017,

compared to observations (black).

lor, 2001) in Fig. 2. Taylor diagrams display observations as
an open circle on the x axis; the centered root mean square
error between the simulated and observed variables is propor-
tional to the distance to observations; the standard deviation
of the simulated variable is proportional to the radial distance
from the origin; the temporal correlation between the simu-
lated and observed variables is shown by the angular coor-
dinate. Evaluation metrics are calculated over simulated and
observed pairs when at least one of the two values exceeds a
minimum threshold, namely SWE > 0.005 m, SD > 0.01 m.
Snow density pairs are compared if the corresponding values
of SWE are greater than 0.005 m. Fig. 2a—c refer to the period
1 January 2016 to 30 June 2017, when continuous measure-
ments of all three variables are available. Fig. 2d—e refer to
the full period of analysis (since 1 October 2012) for which
continuous observations are available for snow depth only.

Snow water equivalent simulations are in good agree-
ment with observations over the period 2016-2017 (Fig. 2a),
although with some differences between the models. The
best agreement is found with the SNOWPACK, HTES-
SEL, UTOPIA and GEOTOP models, showing the low-
est errors (below 0.04 m SWE) and the highest correlations
(above 0.85) with observations. SMASH and S3M are char-
acterized by higher RMSE and lower correlation with obser-
vations with respect to the best-performing models.
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Snow density is simulated with lower skills compared
to SWE for all models (Fig. 2b). The agreement between
model simulations and observations is rather low for all
models, with limited added value from highly sophisticated
models. A weak correlation (lower than 0.6) and large er-
rors (above 70kg m~2) are found for both SNOWPACK and
S3M, namely the most sophisticated model and the simplest
model respectively. The GEOTOP model has clear deficien-
cies in representing spring snow density: in fact, it exhibits
an overestimation error increasing with time till the end of
the snow season.

The ability of the models to reproduce the temporal evo-
lution of snow depth is related to their skills in reproducing
both snow mass and density. The SNOWPACK model re-
produces all three variables, namely SWE, snow density and
snow depth, with high scores. In the case of GEOTOP, the
overestimation of spring snow density is reflected in over-
all lower skills in reproducing snow depth compared to the
other intermediate-complexity models (Fig. 2¢). In the case
of HTESSEL, instead, small errors in SWE and snow density
are compensated for and the model skill in reproducing snow
depth is slightly higher than that of the SNOWPACK model.

The high- and intermediate-complexity models SNOW-
PACK, HTESSEL and UTOPIA show similar and good per-
formances in the simulation of SWE and snow depth, and
they can be considered the best-performing models. SMASH
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Figure 2. Taylor diagrams of the modelled vs. observed (a) snow water equivalent, (b) snow density and (c) snow depth in the control
experiment (CTL) for the period 1 January 2016 to 30 June 2017. Bottom panels represent the statistics of snow depth (d) for the whole
period 2012-2017 and (e) for each snow season in the same period. Differently from the other panels, in (e) model standard deviations are

normalized with respect to the observed ones.

and S3M are characterized by higher RMSE and lower cor-
relation with the observations, and the simplest model, S3M,
shows the lowest agreement with the observations. In this
experiment the model complexity is broadly reflected in the
model performances, with the most sophisticated model per-
forming best and the simplest model performing worst, likely
owing to difficulties of the latter in representing snowmelt
(Fig. 1a). HTESSEL and UTOPIA, which are single-layer
intermediate-complexity snow models performing almost as
well as the most sophisticated model, SNOWPACK, seem a
good trade-off between model complexity and model accu-
racy when accurate meteorological forcing is employed.

We extend this analysis to a longer period of five complete
snow seasons, from 2012 to 2017, limited to the snow depth
variable. The relative skills of the models in reproducing
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snow depth over the full five-season period are very similar
to those found for the last two-season period (Fig. 2c and d).
The RMSE of the models remains almost unchanged, while
the correlation with observations slightly improves over the
longer period. The behaviour of the models is robust whether
considering all five seasons or only the last two seasons.
Figure 2e allows investigation of the variability of the
model performances in the different snow seasons compared
to the whole period. SNOWPACK, HTESSEL and UTOPIA
show similar skills across different snow seasons, implying
robustness in reproducing a variety of conditions. Common
simulation errors for several models are a positive SWE and
a positive snow depth bias in the season 2015-2016 (Fig. la
and c), when several challenging conditions occurred. First,
in autumn there were isolated snowfall events separated by

Hydrol. Earth Syst. Sci., 24, 4061-4090, 2020



4070

snowfall-free periods: mainly the SNOWPACK model, and
to a lesser extent UTOPIA, failed to reproduce the rapid melt-
ing, and they continued accumulating snow. Second, at the
end of the snow season a very rapid melting occurred, which
was not captured by any of the models. All models simu-
late a meltout date delayed by several days with respect to
the observations. Di Mauro et al. (2018) demonstrated that
the accelerated snowmelt, observed in the 2015-2016 sea-
son, was caused by the deposition of mineral dust from the
Sahara: light-absorbing impurities in snow, resulting from
several dust deposition events, induce albedo reduction that
alters the melting dynamics of the snowpack, hence favour-
ing snowmelt. As none of the models used in this study ac-
counts for the impact of impurities on snow dynamics (and
in any case no information on dust deposition is provided
to the models), simulated snowmelt dates in 2016 were, not
surprisingly, significantly delayed.

The GEOTOP, SMASH and S3M models show different
skills depending on the snow season (Fig. 2e) and they pro-
vide a wider range of variability in their agreement with
the observations compared to SNOWPACK, HTESSEL and
UTOPIA. For example, a season which is relatively simple
to reproduce by all models is 2013-2014. An abundant but
ephemeral snow cover was properly accumulated and melted
by all models. After a snow-free period, the onset of a persis-
tent snow cover was sustained by heavy snowfalls which led
to the highest snow peak in the study period. After this peak,
the melting has been quite steady, with few spring snow-
fall events. These conditions allow all models, even the sim-
plest one, to accurately reproduce the snowpack evolution in
terms of snow mass and depth. As a result, for this season
the differences between the models in terms of RMSE, stan-
dard deviation and temporal correlation with observations are
smaller than for other seasons. By contrast, the season 2012—
2013 is more difficult to reproduce for some models, namely
GEOTOP, SMASH and S3M, than for SNOWPACK, HTES-
SEL and UTOPIA. This season was characterized by many
snowfall episodes of moderate and light intensity, with mod-
erate melting in-between. In the second half of May 2013
a series of late snowfalls restored a temporary snow cover
with more than 0.5 m depth that gradually melted in a cou-
ple of weeks. In these conditions, SNOWPACK, HTESSEL
and UTOPIA are able to accurately represent the changes in
the snow depth, while GEOTOP, SMASH and S3M generally
tend to overestimate snow depth.

GEOTOP systematically overestimates snow density with
increasing errors from late winter to the end of the snow sea-
son. These errors are reflected in the snow depth simulations:
spring snow depth and the snow depth peak are underesti-
mated in each snow season of the study period. SMASH, for
the 2012-2013 and the 2015-2016 seasons, delays the timing
of the snow depth and snow mass peaks. The delay in the rep-
resentation of the snow peaks is almost fully compensated by
an excessively rapid spring melting which keeps the date of
ablation relatively close to the observed one. S3M systemati-
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cally underestimates both snow depth and snow water equiv-
alent during all the snow seasons, while the snow density is
within the range of variability of the model ensemble. It fol-
lows that for S3M the critical variable to improve is SWE.

In conclusion, an added value of sophisticated and
intermediate-complexity models compared to lower-
complexity models emerges, especially during snow seasons
that have a more complex temporal behaviour.

5.2 RAD-ERAI, SWIN-CLS - model sensitivity to the
radiation input

A typical problem occurring in case of snowfall is that when
the radiation sensors get covered with snow, they record in-
accurate data. To take into account this issue and test how it
affects snow simulations, in experiment RAD-ERAI we use
incoming longwave and shortwave radiation data from the
Torgnon station except in case of snowfall, when we employ
external LWIN and SWIN data derived from ERA-Interim.
In the other experiment, SWIN-CLS, we replace observed
incoming shortwave radiation data with the external data de-
scribed in Sect. 4. The results of these simulations are re-
ported in Table 4. Although the difference between external
data and Torgnon data can be high at the time step of the
model (not shown), their overall impact on snow simulations
is low. In fact, for each model we obtain values of RMSE
close to those obtained in the CTL experiment. In particular,
model skills do not improve using ERA-Interim or interpo-
lated incoming radiation forcing.

5.3 TIME-3h, TIME-6h, TIME-12h — model sensitivity
to the temporal resolution of the forcing

A common condition when modelling snowpack evolution
in data-sparse areas is the unavailability of meteorological
forcings with high temporal resolution, as high as 30 min,
like those employed in the CTL experiment. In this section
we assess the sensitivity of the models to the temporal res-
olution of the forcing. To this aim, the original meteorolog-
ical observations at Torgnon, with 30 min resolution, have
been sampled every 3, 6 and 12h and then linearly interpo-
lated at the finer (30 min) time step, with the only exception
of total precipitation that has been accumulated over the 3,
6, and 12h periods and then equally distributed among the
30min sub-periods. Incoming shortwave radiation for the
TIME-12h experiment has been derived with two different
methods, i.e. by linearly interpolating the measurements at
00:00 and 12:00 UTC+1 and by rescaling the potential ra-
diation at 30 min temporal resolution to the observed radia-
tion at 12:00 UTC+1 (see Sect. 4 for details). As expected,
the longer the sampling period, the smoother the input time
series. For these three (and the other remaining six) experi-
ments, we show in Fig. 3 the biases of air temperature, to-
tal precipitation, rainfall and snowfall forcings with respect
to the reference forcing of the CTL experiment. Given the
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Table 3. RMSE, bias, and Pearson correlation of snow depth simulations with respect to observations for each model and each snow season

in the control experiment (CTL).

Model 2012-2013  2013-2014 2014-2015 2015-2016 2016-2017 Avg. SD
RMSE

SNOWPACK 0.08 0.12 0.10 0.12 0.08 0.10 0.02
GEOTOP 0.21 0.14 0.18 0.13 0.15 0.16 0.03
HTESSEL 0.11 0.13 0.07 0.08 0.15 0.11 0.03
UTOPIA 0.11 0.14 0.07 0.12 0.13 0.11 0.03
SMASH 0.19 0.19 0.12 0.23 0.12 0.17 0.05
S3M 0.28 0.20 0.28 0.21 0.24 0.24 0.04
BIAS

SNOWPACK —0.04 —0.03 —0.05 0.10 0.01 0.00 0.06
GEOTOP —0.05 —0.11 —0.11 —0.06 —-0.01 —-0.07 0.04
HTESSEL 0.04 0.04 0.01 0.06 0.11 0.05 0.04
UTOPIA 0.03 —0.01 —0.01 0.09 0.06 0.03 0.04
SMASH —0.04 —0.09 —0.04 0.05 0.04 —-0.02 0.06
S3M —0.08 —0.12 —-0.21 0.01 —0.10 —0.10 0.08
Pearson correlation

SNOWPACK 0.98 0.98 0.97 0.98 0.94 0.97 0.01
GEOTOP 0.79 0.99 0.92 0.97 0.81 0.90 0.09
HTESSEL 0.95 0.96 0.98 0.98 0.93 0.96 0.02
UTOPIA 0.94 0.96 0.98 0.96 0.87 0.94 0.04
SMASH 0.81 0.95 0.96 0.69 0.91 0.86 0.11
S3M 0.57 0.95 0.84 0.74 0.45 0.71 0.20

method employed to derive TIME-3h, TIME-6h, and TIME-
12h forcings, we expect no bias for total precipitation, while
some differences can arise in the rainfall-snowfall partition
owing to possible differences in air temperature. According
to Fig. 3, TIME-3h and TIME-6h air temperature biases are
close to zero, while TIME-12h air temperature bias is about
0.5°C, with the effect of reducing the amount of the solid
precipitation by 10 %. We investigate the impact of these bi-
ases on the snow simulations in the following.

Figure 4 represents, for all the models, the simulated snow
depth and SWE when input data are sampled (or accumu-
lated, in the case of total precipitation) at 3, 6 and 12h
and then interpolated (or equally distributed for precipita-
tion) over 30min time steps, compared to the simulated
snow depth obtained with the original 30 min resolution forc-
ing (CTL) and compared to observations. The TIME-12h
experiment employs the incoming shortwave radiation esti-
mated with the potential radiation method; Appendix C re-
ports the corresponding experiment employing the incoming
shortwave radiation estimated with linear interpolation of the
station measurements. In addition, Table 4 reports the RMSE
associated with all these simulations.

The model response to the degradation of the temporal res-
olution of the forcing depends on the model and season. A
common feature of the models is the small (or null) differ-
ence in terms of RMSE between TIME-3h and CTL simula-
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Figure 3. Temperature, total precipitation, rainfall and snowfall av-
erage seasonal biases in the forcings employed in each experiment
with respect to the Torgnon station measurements.
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Figure 4. Model simulations of snow depth and SWE when the input is sampled at 3, 6 and 12 h, compared to the CTL run and to the
observations. The TIME-12h experiment employs the incoming shortwave radiation estimated with the potential radiation method.

tions, indicating that using forcing data at 3 h temporal res-
olution generates snow depth simulations almost as accurate
as in the case of 30 min resolution input data.

A second common feature is the general worsening of
model performances when using input data at 6h tempo-
ral resolution, reflected in an increase in the RMSE values.
TIME-6h simulations are usually very close to the CTL in
the accumulation period up to the snow peak. Afterwards,
in the melting period, some models, mainly SNOWPACK,
UTOPIA and, to a lesser extent HTESSEL and SMASH,
slightly overestimate snow mass/depth in selected seasons,
contributing to an increase in the model RMSE. Com-
pared to the TIME-6h experiment, the TIME-12h experi-
ment with incoming shortwave radiation interpolated with
the linear method (TIME-12h-LIN) shows higher RMSE on
snow depth and a clear worsening of model performances
(Table 4). In the TIME-12h-LIN experiment the overestima-
tion of the incoming shortwave radiation (see Sect. 4) causes
an underestimation of the surface snow depth. By contrast,
the TIME-12h experiment with SWIN estimated with the po-
tential radiation method (TIME-12h-SWINPOT) shows im-
proved model performances compared to both the TIME-
12h-LIN and TIME-6h experiments for SNOWPACK, HT-
ESSEL and UTOPIA, with the former two models showing
an RMSE comparable with that of the CTL run. GEOTOP
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and S3M show similar skills in the TIME-12h experiments
and a higher RMSE in the TIME-12h experiments com-
pared to the TIME-6h experiment and the CTL run. Finally,
the SMASH model shows little or no difference between
the TIME-12h experiments and the TIME-6h, TIME-3h and
CTL experiments.

In conclusion, the six models show different sensitivities
to the bias in the forcing. Models with high and intermedi-
ate complexity (SNOWPACK, HTESSEL and UTOPIA) are
sensitive to both the time degradation of the forcing and the
method used to interpolate the 12-hourly SWIN. GEOTOP
and S3M are sensitive to the time degradation of the forc-
ing but not to the method used to interpolate the 12-hourly
SWIN, and finally SMASH shows low sensitivity to both the
time degradation of the forcing and to the method used to
interpolate the 12-hourly SWIN.

From these experiments an added value of the most sophis-
ticated model (SNOWPACK) emerges. SNOWPACK forced
by the 12 h resolution forcings still provides lower errors than
the simplest model S3M forced by the best available forcing
at 30 min temporal resolution (Table 4).

Concerning the TIME-12h experiment, the SWIN forcing
derived with the potential radiation method provides overall
better results compared to that derived from linear interpola-
tion of the station measurements. In the following the TIME-
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Table 4. RMSE values associated with snow depth and snow water equivalent simulations for all models and all experiments over the

periods 2012-2017 and 2016-2017 respectively.

Exp SNOWPACK GEOTOP  HTESSEL UTOPIA SMASH S3M
RMSE snow depth (m)

CTL 0.10 0.17 0.11 0.12 0.17 0.25
RAD-ERAI 0.12 0.17 0.14 0.13 0.17 0.25
SWIN-CLS 0.11 0.21 0.12 0.13 0.18 0.24
TIME-3h 0.12 0.19 0.11 0.12 0.16 0.26
TIME-6h 0.17 0.26 0.15 0.18 0.19 0.27
TIME-12h-LIN (SWINPOT) 0.21 (0.11) 0.37(0.35) 0.44(0.12) 0.38(0.26) 0.17(0.17) 0.38 (0.39)
MeteolO 0.23 0.20 0.38 0.40 0.19 0.31
GLDAS 0.67 041 0.79 0.49 0.63 0.84
ERAS 0.74 0.34 0.76 0.80 0.71 0.85
ERAI 0.18 0.45 0.20 0.20 0.27 0.32
ERAI-LR 0.54 0.20 0.58 0.67 0.36 0.46
ERAI-BIAS 0.18 0.27 0.20 0.26 0.13 0.16
RMSE SWE (m)

CTL 0.04 0.04 0.04 0.04 0.06 0.08
RAD-ERAI 0.06 0.04 0.05 0.04 0.06 0.08
SWIN-CLS 0.05 0.04 0.04 0.03 0.06 0.07
TIME-3h 0.06 0.03 0.04 0.03 0.06 0.08
TIME-6h 0.09 0.05 0.05 0.05 0.07 0.07
TIME-12h-LIN (SWINPOT) 0.05 (0.03) 0.07 (0.07) 0.13(0.04) 0.13(0.03) 0.05(0.05) 0.10(0.10)
MeteolO 0.10 0.04 0.13 0.13 0.07 0.11
GLDAS 0.38 0.22 0.38 0.16 0.33 0.38
ERAS 0.28 0.12 0.22 0.24 0.26 0.24
ERAI 0.05 0.12 0.05 0.05 0.08 0.08
ERAI-LR 0.19 0.04 0.18 0.19 0.13 0.15
ERAI-BIAS 0.05 0.05 0.03 0.05 0.03 0.05

12h experiment with SWIN forcing derived with the potential
radiation method will be referred to as TIME-12h.

5.4 MeteolO, GLDAS, ERAS, and ERA-Interim -
model sensitivity to the spatial resolution and bias
in the forcing

We consider a rather standard case for which no station mea-
surements are available for the area of interest, and one has
to rely on gridded datasets, which are generally character-
ized by lower resolution and lower accuracy with respect to
station measurements. To explore a representative range of
possible alternatives, we employ datasets with different char-
acteristics: the MeteolO dataset, based on the interpolation of
data from neighbouring stations, and the GLDAS, ERAS and
ERA-Interim reanalyses at 25, 30 and 80 km respectively.
An overview of the comparison between the meteorological
forcing provided by these datasets and the observations in
Torgnon is shown in Fig. 3.

The MeteolO forcing is in fairly good agreement with ob-
servations. Compared to the meteorological measurements
at the Torgnon station, MeteolO shows an average bias of
—1°C per snow season and about 20 % overestimation of
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the seasonal total precipitation. However, the effect of these
biases on the solid precipitation is weak, and the average sea-
sonal snowfall is very close to the observations. When the
MeteolO forcing is used, the best agreement between simu-
lated and observed SWE and snow depth is obtained with the
GEOTOP and SMASH models. Both models provide similar
RMSE values to the CTL runs. The S3M model exhibits a
moderate decrease in the model performance when driven by
MeteolO compared to CTL, with lower RMSE than the HT-
ESSEL and UTOPIA models. Conversely, the SNOWPACK,
HTESSEL and UTOPIA model errors are respectively more
than 2 and 3 times the corresponding errors in the CTL run.
Despite a relatively small average error in the temperature
input (—1°C), the daily differences are generally stronger
in winter, and they can reach values exceeding —4 °C. The
main issue in snow model simulations is the overestimation
of snow depth in winter (in selected snow seasons) and in
spring (always). A plausible explanation for these errors is
that colder-than-observed winter temperatures might favour
the development of a cold snowpack which melts too slowly.
Consequently, the models tend to overestimate the snow at
the surface and to predict a delayed ablation date.
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The GLDAS forcing is affected by a strong cold bias, with
average temperature differences of —3.8 °C compared to the
observations, and by a moderate total precipitation bias of
432 % on average over the considered seasons (Fig. 3). As
expected, the large errors in the GLDAS temperature forcing
lead to large errors in the simulated snow water equivalent
and depth for all models, as confirmed by RMSEs in Table 4
and Fig. 6a, c, d. The magnitude of the error in snow depth
shows large variations from season to season: snow depth
estimates are relatively close to the observations in the first
three snow seasons, while a large overestimation occurs in
the last two snow seasons. This behaviour can be linked to
the error in the total precipitation, up to +129 % and 4102 %
relative to observations in the last two snow seasons.

ERAS has a large temperature bias (—3.3 °C) and a mod-
erate precipitation bias (435 %), similarly to GLDAS. The
combined effect on the snowfall input is an excess of more
than 50 % compared to observations (Fig. 3), which clearly
affects the snow model output. As expected, all models over-
estimate snow depth and the duration of the snow cover.
The models tend to reproduce a similar evolution of snow
depth to the CTL experiment, but with thicker snowpacks. In
detail, SNOWPACK, HTESSEL and UTOPIA give similar
snow depth outputs, consistent with the behaviour found in
the CTL run. GEOTOP provides the lowest RMSEs for snow
water equivalent and snow depth, but this is mainly due to a
compensation between the error in the ERAS5 forcing (lead-
ing to overestimation) and the model error identified in the
CTL experiment (leading to underestimation). In general, the
difference in performance between models of different com-
plexities is reduced when the ERAS forcing is used. For ex-
ample, the RMSE is similar for the relatively simple model
SMASH and the most sophisticated model, SNOWPACK, as
it is for S3M and HTESSEL or UTOPIA.

The ERA-Interim forcing (ERAI) shows a +2°C tem-
perature bias and a snowfall deficit of about 30% com-
pared to the Torgnon observations. When forced by ERA-
Interim data, GEOTOP, SMASH and S3M underestimate
snow depth in all seasons, while SNOWPACK, HTESSEL
and UTOPIA underestimate snow depth mainly during the
season 2014-2015, when the ERA-Interim snowfall is con-
siderably lower than the observations throughout this snow
season (Fig. 5a). In other snow seasons, for example 2013—
2014, 2015-2016 and 2016-2017, SNOWPACK, HTESSEL
and UTOPIA snow depth simulations are in fairly good
agreement with the observations (see for example Fig. 5b).
Overall, SNOWPACK, HTESSEL and UTOPIA provide rel-
atively good results when forced by ERA-Interim, with a
moderate loss of accuracy with respect to the case of opti-
mal forcing (CTL). In the following we explore the possi-
bility of reducing the RMSE of the other intermediate- and
low-complexity models by correcting the main biases in the
meteorological forcings.
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5.5 Impact of the bias adjustment of ERA-Interim air
temperatures

We test the effect of two very simple bias-correction tech-
niques applied to the ERA-Interim air temperature. In the
first approach, in the ERA-LR experiment, we take into ac-
count the difference in elevation between the ERA-Interim
grid point at Torgnon and the true elevation of this site, ap-
plying a lapse rate correction, i.e. subtracting 4.4 °C from the
original ERAI data. Alternatively, in the ERAI-BIAS exper-
iment, we remove the average bias of ERA-Interim data at
the Torgnon site with respect to the station measurements,
i.e. subtracting 2 °C from the original ERAI data.

The lapse rate correction excessively reduces ERA-
Interim temperatures: the average temperature bias shifts
from 42 to —2.4°C and the snowfall bias increases from
—32 % to +15 % (Fig. 3).

The net effect on the model outputs (ERAI-LR experi-
ment) is an overestimation of snow water equivalent and
snow depth. With respect to the ERAI experiment, the RMSE
values increase for all models except for GEOTOP, which
actually shows a good agreement with observations during
the seasons 2013-2014 and 2015-2016, while it overesti-
mates snow depth in the first half of the other seasons. The
GEOTOP underestimation error observed in the ERAI ex-
periment is compensated by excessively cold input air tem-
perature, which favours the development and duration of the
snowpack.

The correction based on the adjustment of the mean ERAI
temperature bias (ERAI-BIAS experiment) almost removes
the snowfall bias. Therefore, this approach guarantees the
most effective correction to improve the agreement of the
forcing data with the Torgnon station measurements. Clearly
this approach requires knowing at least the average temper-
ature at the site of interest. This correction successfully re-
duces the RMSE in snow water equivalent and snow depth
simulations with respect to the corresponding runs driven by
the raw ERA-Interim data for GEOTOP, SMASH and S3M.
For the most sophisticated SNOWPACK model, the correc-
tion applied to ERA-Interim data has no effects on the RMSE
values of snow water equivalent and snow depth simulations,
which remain unchanged. While the simulated snow depth
is generally close to observations, improvements gained in
selected seasons (i.e. 2014-2015) are compensated by lower
performances in other (i.e. 2012-2013) seasons (Fig. 5d), so
that, on average, the overall effect on the RMSE is negligi-
ble. For the UTOPIA model, the correction applied to ERA-
Interim data has no effects on the snow water equivalent;
however, it slightly increases the error in snow density (lower
correlation with available observations) and thus the error in
snow depth simulations.
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Figure 5. (a) ERA-Interim air temperature, total precipitation, and snowfall (derived as explained in Sect. 4) at the Torgnon site, compared to
the station measurements (black) for each snow season of the period 2012-2017; (b) example of ERA-Interim-driven snow depth simulations
(ERAI ERA-LR, and ERAI-BIAS experiments), obtained using the SNOWPACK model, compared to CTL run and snow depth observations.

6 Discussion

While much work has been done to characterize the perfor-
mances of snow models when driven by accurate input data
(e.g. Vionnet et al., 2012; Boone and Etchevers, 2001; Bartelt
and Lehning, 2002; Dutra et al., 2010), model responses de-
pending on different degrees of accuracy of the input data
still need to be explored in detail. This study sheds light on
this research topic by assessing the simulations of six state-
of-art snow models driven by input data with varying accu-
racy, focusing on the fully instrumented Torgnon site in the
north-western Italian Alps. The snow models selected for the
analysis are characterized by different degrees of complexity,
from highly sophisticated multi-layer snow models to rather
simple single-layer models, with the aim of exploring rela-
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tions and trade-offs between model complexity and model
performances in reproducing snowpack dynamics.

In our experiment, in the case of optimal forcing, namely
Torgnon station data at 30 min resolution, the most sophisti-
cated model SNOWPACK and the intermediate-complexity
models HTESSEL and UTOPIA show the best agreement
with observations. In particular, HTESSEL and UTOPIA,
with their single-layer, simpler snow schemes compared to
SNOWPACK, can be considered a good trade-off between
model complexity and model accuracy. When considering
snow depth simulations, for which validation data are avail-
able for a longer period than for SWE, an added value of
these high- and intermediate-complexity models compared
to lower-complexity models is evident, especially in the
snow seasons that are more difficult to reproduce. SNOW-
PACK, HTESSEL and UTOPIA show similar and good per-
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formances across different seasons, revealing robustness in
reproducing a variety of conditions, while the simpler snow
models SMASH and S3M show larger dispersion of the sea-
sonal scores.

Snow density is more difficult to simulate than SWE and
snow depth for all models. The correlation between model
simulations and observations is quite low for all models,
with no clear added value from highly sophisticated ones
(Fig. 2b). GEOTOP provides a much larger error compared
to the other models, especially in the spring season, suggest-
ing further checks on the snow density parameterization.

The response of the snow models forced by gradually
lower accuracy data is summarized in Fig. 6, showing the
model RMSE for all experiments and all variables (upper
panels) and the complementary information on the model
ranking (bottom panels). No remarkable differences can be
detected in the model skills when using alternative radia-
tion data instead of the Torgnon station measurements, as
done in experiments RAD-ERAI and SWIN-CLS. The sub-
stantially equivalent results obtained by replacing measured
data with ERA-Interim data in case of snowfall (RAD-ERAI
experiment) can be explained by the combination of two
conditions: the intermediate elevation of 2160 ma.s.l. and
the orientation of the Torgnon site, both likely contributing
to a rapid melting of the snow obstructing the radiometer.
This adjustment does not affect model performances. Sim-
ilar results are found by employing SWIN radiation esti-
mated as clear-sky radiation attenuated by a factor based on
MSG cloud mask and neighbouring station radiation mea-
surements (SWIN-CLS, Sect. 4). Each model shows similar
RMSE in snow depth in the CTL, RAD-ERAI and SWIN-
CLS experiments.

The use of accurate meteorological inputs but at lower
temporal resolution, for instance Torgnon station data sam-
pled at a 3-hourly time step and then interpolated to the
model time step, does not affect model performances. Sim-
ilar results were obtained in a previous study in which the
original forcing was averaged in time over 3 h and the result-
ing time series was interpolated to the model time step (Mé-
nard et al., 2015). Therefore we can conclude that the typical
3 h temporal resolution of the climate and weather forecast
model outputs, as well as reanalysis data, can be suitable for
driving snowpack models. The use of input data with tem-
poral resolution lower than 3 h requires more in-depth con-
sideration as we observe a gradual decay of the snow model
skills for most models. With 12-hourly resolution input, for
example, the incoming shortwave radiation is found to be a
key variable affecting the model performances. While the
simple linear interpolation of the 12-hourly radiation data
to the model time step provides poor SWIN estimates and
poor snow model performances, a slightly more sophisticated
method based on the scaling of the potential radiation on
the SWIN measurements at 12:00 UTC+1 allows improve-
ment of the snow simulations and model skills, comparable
to or even better than the TIME-6h experiment. With this
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second method the bias in the incoming shortwave radiation
flux is almost completely cancelled out. A residual negative
bias (—7 Wm~2) of the incoming shortwave radiation in the
TIME-6h experiment contributes to the overestimation of the
snow depth at the end of the snow season. For SNOWPACK
and HTESSEL the 12-hourly forcing with improved SWIN
input allows surprisingly good performances, as shown by
the comparable RMSEs in the TIME-12h experiment and in
the CTL run.

Where meteorological station data are not available, spa-
tial interpolation of neighbouring stations’ data or reanaly-
ses can be a valid alternative. In our experiment the best
results are obtained with ERA-Interim forcing. Despite the
coarse spatial resolution, ERA-Interim satisfactorily repro-
duces the meteorological conditions at the Torgnon grid point
(Fig. 3), and the model errors in terms of snow depth and
snow water equivalent are only slightly higher than in the
CTL experiment (Fig. 6a, ¢, d). SNOWPACK, HTESSEL
and UTOPIA again provide the lowest errors compared to
intermediate- and low-complexity snow models (GEOTOP,
SMASH, S3M). However, the latter can also be an interest-
ing option after applying a simple adjustment of the average
ERA-Interim temperature bias with respect to the Torgnon
station data and consequently also adjusting the snowfall
amount. In this way the performances of the intermediate-
and lower-complexity snow models (GEOTOP, SMASH,
S3M) can be substantially improved. The temperature ad-
justment based on the lapse rate (ERAI-LR), accounting for
the difference in elevation between the ERA-Interim grid
point and the real elevation of the Torgnon station, is found
to worsen the model performance. In fact, this correction is
blind to the local climatic features and might not be suitable
in all situations. For example, in this case the lapse-rate cor-
rection is too large, and it causes a temperature bias of sim-
ilar amplitude but opposite sign with respect to the original
ERA-Interim data. As a general remark, it is preferable to
apply a temperature correction based on local temperature
observations or even just climatology, when available, as the
correction based on the lapse rate does not ensure a better
agreement with the reference data.

Spatial interpolations of neighbouring station data, such as
the MeteolO interpolation used here, can be another valid al-
ternative in the absence of in situ observations. In our exper-
iment the models” RMSE values for snow water equivalent
and snow depth are generally higher than those obtained us-
ing the Torgnon data at lower temporal resolution. GLDAS
and ERAS are affected, on average, by a large temperature
bias and a moderate precipitation bias at the Torgnon grid
point, probably owing to difficulties of these datasets in sim-
ulating processes in high-elevation regions. ERAS provides
slightly better performances than GLDAS. The latter has a
precipitation bias that varies strongly from season to sea-
son, with large overestimation errors in the last two snow
seasons (—22 %, —25 %, —25 %, +129 %, +102 % respec-
tively). By contrast, the ERAS precipitation bias has smaller
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Figure 6. Root mean square error associated with (a) snow water equivalent, (b) snow density, and (¢) snow depth simulations for each
experiment and each model over the period 2016-2017. (d) shows the same statistics as (c) but on the whole period 2012-2017. For each
plot (a, b, ¢, d) upper panels represent the boxplot statistics and bottom panels represent the model rank (1: best model; 5: worst model).
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fluctuations from season to season (+34 %, +16 %, +38 %,
447 %, +41 %), resulting in better and more stable perfor-
mances compared to GLDAS.

The present analysis allows straightforward evaluation of
the performances of each model with data of gradually lower
accuracy. While, as expected also from previous studies (e.g.
Jin et al., 1999; Boone and Etchevers, 2001; Luo et al., 2003;
Feng et al., 2008), with accurate forcing the most sophis-
ticated model provides the best agreement with SWE and
snow depth observations and the simplest models provide
the worst (Fig. 6d), more heterogeneous model responses are
obtained when lower-accuracy data are employed. The most
sophisticated model SNOWPACK is not the best-performing
model throughout all experiments, even though it usually
ranks among the best-performing ones, especially in repro-
ducing snow depth. The simplest snow model considered
in the analysis, S3M, is not always the worst model, espe-
cially when low-accuracy forcings are employed. SMASH
shows an interesting behaviour, with no brilliant perfor-
mances with optimal forcing but outperforming many other
models when using lower-accuracy inputs. SMASH ranks
among the best-performing models in the TIME-12h, Me-
teolO, ERAS, ERAI-LR and ERAI-BIAS experiments, sug-
gesting that it can be employed in data-sparse conditions with
results that are comparable to those of the more sophisticated
models.

The GEOTOP model provides the best snow depth esti-
mates when forced by MeteolO, ERA5 and ERAI-LR. How-
ever, all these forcing datasets have a cold temperature bias,
and GEOTORP is affected by a systematic underestimation er-
ror in snow depth. These errors offset each other, with the ef-
fect that the RMSE in snow depth simulations is smaller than
for the other models. Conversely, when using ERA-Interim
forcing, GEOTOP performances are the worst owing to the
positive temperature bias of the reanalysis dataset, which in-
creases the underestimation of snow depth simulations. In
this set of experiments GEOTOP shows weaknesses in repro-
ducing the snow density and depth, thus calling for a check
of its snow scheme.

The UTOPIA and HTESSEL models perform as well as
the most sophisticated SNOWPACK with optimal forcing,
but they require fewer input data: for example, they do not
need ground temperature. These models can be employed
when no information on snowpack internal structure and
stratification is needed. UTOPIA and HTESSEL provide
good performances also with low temporal resolution forc-
ings up to 6 h and with ERA-Interim forcing. However, lower
skills are found when employing the MeteolO low-accuracy
input dataset, suggesting that UTOPIA and HTESSEL can
be sensitive to the bias in the meteorological forcing.

In agreement with former studies (e.g. Essery et al., 2013),
also in our analysis the best-performing models have (i) an
explicit representation of the meltwater retention and refreez-
ing in the snowpack and (ii) an intermediate-complexity rep-
resentation of the snow albedo as a function of at least the
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surface temperature and snow age. According to our results,
the representation of the snowpack as a medium with mul-
tiple layers alone does not guarantee improved results com-
pared to models with single-layer snow schemes but is able to
take into account meltwater infiltration and refreezing within
the snowpack.

This intercomparison exercise has been performed at a sin-
gle mountain site, Torgnon, which provides ideal conditions
(high-quality input and validation data, low wind speeds) to
perform the sensitivity study which we aimed for. Further
analysis at other sites would be useful to explore the ex-
tent to which our results could be generalized to different
situations or models. We can hypothesize that the effect of
the degradation in time of the forcing is probably not site-
specific and that similar results could be obtained in other
sites (see e.g. Ménard et al., 2015). In order to assess the
exportability of the results obtained in the reanalysis-driven
experiments, in Appendix D we evaluate the biases of the re-
analyses considered in this study (GLDAS, ERAS and ERA-
Interim) in reproducing the main drivers of the snowpack
processes, i.e. temperature and total precipitation, compared
to reference datasets (e.g. E-OBS version 13, Haylock et al.,
2008) over the entire greater Alpine region (GAR, 4-19°E,
43—-49° N). The time-averaged biases found at the Torgnon
site are spatially consistent with those found at the mountain
range scale, with the magnitude of the bias slightly varying
across the region and with elevation. This analysis broadens
the perspective beyond the specific case of the Torgnon site
and provides guidance on the exportability of our experiment
results to other areas in the Alpine region.

7 Conclusions

Relevant issues in snow modelling are the sparseness of me-
teorological stations providing all the variables required to
drive and validate snow models and the large uncertainties
affecting the available measurements. Moreover, in mountain
areas the spatial variability of the meteorological parameters
is high, and in situ stations could be scarcely representative
of the conditions in the surrounding areas.

Currently available snow models cover a wide range of
complexities, from the most sophisticated schemes that re-
solve the internal structure of the snowpack to the simplest
ones that only provide a coarse estimate of snow depth and
snow water equivalent. While several studies evaluate snow
models when driven by accurate meteorological data, efforts
are still needed to investigate how the models perform when
forced by lower-accuracy meteorological data, as are those
typically used in mountain areas.

This study evaluates snow models of different complexi-
ties, assessing their sensitivity to the accuracy of the input
data. An interesting result is that some of the simplest models
perform equally well or even better than sophisticated mod-
els when input data are poor. For example, the intermediate-

https://doi.org/10.5194/hess-24-4061-2020



S. Terzago et al.: Snow model sensitivity to input accuracy

complexity model SMASH provides lower RMSE values in
snow depth simulations than many other higher-complexity
models when driven by 12-hourly data, MeteolO spatially
interpolated data, GLDAS, ERAS, or the bias-adjusted ERA-
Interim reanalysis. The lowest-complexity model considered
in this study, S3M, provides performances that are compara-
ble to those of the most sophisticated snow model analysed
here, SNOWPACK, when it is driven by bias-adjusted ERA-
Interim data.

On the other hand, this study also shows that sophisti-
cated snow models such as SNOWPACK can successfully
reproduce snowpack variability across a wider spectrum of
conditions compared to simpler snow models, outperforming
them in case of isolated snowfall followed by rapid ablation.
Sophisticated models provide good and more stable perfor-
mances across different seasons. It is worth stressing that the
most detailed snow model considered here, SNOWPACK,
though not the best-performing model throughout all the ex-
periments with lower-accuracy forcings, always ranks among
the best-performing models at reproducing snow depth in all
experiments.

Two of the intermediate-complexity snow models, HTES-
SEL and UTOPIA, in the case of optimal forcing provide
skills in reproducing SWE and snow depth that are compara-
ble to those of the most sophisticated model, SNOWPACK.
In addition, they show similar skill across different seasons,
thus revealing significant robustness in reproducing a variety
of conditions. HTESSEL and UTOPIA can thus be consid-
ered a good trade-off between model complexity and model
accuracy in case of high-quality forcing data, while they are
found to be sensitive to biases in the forcing.

Some properties which are common to all models can be
highlighted: (i) difficulty in reproducing snow density, espe-
cially in late spring at the end of the snow season; (ii) low
model sensitivity to the use of surrogate radiation input data
instead of the measured ones, at least for the test site con-
sidered here; (iii) comparable performances when driven by
3-hourly or 30 min data, suggesting the possibility of using
lower-frequency data (up to 3 h) without losing accuracy in
the snow output; (iv) decrease in the models’ reliability, but
not uniformly across the different models, when coarse-grid
forcings are employed; and (v) substantial improvement of
the models’ performances, reducing the differences between
models of different complexities after applying a very simple
bias adjustment to temperature (and consistently snowfall)
forcing.
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The present study has been conceived to set the basis for
high-resolution modelling of mountain snow resources at the
catchment and regional scales in areas where direct mete-
orological measurements are insufficient or unavailable and
one has to rely on coarse-resolution forcing. Such sensitiv-
ity experiments pave the way for the production of long-
term fine-resolution reanalyses for the Alpine snowpack, cur-
rently identified as a major gap for cryosphere studies (Benis-
ton et al., 2018; Terzago et al., 2017), as well as of high-
resolution future projections of the snowpack conditions. In
this case snow models can be employed to refine the cli-
mate information provided by regional climate models and
achieve information on snowpack characteristics at the scales
required by hydrological applications, typically below 1 km.
This approach, dedicated to the reconstruction of the moun-
tain snowpack variability at fine scales, is complementary to
the one pursued by the ongoing ESM-SnowMIP initiative
(Krinner et al., 2018) aiming at improving the representa-
tion of snow processes and snow-related climate feedbacks
in global climate models. Both approaches address issues
which have been highlighted as important in cryospheric sci-
ences (Beniston et al., 2018; Terzago et al., 2017) and pro-
vide information for a range of applications, including the
estimation of climate change impacts on the relevant socio-
economic and environmental sectors.
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Appendix A: Uncertainty associated with the
precipitation measurements in Torgnon

We discuss here the uncertainty associated with the observed
precipitation and in particular the undercatch of snow, which
is common in mountain areas. The primary cause of snow
precipitation undercatch is related to wind speed, with the
amount of precipitation measured by a precipitation gauge
relative to the actual amount of precipitation decreasing with
increasing wind speed.

We quantified the wind-induced precipitation measure-
ments errors by applying the method described in Kochen-
dorfer et al. (2017a, b). This method, derived by comparing
precipitation measurements from unshielded and shielded
(reference) gauges, consists in calculating a catch effi-
ciency (CE), a function of air temperature and wind speed,
so that the inverse (CE~1) can be used to correct actual pre-
cipitation data. The method has been specifically developed
for OTT Pluvio2 gauges, i.e. of the same type employed at
the Torgnon site.

Figure A1 shows the cumulated total precipitation at the
Torgnon site measured by the precipitation gauge (black)
compared to the precipitation adjusted with the Kochendor-
fer method (blue).

The adjusted cumulated total precipitation exceeds the
measured precipitation by 16% on average over the
five snow seasons. As the correction of total precipitation di-
rectly affects the amount of solid precipitation, we tested the
effects of such correction on snow model simulations. We
performed an additional experiment (CTL_prc-adj) in which
the model forcing is the same as in the CTL run except for to-
tal precipitation, which is now the adjusted one. The snowfall
fraction is then calculated from the adjusted total precipita-
tion.
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Figure A2 shows the results for the SNOWPACK model,
and it displays the simulated snow depth (panel a) and snow
water equivalent (panel b) obtained in the CTL and CTL_prc-
adj runs compared to observations. In all snow seasons the
snow depth and the snow water equivalent are remarkably
overestimated in the CTL_prc-adj experiment compared with
both observations and the CTL run. The additional snowfall
input derived from the precipitation adjustment leads to an
excess of snow accumulation on the ground which can be
quantified in an average snow depth bias of 0.17 m compared
to the —0.001 m bias in the CTL run. The RMSE is double in
the CTL_prc-adj run compared to the CTL run (see Table Al
for details).

As the precipitation adjustment method itself is affected
by its own uncertainties, and given that the application of
the precipitation adjustment leads to a worsening in the snow
model performances, we decided to employ the original pre-
cipitation measurements as forcing in the snow model exper-
iments.

Table A1. SNOWPACK model RMSE and bias for the simulated
snow depth and snow water equivalent variables in the CTL_prc-
adj experiment and in the control run (CTL).

Snow depth SWE
RMSE BIAS RMSE BIAS
(m) (m)  (m) (m)
CTL 0.10 —0.001 0.04 0.02
CTL_prc-adj 0.20 0.170 0.10 0.09
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Figure Al. Cumulated total precipitation at the Torgnon site measured by the OTT Pluvio2 precipitation gauge (black) compared to the
precipitation adjusted with the method of Kochendorfer et al. (2017a) for the five snow seasons considered (blue).
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Figure A2. Snow depth (a) and snow water equivalent (b) simulated by the SNOWPACK model when the adjusted total precipitation forcing
is employed (CTL_prc-adj) compared to the control run (CTL) and observations.

https://doi.org/10.5194/hess-24-4061-2020

Hydrol. Earth Syst. Sci., 24, 4061-4090, 2020



4082 S. Terzago et al.: Snow model sensitivity to input accuracy

Appendix B: Spatial interpolation of meteorological
forcings from neighbouring stations

In hydrological and snow modelling the spatial interpola-
tion of ground meteorological observations is commonly em-
ployed to derive spatially continuous meteorological forcing
to drive the models. In this work, we evaluate the response
of snow models with such forcing. An interpolated dataset
for the Torgnon monitoring site has been prepared using the
MeteolO library (Bavay and Egger, 2014). The meteorologi-
cal data are interpolated from six neighbouring stations, over
a squared digital elevation model of 16 km? with a grid res-
olution of 50 m centered on the coordinate of the Torgnon
monitoring site (Fig. B1 and Table B1).

0 2.5 5 7.5 10 km

.r

&

Figure B1. Locations of the six neighbouring stations used for producing the interpolated dataset for the MeteolO experiment. The grey
square represents the extent of the digital elevation model used for the interpolation.
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Table B1. Characteristics of the meteorological stations used for the spatial interpolation with the MeteolO library and measured parameters.
TA: air temperature; PTOT: precipitation (OTT); SWIN: incoming shortwave solar radiation; VW-DW: wind speed and direction; RH: relative
humidity. The stations belong to the regional meteorological network of the Aosta Valley.

Station name Elevation Distance TA PTOT SWIN VW-DW RH
(ma.s.l.) (km)
Cime Bianche 3100 12 X X X X X
Saint-Berthélemy 1675 9.8 X X X X
Place Moulin 1980 9.1 X X X X X
Breuil Cervinia 2000 10.3 X X X
Maen 1310 3.2 X X X
Ayas 1566 1.6 x X X
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Appendix C: The impact of the time interpolation
method for SWIN in the TIME-12h experiment

We test the impact of using two different methods to derive
30 min temporal resolution shortwave incoming radiation in-
put when only measurements at 00:00 and 12:00 UTC+-1 are
available (as in the TIME-12h experiment). The first method
is a basic linear interpolation of the available measurements.
The second method is slightly more sophisticated and em-
ploys the potential (clear-sky) incoming shortwave radiation
(Knauer et al., 2018) at 30 min temporal resolution and at
the coordinates of the Torgnon station and the SWIN station
measurements at 12:00 UTC+1. For each day of the year, the
48 daily values of potential radiation are rescaled according
to the observed SWIN value at 12:00, to obtain an “estimated
SWIN” (Fig. Cla).

With the first method, based on the linear interpolation,
the average difference between the estimated and observed
SWIN radiation over the full period is large (+97 W m™2),
while with the second method, based on the scaling of
the potential radiation, the difference is close to zero
(—0.87 Wm™2).

In order to test the impact of the method to interpolate
SWIN radiation on snow simulations, we run two experi-
ments in which the forcing is the Torgnon data sampled every
12 h as explained in Sect. 4. The two forcings differ for the
SWIN radiation input: in one case it is obtained by linearly
interpolating SWIN measurements (TIME-12h-LIN) and in
the other case it is obtained by rescaling the potential radia-
tion as explained above (TIME-12h-SWINPOT).

Hydrol. Earth Syst. Sci., 24, 4061-4090, 2020
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Table C1. Model RMSE for the simulated snow depth in the CTL
run and the TIME-12h-LIN and TIME-12h-SWIN-POT experi-
ments, compared to observations.

RMSE snow depth (m)
Model CTL TIME-12h-LIN  TIME-12h-SWIN-POT
SNOWPACK 0.10 0.21 0.11
GEOTOP 0.17 0.37 0.35
HTESSEL 0.11 0.44 0.12
UTOPIA 0.12 0.38 0.26
SMASH 0.17 0.17 0.17
S3M 0.25 0.38 0.39

Figure Clb shows the results of the two experiments,
TIME-12h-LIN and TIME-12h-SWINPOT, compared to the
CTL run and observations, for the SNOWPACK model and
for the snow depth variable. The use of the SWIN forcing de-
rived from the potential radiation leads to a remarkable im-
provement in the agreement with observations compared to
the case when linearly interpolated SWIN is used, with the
model RMSE reduced to a value which is comparable to that
obtained in the CTL run (Table C1). The results for all snow
models are reported in Table C1.
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Figure C1. (a) Measured shortwave incoming radiation (SWIN) at the Torgnon site for the day 27 June 2017 (points), potential SWIN for
that day (solid black line), and “estimated SWIN” from the scaling of the potential SWIN on the value registered at 12:00 UTC+1; (b) snow
depth simulations obtained with the SNOWPACK model for experiment TIME-12h-SWIN-POT compared to TIME-12h-LIN, the CTL run,
and observations.
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Appendix D: Exportability of the results of the
reanalysis-driven experiments

In order to address the issue of the exportability of the meth-
ods and results of the reanalysis-driven experiments to other
areas of the Alps, we evaluated the biases of the reanalyses
in reproducing the main drivers of the snowpack processes,
i.e. temperature and total precipitation, compared to obser-
vational data. The aim is to evaluate the spatial distribution
of the temperature and precipitation biases and their consis-
tency at the mountain range scale.

ERAS, ERA-Interim and GLDAS temperatures have been
averaged over the months October—June and over the
years 1980-2014 (except for GLDAS, which has been avail-
able since 2000 only, so the averages have been calculated
over the period 2000-2014) and then compared to the E-OBS
version 13 observational dataset (Haylock et al., 2008) over
the greater Alpine region (GAR, 4-19° E, 43—49° N). E-OBS
is a daily gridded dataset at 0.25° resolution, based on the
European Climate Assessment and Data set station measure-
ments.

ERAS and GLDAS temperature biases are large and neg-
ative over the entire GAR (Fig. D1). GLDAS bias is espe-
cially strong, and it exceeds —4 °C in most of the region.
ERADS bias is large at high elevations and decreases towards
the lowlands. Compared to ERAS and GLDAS, ERA-Interim
temperature is in better agreement with observations, with
mainly negative biases across the region and values close
to zero (both positive and negative values) at the mountain
ridges in the western Alps. All these results are consistent
with those found at the Torgnon site (Fig. 3), so the biases at
the point scale are reflected at the mountain range scale.
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Regarding precipitation, it is well known that standard sur-
face station gauges have problems in capturing snowfall, and
thus they underestimate total precipitation in mountain areas.
Similarly, observational-based datasets such as E-OBS have
also been found to suffer from underestimation of precipi-
tation at high elevations (Turco et al., 2013). To overcome
this problem, instead of using observation-based datasets as
a reference, we evaluate precipitation ratios with respect to
one of the reanalyses (ERA-Interim), since reanalyses inher-
ently take into account orographic effects. Figure D2 shows
the ERAS5 and GLDAS October-to-June accumulated precip-
itation ratios relative to ERA-Interim over the periods 1980-
2014 and 2000-2014 respectively (GLDAS has been avail-
able since 2000). Also in this case the ERAS spatial pat-
tern is homogeneous over the Alpine range, with ERAS
showing consistently more precipitation than ERA-Interim
in the mountain areas. GLDAS precipitation is found to be
in slightly better agreement with the ERA-Interim reanalysis
than ERAS, with a relative precipitation bias close to 1 over
the Alpine range.

Overall, this analysis providing information on the spatial
variability of the temperature and precipitation biases in the
reanalysis products over the Alpine region broadens the per-
spective beyond the specific case of the Torgnon site. The
time-averaged biases at the Torgnon site are spatially con-
sistent with those found at the mountain range scale, with
the magnitude of the bias slightly varying across the region
and with the elevation. Similar biases in the forcing suggest
that the methods applied in the reanalysis-driven experiments
could be extended to other sites in the Alps and could lead to
results not too dissimilar from those found at Torgnon.
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Figure D1. BIAS of ERAS, ERA-Interim, and GLDAS air temperatures with respect to EOBS observations over the greater Alpine region.
Temperatures have been averaged over the months from October to June and over the period 1980-2014 in the case of ERAS and ERA-
Interim, and over the period 2000-2014 in the case of GLDAS.
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Figure D2. ERAS and GLDAS ratios relative to ERA-Interim for the October—June accumulated precipitation over the periods 1980-2014
and 2000-2014 respectively.
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