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Supplementary Materials 1 

S1. Derivation of analytical solutions for the SWPP test 2 

To reduce the complexity in analyzing the influence of input parameters on the output, the 3 

dimensionless parameters are introduced as follows: 𝐶𝑚𝐷 =
𝐶𝑚

𝐶0
, 𝐶𝑖𝑚𝐷 =

𝐶𝑖𝑚

𝐶0
, 𝐶𝑖𝑛𝑗,𝑚𝐷 =

𝐶𝑖𝑛𝑗,𝑚

𝐶0
, 4 

𝐶𝑖𝑛𝑗,𝑖𝑚𝐷 =
𝐶𝑖𝑛𝑗,𝑖𝑚

𝐶0
,  𝐶𝑐ℎ𝑎,𝑚𝐷 =

𝐶𝑐ℎ𝑎,𝑚

𝐶0
,  𝐶𝑐ℎ𝑎,𝑖𝑚𝐷 =

𝐶𝑐ℎ𝑎,𝑖𝑚

𝐶0
,  𝐶𝑟𝑒𝑠,𝑚𝐷 =

𝐶𝑟𝑒𝑠,𝑚

𝐶0
, 𝐶𝑟𝑒𝑠,𝑖𝑚𝐷 =

𝐶𝑟𝑒𝑠,𝑖𝑚

𝐶0
, 5 

𝐶𝑒𝑥𝑡,𝑚𝐷 =
𝐶𝑒𝑥𝑡,𝑚

𝐶0
, 𝐶𝑒𝑥𝑡,𝑖𝑚𝐷 =

𝐶𝑒𝑥𝑡,𝑖𝑚

𝐶0
, 𝐶𝑢𝑚𝐷 =

𝐶𝑢𝑚

𝐶0
, 𝐶𝑢𝑖𝑚𝐷 =

𝐶𝑢𝑖𝑚

𝐶0
, 𝐶𝑙𝑚𝐷 =

𝐶𝑙𝑚

𝐶0
, 𝐶𝑙𝑖𝑚𝐷 =

𝐶𝑙𝑖𝑚

𝐶0
, 𝑡𝐷 =6 

|𝐴|

𝛼𝑟
2𝑅𝑚

𝑡, 𝑟𝐷 =
𝑟

𝛼𝑟
, 𝑟𝑤𝐷 =

𝑟𝑤

𝛼𝑟
, 𝑧𝐷 =

𝑧

𝐵
, 𝜇𝑚𝐷 =

𝛼𝑟
2𝜇𝑚

𝐴
, 𝜇𝑖𝑚𝐷 =

𝛼𝑟
2𝑅𝑚𝜇𝑖𝑚

𝑅𝑖𝑚𝐴
, 𝜇𝑢𝑚𝐷 =

𝛼𝑟
2𝜇𝑢𝑚

𝐴
, 𝜇𝑢𝑖𝑚𝐷 =7 

𝛼𝑟
2𝑅𝑚𝜇𝑢𝑖𝑚

𝑅𝑖𝑚𝐴
,  𝜇𝑙𝑚𝐷 =

𝛼𝑟
2𝜇𝑙𝑚

𝐴
 and 𝜇𝑙𝑖𝑚𝐷 =

𝛼𝑟
2𝑅𝑚𝜇𝑙𝑖𝑚

𝑅𝑖𝑚𝐴
, where the subscript “D” represents the 8 

dimensionless parameter hereinafter, 𝐴 =
𝑄

4𝜋𝐵𝜃𝑚
. By substituting these dimensionless parameters 9 

into the governing equations, one could obtain the dimensionless model of the SWPP test: 10 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
=

1

𝑟𝐷

𝜕2𝐶𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚𝐷

𝜕𝑟𝐷
− 𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷 − (

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢𝑚𝐷 −11 

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵𝜃𝑚
𝐶𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,  (S1a) 12 

𝜕𝐶𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶𝑖𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S1b) 13 

𝜕𝐶𝑢𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑚𝐷𝐶𝑢𝑚𝐷, 14 

𝑧𝐷 ≥ 1,           (S2a) 15 

𝜕𝐶𝑢𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑢𝑖𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢𝑖𝑚𝐷, 𝑧𝐷 ≥ 1,   (S2b) 16 

𝜕𝐶𝑙𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑚𝐷𝐶𝑙𝑚𝐷, 17 

𝑧𝐷 ≤ −1,          (S3a) 18 
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𝜕𝐶𝑙𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑙𝑖𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙𝑖𝑚𝐷, 𝑧𝐷 ≤ −1,    (S3b) 19 

where 𝜀𝑚 =
𝜔𝑎𝛼𝑟

2

𝐴𝜃𝑚
, 𝜀𝑖𝑚 =

𝜔𝑎𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑚𝑅𝑖𝑚
,  𝜀𝑢𝑚 =

𝜔𝑢𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑢𝑚𝑅𝑢𝑚
, 𝜀𝑢𝑖𝑚 =

𝜔𝑢𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑢𝑚𝑅𝑢𝑖𝑚
, 𝜀𝑙𝑚 =

𝜔𝑙𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑙𝑚𝑅𝑙𝑚
, 𝜀𝑙𝑖𝑚 =20 

𝜔𝑙𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑙𝑚𝑅𝑙𝑖𝑚
. 21 

The analytical solution will be derived using the Laplace transform method and the Green’s 22 

functions method, and the detailed information could be seen in the following sections. 23 

 24 

S1.1 Solutions in the injection phase: Eqs. (25a) and (25f) 25 

Substituting the dimensionless parameters into Eqs. (5) - (6), one could obtain the 26 

dimensionless boundary conditions and dimensionless initial conditions for the injection phase: 27 

𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑖𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝐷)|𝑡𝐷=0 =28 

𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝐷)|𝑡𝐷=0 = 0,      (S4) 29 

𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑖𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝐷)|𝑧𝐷→∞ =30 

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝐷)|𝑧𝐷→∞ = 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡)|𝑧𝐷→−∞ = 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝐷)|𝑧𝐷→−∞ = 0, (S5) 31 

𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 = 1, 𝑡𝐷),      (S6a) 32 

𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝐷) = 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷 = −1, 𝑡𝐷).      (S6b) 33 

Conducting Laplace transform to Eqs. (S2a) - (S2b), one has: 34 

𝑠𝐶̅𝑢𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶̅𝑢𝑚𝐷 + 𝜀𝑢𝑚𝐶̅𝑢𝑖𝑚𝐷， 35 

 𝑧𝐷 ≥ 1,          (S7a) 36 

𝑠𝐶̅𝑢𝑖𝑚𝐷 = 𝜀𝑢𝑖𝑚(𝐶̅𝑢𝑚𝐷 − 𝐶̅𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶̅𝑢𝑖𝑚𝐷, 𝑧𝐷 ≥ 1,   (S7b) 37 

Substituting Eq. (S7b) into Eq. (S7a) will lead to: 38 

𝑠𝐶̅𝑢𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
) 𝐶̅𝑢𝑚𝐷， 39 
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 𝑧𝐷 ≥ 1,          (S8) 40 

Similarly, Eqs. (S3a) - (S3b) become: 41 

𝑠𝐶̅𝑙𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶̅𝑙𝑚𝐷 + 𝜀𝑙𝑚𝐶̅𝑙𝑖𝑚𝐷, 42 

𝑧𝐷 ≤ −1,          (S9a) 43 

𝑠𝐶̅𝑙𝑖𝑚𝐷 = 𝜀𝑙𝑖𝑚(𝐶̅𝑙𝑚𝐷 − 𝐶̅𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶̅𝑙𝑖𝑚𝐷, 𝑧𝐷 ≤ −1,   (S9b) 44 

Substituting Eq. (S9b) into Eq.(S9a) results in: 45 

𝑠𝐶̅𝑙𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
) 𝐶̅𝑙𝑚𝐷, 46 

𝑧𝐷 ≤ −1,          (S10) 47 

where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform 48 

parameter in respect to dimensionless time. 49 

Eqs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential 50 

equation (ODE) with boundary conditions, the general solution of Eq. (S8)  is: 51 

𝐶̅𝑢𝑚𝐷 = 𝐴1𝑒𝑎1𝑧𝐷 + 𝐵1𝑒𝑎2𝑧𝐷.       (S11a) 52 

Similarly, the general solution of Eq. (S10)  is: 53 

𝐶̅𝑙𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷 + 𝐵2𝑒𝑏2𝑧𝐷.       (S11b) 54 

where  𝑎1 =

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
+√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

, 55 

𝑎2 =

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
−√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

, 56 

𝑏1 =
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
+√(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

 and  57 
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𝑏2 =
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
− √(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

. 58 

Substituting Eqs. (S11a) - (S11b) into Eqs. (S5)-(S6b) leads to: 59 

𝐶̅𝑢𝑚𝐷 = 𝐵1𝑒𝑎2𝑧𝐷.        (S12a) 60 

𝐶̅𝑙𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷.         (S12b) 61 

where 𝐵1 = 𝐶̅𝑚𝐷𝑒𝑥𝑝 (−𝑎2), 𝐵2 = 0, 𝐴1 = 0 and 𝐴2 = 𝐶̅𝑚𝐷𝑒𝑥𝑝 (𝑏1). 62 

Thus, we could obtain the solutions for the aquitards as: 63 

𝐶̅𝑢𝑚𝐷 = 𝐶̅𝑚𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2).       (S13a) 64 

𝐶̅𝑢𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶̅𝑢𝑚𝐷,       (S13b) 65 

𝐶̅𝑙𝑚𝐷 = 𝐶̅𝑚𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1).       (S14a) 66 

𝐶̅𝑙𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶̅𝑙𝑚𝐷,       (S14b) 67 

In the injection phase, the dimensional boundary conditions Eq. (8) and Eqs. (12a)-(12b) are 68 

transformed into their dimensionless forms: 69 

[𝐶𝑚𝐷 −
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷   (S15) 70 

𝛽𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷)

𝑑𝑡𝐷
= 1 − 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷) , 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷,     (S16a) 71 

𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷 = 0) = 0,         (S16b) 72 

where 𝛽𝑖𝑛𝑗 =
𝑉𝑤,𝑖𝑛𝑗𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 73 

Conducting Laplace transform to Eqs. (S1a) - (S1b), one has: 74 

𝑠𝐶̅𝑚𝐷 =
1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶̅𝑚𝐷 + 𝜀𝑚𝐶̅𝑖𝑚𝐷 −  75 

(
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶̅𝑢𝑚𝐷 −

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝜃𝑚𝐵
𝐶̅𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
 , 76 
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𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S17a) 77 

𝐶̅𝑖𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶̅𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,      (S17b) 78 

Substituting Eqs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has: 79 

1

𝑟𝐷

𝜕2𝐶𝑚̅𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− 𝐸𝐶̅𝑚𝐷 = 0.       (S18) 80 

where 81 

 𝐸 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑚𝜀𝑖𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
+

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵𝜃𝑚
−

𝑎2𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2 +
𝑏1𝜃𝑙𝑚𝛼𝑟

2𝐷𝑙

2𝐴𝐵2𝜃𝑚
. 82 

The boundary conditions of the wellbore and infinity in the Laplace domain are: 83 

[𝐶̅𝑚𝐷 −
𝜕𝐶𝑚̅𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶̅𝑖𝑛𝑗,𝑚𝐷(𝑠),      (S19a) 84 

𝐶̅𝑚𝐷(𝑟𝐷 , 𝑠)|𝑟𝐷→∞ = 0.        (S19b) 85 

Conducting Laplace transform on Eqs. (S16a)- (S16b), one has: 86 

𝐶̅𝑖𝑛𝑗,𝑚𝐷(𝑟𝑤, 𝑠) =
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
,        (S20) 87 

Eqs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary 88 

differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is: 89 

𝐶̅𝑚𝐷(𝑟𝐷 , 𝑠) = 𝜙1 𝑒𝑥𝑝 (
𝑦𝑖𝑛𝑗

2
) 𝐴𝑖(𝐸1/3𝑦𝑖𝑛𝑗) + 𝜙2exp (

𝑦𝑖𝑛𝑗

2
) 𝐵𝑖(𝐸1/3𝑦𝑖𝑛𝑗).  (S21) 90 

where 𝑦𝑖𝑛𝑗 = 𝑟𝐷 +
1

4𝐸
, 𝑦𝑖𝑛𝑗,𝑤 = 𝑟𝑤𝐷 +

1

4𝐸
; 𝜙1 and 𝜙2 are constants which could be determined by 91 

the boundary conditions; 𝐴𝑖(∙) and 𝐵𝑖(∙) are the Airy functions of the first kind and second kind, 92 

respectively. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 → ∞ , 𝜙2 has to be zero. 93 

Substituting Eqs. (S21), (S20) and 𝜙2 = 0 into Eq. (S19a), the value of 𝜙1 is: 94 

𝜙1 =
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)

1

𝑒𝑥𝑝(
𝑦𝑖𝑛𝑗,𝑤

2
)[

𝐴𝑖(𝐸1/3𝑦𝑖𝑛𝑗,𝑤)

2
−𝐸1/3𝐴𝑖

′(𝐸1/3𝑦𝑖𝑛𝑗)]

.    (S22) 95 

where 𝐴𝑖
′(∙) is the derivative of the Airy function. 96 
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Substituting Eq. (S22) and 𝜙2 = 0 into Eqs. (S21) and (S17b), one could obtain the 97 

Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test. 98 

 99 

S1.2 Solutions in the chaser phase: Eqs. (26a) - (26g) 100 

For the chaser phase, conducting Laplace transform on Eqs. (S2a)-(S2b), one has: 101 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶̅𝑢𝑚𝐷 + 𝜀𝑢𝑚𝐶̅𝑢𝑖𝑚𝐷 +102 

𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) = 0，𝑧𝐷 ≥ 1,       (S23a) 103 

𝑠𝐶̅𝑢𝑖𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) = 𝜀𝑢𝑖𝑚(𝐶̅𝑢𝑚𝐷 − 𝐶̅𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶̅𝑢𝑖𝑚𝐷 ,  (S23b) 104 

Eq. (S23b) could be rewritten as: 105 

𝐶̅𝑢𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶̅𝑢𝑚𝐷 +

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
,    (S23c)  106 

Substituting Eq. (S23c) into Eq. (S23a), one has: 107 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶̅𝑢𝑚𝐷 +108 

𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
= 0. 𝑧𝐷 ≥ 1,    (S24) 109 

Similarly, Eqs. (S3a) - (S3b) become: 110 

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶̅𝑙𝑚𝐷 + 𝜀𝑙𝑚𝐶̅𝑙𝑖𝑚𝐷 +111 

𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) = 0，𝑧𝐷 ≤ −1,       (S25a) 112 

𝑠𝐶̅𝑙𝑖𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) = 𝜀𝑙𝑖𝑚(𝐶̅𝑙𝑚𝐷 − 𝐶̅𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙𝑖𝑚𝐷 ,  (S25b) 113 

Eq. (S23b) could be rewritten as : 114 

𝐶̅𝑙𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶̅𝑙𝑚𝐷 +

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
,     (S25c) 115 

Substituting Eq. (S25c) into Eq. (S25a), one has: 116 
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𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶̅𝑙𝑚𝐷 +117 

𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
= 0. 𝑧𝐷 ≤ −1,    (S26) 118 

where 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷 , 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile 119 

concentrations [ML-3] of the upper aquitard at the end of the injection phase,  𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) 120 

and 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile concentrations [ML-3] of the 121 

lower aquitard at the end of the injection phase. In this study, we use the Green’s function 122 

method to derive the analytical solution of Eqs. (S24) and (S26). 123 

Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to 124 

homogenize it first. Letting 𝐶̅𝑢𝑚𝐷 = 𝓀(𝑧𝐷) + 𝓈1 + 𝓈2𝑧𝐷, and substituting them into Eqs. (S5) 125 

and (S6a) yields: 126 

[𝓀(𝑧𝐷)]|𝑧𝐷→∞ = 0,         (S27a) 127 

[𝓀(𝑧𝐷)]|𝑧𝐷=1 = 0,         (S27b) 128 

where 𝓈1 = −𝓈2𝑧𝑒𝐷 and 𝓈2 =
𝐶𝑚̅𝐷(𝑟𝐷,𝑠)

1−𝑧𝑒𝐷
. 129 

Defining the spatial operator: 𝐿𝑢 = − [
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝑑2

𝑑𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝑑

𝑑𝑧𝐷
− 𝐸𝑢], one has: 130 

𝐿𝑢𝐶̅𝑢𝑚𝐷 = 𝐿𝑢[𝓀(𝑧𝐷) + 𝓈1] = 𝐹𝑢(𝑧𝐷),       (S28) 131 

Let 𝑓𝑢(𝑧𝐷) = 𝐹𝑢(𝑧𝐷) − 𝐿𝑢[𝓈1 + 𝓈2𝑧𝐷], one has: 132 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝑑2𝓀

𝑑𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝑑𝓀

𝑑𝑧𝐷
− 𝐸𝑢𝓀 = −𝑓𝑢(𝑧𝐷) ,     (S29) 133 

where 𝐸𝑢 = 𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
, 𝐹𝑢(𝑧𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) +134 

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
 and 𝑓𝑢(𝑧𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑖𝑛𝑗,𝐷) +

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
𝓈2 −135 

𝐸𝑢(𝓈1 + 𝓈2𝑧𝐷). 136 
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The general solution of Eq. (S24) is: 137 

𝐶̅𝑢𝑚𝐷 = ∫ 𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝜂𝑢)
∞

1
𝑓𝑢(𝜂𝑢)𝑑𝜂𝑢 +

𝑧𝐷−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐶̅𝑚𝐷(𝑟𝐷, 𝑠), 𝑧𝐷 ≥ 1.   (S30) 138 

where 𝑓𝑢(𝜂𝑢) = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝜂𝑢, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝜂𝑢,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
𝓈2 − 𝐸𝑢(𝓈1 + 𝓈2𝜂𝑢), 𝜂𝑢 139 

is a positive value varying between 1 and ∞ (e.g. 1 ≤ 𝜂𝑢 ≤ ∞); 𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) is the Green's 140 

function, and could be expressed as : 141 

𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) = {
𝑔𝑢1(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) = 𝑁1𝑒𝑥𝑝(𝑎1𝑧𝐷) + 𝑁2𝑒𝑥𝑝(𝑎2𝑧𝐷)   1 ≤ 𝑧𝐷 < 𝜂𝑢

𝑔𝑢2(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) = 𝑁3𝑒𝑥𝑝(𝑎1𝑧𝐷) + 𝑁4𝑒𝑥𝑝(𝑎2𝑧𝐷)  𝜂𝑢 ≤ 𝑧𝐷 < ∞
,  (S31) 142 

where 𝑁1，𝑁2，𝑁3 and 𝑁4 are coefficients to be detrmined using the following conditions 143 

[Chen and Woodside ,1988]: 144 

a) 𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) satisfying the model of Eqs. (S29) and (S27a)-(S27b); 145 

b) 𝑔𝑢1(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) = 𝑔𝑢2(𝑧𝐷, 𝐸𝑢; 𝜂𝑢); 146 

c) 
𝑑𝑔𝑢2

𝑑𝑧𝐷
|

𝑧𝐷=𝜂𝑢
+

−
𝑑𝑔𝑢1

𝑑𝑧𝐷
|

𝑧𝐷=𝜂𝑢
−

= −
𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢

; 147 

Substituting Eq. (S31) into Eq. (S27a), one has: 148 

𝑁3 = 0,           (S32) 149 

Substituting Eq. (S31) into Eq. (S27b), one has: 150 

𝑁1𝑒𝑥𝑝(𝑎1) + 𝑁2𝑒𝑥𝑝(𝑎2) = 0,        (S33a) 151 

According to Eq. (S33a), one has: 152 

𝑁1 = −𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1)，       (S33b) 153 

According to above condition of b), one has: 154 

𝑁1𝑒𝑥𝑝(𝑎1𝜂𝑢) + 𝑁2𝑒𝑥𝑝(𝑎2𝜂𝑢) = 𝑁4𝑒𝑥𝑝(𝑎2𝜂𝑢),     (S34) 155 

According to above condition of c), one has: 156 

𝑁4𝑎2𝑒𝑥𝑝(𝑎2𝜂𝑢) − [𝑁1𝑎1𝑒𝑥𝑝(𝑎1𝜂𝑢) + 𝑁2𝑎2𝑒𝑥𝑝(𝑎2𝜂𝑢)] = −
𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢

.  (S35) 157 
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In the chaser phase, the values of 𝑁1, 𝑁2 , 𝑁3and 𝑁4 could be determined by Eqs. (S33a) - 158 

(S35), namely: 159 

𝑁1 = −𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1), 𝑁2 =
−𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢[(𝑎1−𝑎2)𝑒𝑥𝑝(𝑎2−𝑎1)𝑒𝑥𝑝(𝑎1𝜂𝑢)]

, 𝑁3 = 0 and  160 

𝑁4 = 𝑁2−𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1)𝑒𝑥𝑝(𝑎1𝜂𝑢 − 𝑎2𝜂𝑢). 161 

As for the analytical solution of the lower aquitard, one could use a similar approach as that 162 

used for deriving the analytical solution of the upper aquitard to obtain, and the general solution 163 

of Eq. (S26) could be described as: 164 

𝐶̅𝑙𝑚𝐷 = ∫ 𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝜂𝑙)
−∞

−1
𝑓𝑙(𝜂𝑙)𝑑𝜂𝑙 +

𝑧𝑒𝐷+𝑧𝐷

𝑧𝑒𝐷−1
𝐶̅𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑠), 𝑧𝐷 ≤ −1. (S36a) 165 

𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = {
𝑔𝑙1(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = 𝑀1𝑒𝑥𝑝(𝑏1𝑧𝐷) + 𝑀2𝑒𝑥𝑝(𝑏2𝑧𝐷)   − 1 ≤ 𝑧𝐷 < 𝜂𝑙

𝑔𝑙2(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = 𝑀3𝑒𝑥𝑝(𝑏1𝑧𝐷) + 𝑀4𝑒𝑥𝑝(𝑏2𝑧𝐷)   𝜂𝑙 ≤ 𝑧𝐷 < −∞
,  (S36b) 166 

𝑓𝑙(𝜂𝑙) = 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝜂𝑙 , 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝜂𝑙,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
+

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝐶𝑚̅𝐷

𝑧𝑒𝐷−1
− 𝐶𝑚̅𝐷𝐸𝑙

𝑧𝑒𝐷+𝜂𝑙

𝑧𝑒𝐷−1
,  (S36c) 167 

where 𝜂𝑙 is a negative value varying between −1 and −∞ (e.g.−1 ≤ 𝜂𝑙 ≤ −∞); 𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) is 168 

the Green's function, 𝐸𝑙 = 𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
, and the values of 𝑀1, 𝑀2 , 𝑀3and 𝑀4 169 

could be described as: 𝑀1 = −𝑀2𝑒𝑥𝑝(𝑏1 − 𝑏2), 𝑀2 =
−𝐴𝐵2𝑅𝑙𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑙[𝑒𝑥𝑝(𝑏2𝜂𝑙−𝑏1𝜂𝑙)−𝑏2𝑒𝑥𝑝(𝑏2𝜂𝑙)]

, 𝑀3 =170 

𝑀2𝑒𝑥𝑝(𝑏2𝜂𝑙 − 𝑏1𝜂𝑙) − 𝑀2𝑒𝑥𝑝(𝑏1 − 𝑏2), 𝑀4 = 0, and the values of  𝑎1, 𝑎2 , 𝑏1 and 𝑏2 are the 171 

same as used in the injection phase.  172 

In the chaser phase, the dimensional boundary conditions Eqs. (15a)-(15b) are transformed 173 

into dimensionless forms as: 174 

𝛽𝑐ℎ𝑎,𝐷
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑡𝐷
|

𝑟𝐷=𝑟𝑤𝐷

= 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷), 𝑡𝑖𝑛𝑗,𝐷 < 𝑡𝐷 ≤ 𝑡𝑐ℎ𝑎,𝐷,   (S37a) 175 

𝐶𝑐ℎ𝑎,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|
𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷

= 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|
𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷

 , 𝑡𝑖𝑛𝑗,𝐷 < 𝑡𝐷 ≤ 𝑡𝑐ℎ𝑎,𝐷. (S37b) 176 

where 𝛽𝑐ℎ𝑎,𝐷 = −
𝑉𝑤,𝑐ℎ𝑎𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 177 
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Conducting Laplace transform on Eqs. (S1a)-(S1b) in the chaser phase, one has: 178 

𝑠𝐶̅𝑚𝐷 − 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) =
1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶̅𝑚𝐷 + 𝜀𝑚𝐶̅𝑖𝑚𝐷 −179 

(
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶̅𝑢𝑚𝐷 −

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝜃𝑚𝐵
𝐶̅𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 180 

𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S38a) 181 

𝐶̅𝑖𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶̅𝑚𝐷 +

𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S38b) 182 

where 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) and 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile 183 

concentrations [ML-3] of the aquifer at the end of the injection phase, which could be calculated 184 

by Eqs. (S21) and (S17b).  185 

After substituting Eqs. (S30), (S36a)-(S36c) and (S38b) into Eq. (S38a), one has: 186 

1

𝑟𝐷

𝜕2𝐶𝑚̅𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− 𝐸𝑎𝐶̅𝑚𝐷 + 𝐹 = 0, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S39) 187 

where 𝐸𝑎 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑚𝜀𝑖𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
+

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
−

1

1−𝑧𝑒𝐷

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2 +
1

𝑧𝑒𝐷−1

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚
  188 

and 𝐹 = 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑖𝑛𝑗)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
. 189 

The boundary conditions of Eqs. (S37a)-(S37b)  in Laplace domain becomes: 190 

𝐶̅𝑐ℎ𝑎,𝑚𝐷(𝑟𝑤𝐷, 𝑠) =
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
.    (S40) 191 

The boundary conditions of the wellbore and infinity in Laplace domain are: 192 

[𝐶̅𝑚𝐷 −
𝜕𝐶𝑚̅𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

=
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
,   (S41a) 193 

𝐶̅𝑐ℎ𝑎,𝑚𝐷(𝑟𝑤𝐷, 𝑠)|
𝑟𝐷→∞

= 0,        (S41b) 194 

Similar to the model of the SWPP test in the injection phase, Eqs. (S39) and (S40)-(S41b) 195 

compose a model of the second-order ordinary differential equation (ODE) with boundary 196 
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conditions, however, the governing equation is an inhomogeneous differential equation. In this 197 

study, we use the Green’s function method to derive the analytical solution of Eq. (S39).  198 

Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to 199 

homogenize it first. Assigning 𝐶̅𝑚𝐷 = 𝛹(𝑟𝐷) + 𝛿1 + 𝛿2𝑟𝐷, and substituting it into Eqs. (S41a) 200 

and (S41b) yields: 201 

[𝛹(𝑟𝐷, 𝑠) −
𝜕𝛹(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 0,       (S42a) 202 

𝛹(𝑟𝐷, 𝑠)|𝑟𝐷→∞ = 0,        (S42b) 203 

where  𝛿1 = −
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1

𝑟𝐷|𝑟𝐷→∞

(𝑟𝑤𝐷−𝑟𝐷|𝑟𝐷→∞−1)
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
 and  204 

𝛿2 =
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1

1

(𝑟𝑤𝐷−𝑟𝐷|𝑟𝐷→∞−1)
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
. 205 

Defining a spatial operator:𝐿 = − [
𝑑2

𝑑𝑟𝐷
2 −

𝑑

𝑑𝑟𝐷
− 𝑟𝐷𝐸𝑎], one has: 206 

𝐿𝐶̅𝑚𝐷 = 𝐿[𝛹(𝑟𝐷) + 𝛿1 + 𝛿2𝑟𝐷] = 𝐹𝑟𝐷,      (S43) 207 

Let 𝜑(𝑟𝐷) = 𝐹𝑟𝐷 − 𝐿(𝛿1 + 𝛿2𝑟𝐷), one has: 208 

𝜕2𝛹

𝜕𝑟𝐷
2 −

𝜕𝛹

𝜕𝑟𝐷
− 𝑟𝐷𝐸𝑎𝛹 = −𝜑(𝑟𝐷).        (S44) 209 

where 𝜑(𝑟𝐷) = 𝐹𝑟𝐷 − [𝛿2 + 𝑟𝐷𝐸𝑎(𝛿1 + 𝛿2𝑟𝐷)]. 210 

The general solution of Eqs. (S42a) - (S44) is: 211 

𝛹(𝑟𝐷, 𝐸𝑎; 𝜂) = ∫ 𝑔(𝑟𝐷, 𝐸𝑎; 𝜂)
∞

𝑟𝑤𝐷
𝜑(𝜂)𝑑𝜂.      (S45) 212 

where 𝜂 is a positive value varying between 𝑟𝑤𝐷 and ∞ (e.g. 𝑟𝑤𝐷 ≤ 𝜂 ≤ ∞); 𝑔(𝑟𝐷, 𝐸𝑎; 𝜂) is the 213 

Green's function, and could be expressed as : 214 

𝑔(𝑟𝐷, 𝐸𝑎; 𝜂) = {
𝑔1(𝑟𝐷, 𝐸𝑎; 𝜂) = 𝒯1𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
)𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝒯2 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) 𝑟𝑤𝐷 ≤ 𝑦𝑐ℎ𝑎 ≤ 𝜂

𝑔2(𝑟𝐷 , 𝐸𝑎; 𝜂) = 𝒯3𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
)𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝒯4 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)  𝜂 ≤ 𝑦𝑐ℎ𝑎 ≤ ∞
. (S46) 215 
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where 𝜑(𝜂) = 𝐹𝜂 − [𝛿2 + 𝜂𝐸𝑎(𝛿1 + 𝛿2𝜂)], 𝑦𝑐ℎ𝑎 = 𝑟𝐷 +
1

4𝐸𝑎
. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 →216 

∞ , 𝒯4 has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has: 217 

[𝑔1 −
𝜕𝑔1

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,        (S47) 218 

According to Eq. (S47), one has: 219 

 𝒯1 = −𝒯2𝑋.          (S48) 220 

where 𝑋 =
1

2
𝐵𝑖(𝐸𝑎

1/3𝑦𝑐ℎ𝑎,𝑤)−𝐸𝑎
1/3𝐵𝑖

′(𝐸𝑎
1/3𝑦𝑐ℎ𝑎,𝑤)

1

2
𝐴𝑖(𝐸𝑎

1/3𝑦𝑐ℎ𝑎,𝑤)−𝐸𝑎
1/3𝐴𝑖

′(𝐸𝑎
1/3𝑦𝑐ℎ𝑎,𝑤)

 and  𝑦𝑐ℎ𝑎,𝑤 = 𝑟𝑤𝐷 +
1

4𝐸𝑎
. 221 

According to above condition of  b), one has: 222 

𝒯1𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂+) + 𝒯2𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂+) = 𝒯3𝐴𝑖(𝐸𝑎
1/3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂−).  (S49) 223 

According to above condition of  c), one has: 224 

[
1

2
𝒯3 𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
) 𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯3 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂−

−225 

[0.5𝒯1 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯1 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂+

−226 

[
1

2
𝒯2 𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯2 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂+

= −1.  (S50) 227 

For solution in the chaser phase, the values of 𝒯1, 𝒯2 , 𝒯3 and 𝒯4 could be determined by Eqs. 228 

(S48) - (S50), namely: 229 

𝒯1 = −
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜂+)

𝐸𝑎
1/3 𝑋 , 𝒯2 =

𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐸𝑎
1/3 , 𝒯3 =

𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐸𝑎
1/3 [

𝐵𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜂+)
− 𝑋] and  𝒯4 =230 

0. 231 

 232 

S1.3 Solutions in the rest phase: Eqs. (27a) - (27f) 233 
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In the rest phase, the flow velocity become zero, and the advection and dispersion terms 234 

drop out of the governing equations. After conducting Laplace transform on Eqs. (S2a)-(S2b), 235 

the following equations would be obtained: 236 

(𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶̅𝑢𝑚𝐷 − 𝜀𝑢𝑚𝐶̅𝑢𝑖𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) = 0. 𝑧𝐷 ≥ 1. (S51a) 237 

𝐶̅𝑢𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑚𝐷
𝐶̅𝑢𝑚𝐷 +

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑚𝐷
, 𝑧𝐷 ≥ 1,    (S51b) 238 

Substituting Eq. (S51b) into Eq. (S51a), one has: 239 

(𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶̅𝑢𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) −

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
=240 

0. 𝑧𝐷 ≥ 1.       (S52) 241 

Similarly, Eqs. (S3a) - (S3b) become: 242 

(𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶̅𝑙𝑚𝐷 − 𝜀𝑙𝑚𝐶̅𝑙𝑖𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) = 0. 𝑧𝐷 ≤ −1. (S53a) 243 

𝐶̅𝑙𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑚𝐷
𝐶̅𝑙𝑚𝐷 +

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑚𝐷
,  𝑧𝐷 ≤ −1,   (S53b) 244 

Substituting Eq. (S45b) into Eq. (S45a), one has: 245 

(𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶̅𝑙𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) −

𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
=246 

0. 𝑧𝐷 ≤ −1.       (S54) 247 

According to Eqs. (S52) and (S54), one has: 248 

𝐶̅𝑢𝑚𝐷 =
𝐶𝑢𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
)

, 𝑧𝐷 ≥ 1,   (S55a) 249 

𝐶̅𝑙𝑚𝐷 =
𝐶𝑙𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
)

, 𝑧𝐷 ≤ −1,   (S55b) 250 

where 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷)and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) are respectively the mobile and immobile 251 

concentrations [ML-3] of the upper aquitard at the end of the chaser phase,  𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) 252 



14 

 

and 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑐ℎ𝑎,𝐷) are respectively the mobile and immobile concentrations [ML-3] of the 253 

lower aquitard at the end of the chaser phase. 254 

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is: 255 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
= −𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷.    (S56a) 256 

𝜕𝐶𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶𝑖𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S56b) 257 

Conducting Laplace transform to Eqs. (S56a) and (S56b) for the rest phase, one has: 258 

𝑠𝐶̅𝑚𝐷 − 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑐ℎ𝑎,𝐷) = −𝜀𝑚(𝐶̅𝑚𝐷 − 𝐶̅𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶̅𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷.  (S57a) 259 

𝑠𝐶̅𝑖𝑚𝐷 − 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝑐ℎ𝑎,𝐷) = 𝜀𝑖𝑚(𝐶̅𝑚𝐷 − 𝐶̅𝑖𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶̅𝑖𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷, (S57b) 260 

According to Eqs. (S57a)-(S57b) , one has: 261 

𝐶̅𝑚𝐷 =
𝐶𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)

[𝑠+𝜀𝑚+𝜇𝑚𝐷−
𝜀𝑚𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
]

.       (S58a) 262 

𝐶̅𝑖𝑚𝐷 =
𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
+

𝜀𝑖𝑚𝐶𝑚̅𝐷

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
.      (S58b) 263 

 264 

S1.4 Solutions in the extraction phase: Eqs. (28a) - (28g) 265 

Contrary to the injection and chaser phases, the direction of advective flux is reversed in the 266 

extraction stage, Eqs. (S2a) and (S3a) are modified as: 267 

𝜕𝐶𝑢𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑚𝐷𝐶𝑢𝑚𝐷, 268 

𝑧𝐷 ≥ 1,          (S59a) 269 

𝜕𝐶𝑙𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑚𝐷𝐶𝑙𝑚𝐷, 270 

𝑧𝐷 ≤ −1,          (S59b) 271 

Conducting Laplace transform on Eqs. (S2b) and (S59a), one has: 272 
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𝑠𝐶̅𝑢𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶̅𝑢𝑚𝐷 − 𝐶̅𝑢𝑖𝑚𝐷) −273 

𝜇𝑢𝑚𝐷𝐶̅𝑢𝑚𝐷, 𝑧𝐷 ≥ 1,       (S60a) 274 

𝐶̅𝑢𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚𝐶𝑢̅𝑚𝐷

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
+

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
, 𝑧𝐷 ≥ 1,    (S60b) 275 

Substituting Eqs. (S60b) into Eq. (S60a) ,one can has: 276 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶̅𝑢𝑚𝐷 +277 

𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
= 0. 𝑧𝐷 ≥ 1,    (S61) 278 

Similarly, conducting Laplace transform on Eqs. (S3b) and (S59b), one has: 279 

𝑠𝐶̅𝑙𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶̅𝑙𝑚𝐷 − 𝐶̅𝑙𝑖𝑚𝐷) −280 

𝜇𝑙𝑚𝐷𝐶̅𝑙𝑚𝐷, 𝑧𝐷 ≤ −1,       (S62a) 281 

𝐶̅𝑙𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚𝐶̅𝑙𝑚𝐷

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
+

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
, 𝑧𝐷 ≤ −1,    (S62b) 282 

Substituting Eqs. (S62b) into Eq.(S62a), one has: 283 

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶̅𝑙𝑚𝐷 +284 

𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
= 0. 𝑧𝐷 ≤ −1,    (S63) 285 

where 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷)and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) are respectively the mobile and immobile 286 

concentrations [ML-3] of the upper aquitard at the end of the rest phase,  𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) and 287 

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷, 𝑡𝑟𝑒𝑠,𝐷) are respectively the mobile and immobile concentrations [ML-3] of the 288 

lower aquitard at the end of the rest phase. 289 

One could use a similar approach of obtaining the analytical solution of aquitards in the 290 

chaser phase to derive the solution of aquitards in the extraction phase. The general solution of 291 

(S61) is: 292 
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𝐶̅𝑢𝑚𝐷 = ∫ 𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝒷𝑢)
∞

1
𝑓𝑢(𝒷𝑢)𝑑𝒷𝑢 +

𝑧𝐷−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐶̅𝑚𝐷(𝑟𝐷 , 𝑠), 𝑧𝐷 ≥ 1,   (S64a) 293 

𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = {
𝑔𝑢1(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = 𝐻1𝑒𝑥𝑝(𝑚1𝑧𝐷) + 𝐻2𝑒𝑥𝑝(𝑚2𝑧𝐷)    1 ≤ 𝑧𝐷 < 𝒷𝑢

𝑔𝑢2(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = 𝐻3𝑒𝑥𝑝(𝑚1𝑧𝐷) + 𝐻4𝑒𝑥𝑝(𝑚2𝑧𝐷)   𝒷𝑢 ≤ 𝑧𝐷 < ∞
,  (S64b) 294 

𝑓𝑢(𝒷𝑢) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝒷𝑢, 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝒷𝑢,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
+

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝐶𝑚̅𝐷(𝑟𝐷,𝑠)

1−𝑧𝑒𝐷
−295 

𝒷𝑢−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐸𝑢𝐶̅𝑚𝐷(𝑟𝐷, 𝑠),          (S64c) 296 

The general solution of Eq. (S63) could be described as: 297 

𝐶̅𝑙𝑚𝐷 = ∫ 𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝒷𝑙)
−∞

−1
𝑓𝑙(𝒷𝑙)𝑑𝒷𝑙 +

𝑧𝐷+𝑧𝑒𝐷

𝑧𝑒𝐷−1
𝐶̅𝑚𝐷(𝑟𝐷 , 𝑠), 𝑧𝐷 ≤ −1,   (S65a) 298 

𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = {
𝑔𝑙1(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = 𝐼1𝑒𝑥𝑝(𝑛1𝑧𝐷) + 𝐼2𝑒𝑥𝑝(𝑛2𝑧𝐷)   − 1 ≤ 𝑧𝐷 < 𝒷𝑙

𝑔𝑙2(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = 𝐼3𝑒𝑥𝑝(𝑛1𝑧𝐷) + 𝐼4𝑒𝑥𝑝(𝑛2𝑧𝐷)   𝒷𝑙 ≤ 𝑧𝐷 < −∞
,  (S65b) 299 

𝑓𝑙(𝒷𝑙) = 𝐶𝑚𝐷(𝑟𝐷, 𝒷𝑙 , 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝒷𝑙,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝐶𝑚̅𝐷(𝑟𝐷,𝑠)

𝑧𝑒𝐷−1
−300 

𝒷𝑙+𝑧𝑒𝐷

𝑧𝑒𝐷−1
𝐸𝑙𝐶̅𝑚𝐷(𝑟𝐷 , 𝑠),          (S65c) 301 

where 𝒷𝑢 is a positive value varying between 1 and ∞; 𝒷𝑙 is a negative value varying between 302 

−1 and −∞; 𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) and 𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) are the Green's functions, 𝐻1~𝐻4 and 𝐼1~𝐼4 are 303 

contants which could be determined by the boundary conditions and conditions of a)~c), the 304 

values of 𝐻1~𝐻4 and 𝐼1~𝐼4 are as follows: 𝐻1 = −𝐻2𝑒𝑥𝑝(𝑚2 − 𝑚1),  305 

𝐻2 =
−𝐴𝑅𝑢𝑚𝐵2

𝑅𝑚𝛼𝑟
2𝐷𝑢[(𝑚1−𝑚2)𝑒𝑥𝑝(𝑚2−𝑚1)𝑒𝑥𝑝(𝑚1𝒷𝑢)]

, 𝐻3 = 0, 𝐻4 = 𝐻2 − 𝐻2𝑒𝑥𝑝(𝑚2 − 𝑚1)𝑒𝑥𝑝(𝑚1𝒷𝑢 − 𝑚2𝒷𝑢), 306 

𝐼1 = −𝐼2𝑒𝑥𝑝(𝑛1 − 𝑛2), 𝐼2 =
−𝐴𝐵2𝑅𝑙𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑙[𝑒𝑥𝑝(𝑛2𝒷𝑙−𝑛1𝒷𝑙)−𝑛2𝑒𝑥𝑝(𝑛2𝒷𝑙)]

, 307 

𝐼3 = 𝐼2𝑒𝑥𝑝(𝑛2𝒷𝑙 − 𝑛1𝒷𝑙) − 𝐼2𝑒𝑥𝑝(𝑛1 − 𝑛2), 𝐼4 = 0,  308 

𝑚1 =
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
+√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚
(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−

𝜀𝑢𝑚𝜀𝑢𝑖𝑚
𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚

)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

, 309 
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𝑚2 =
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
−√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚
(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−

𝜀𝑢𝑚𝜀𝑢𝑖𝑚
𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚

)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

, 310 

𝑛1 =

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
+√(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

 and  311 

𝑛2 =

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
− √(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

. 312 

Similarly, contrary to the injection and chaser phases, the direction of advective flux is 313 

reversed in the extraction stage, and Eq. (S1a) is modified as: 314 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
=

1

𝑟𝐷

𝜕2𝐶𝑚𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷

𝜕𝐶𝑚𝐷

𝜕𝑟𝐷
− 𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷 − (−

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢𝑚𝐷 −315 

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧=1
+ (−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
𝐶𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧=−1
, 𝑟𝐷 ≥ 𝑟𝑤𝐷.  (S66) 316 

In the extraction phase, the dimensional boundary conditions Eqs. (14a)-(14b) are 317 

transformed to the dimensionless format: 318 

𝛽𝑒𝑥𝑡,𝐷
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑡𝐷
|

𝑟𝐷=𝑟𝑤𝐷

=
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑤𝐷

, 𝑡𝑟𝑒𝑠,𝐷 < 𝑡𝐷 ≤ 𝑡𝑒𝑥𝑡,𝐷  (S67a)  319 

𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
= 𝐶𝑟𝑒𝑠,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
.    (S67b)  320 

where 𝛽𝑒𝑥𝑡,𝐷 = −
𝑉𝑤,𝑒𝑥𝑡𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 321 

Conducting Laplace transform on Eqs. (S58) and (S1b) in the extraction phase, one has: 322 

𝑠𝐶̅𝑚𝐷 − 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑟𝑒𝑠) =
1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶̅𝑚𝐷 + 𝜀𝑚𝐶̅𝑖𝑚𝐷 − 323 

(−
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚𝐶𝑢̅𝑚𝐷

2𝐴𝜃𝑚𝑏
−

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝑏

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
− (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚𝐶𝑙̅𝑚𝐷

2𝐴𝑏2𝜃𝑚
+

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝑏2𝜃𝑚

𝜕𝐶𝑙̅𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 324 

𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S68a) 325 
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𝐶̅𝑖𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶̅𝑚𝐷 +

𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑟𝑒𝑠)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,     (S68b)  326 

After substituting Eqs. (S64a)- (S65c) and Eq. (S68b) into Eq. (S68a), one has 327 

𝜕2𝐶𝑚̅𝐷

𝜕𝑟𝐷
2 +

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− 𝑟𝐷𝜁𝐶̅𝑚𝐷 + 𝑟𝐷Λ = 0.       (S69) 328 

where 𝜁 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑖𝑚𝜀𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
−

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
+

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
−

1

1−𝑧𝑒𝐷

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝑏
+

1

𝑧𝑒𝐷−1

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝑏2𝜃𝑚
, 329 

Λ = 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑟𝑒𝑠) +
𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑟𝑒𝑠)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
; 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝑟𝑒𝑠) and 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑟𝑒𝑠) represent the initial 330 

concentrations in the immobile and mobile domains of the SWPP test in the rest phase. 331 

The boundary condition of Eqs. (S67a)-(S67b) in Laplace domain becomes: 332 

𝑠𝛽𝑒𝑥𝑡,𝐷𝐶̅𝑚𝐷(𝑟𝐷, 𝑠)|𝑟𝐷=𝑟𝑤𝐷
− 𝛽𝑒𝑥𝑡,𝐷𝐶𝑟𝑒𝑠,𝑚(𝑟𝐷 , 𝑡𝐷)|

𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
=

𝜕𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑤𝐷

. (S70)  333 

Similar to the model of the SWPP test in the injection phase, Eqs. (S5), (S61) and (S70) 334 

compose a model of the second-order ordinary differential equation (ODE) with boundary 335 

conditions. However, the governing equation is an inhomogeneous differential equation. In this 336 

study, we use the Green’s function method to derive the analytical solution of Eq. (S69).  337 

Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint 338 

form: 339 

𝜕2𝐺

𝜕𝑟𝐷
2 − (𝑟𝐷𝜁 +

1

4
) 𝐺 = −ℓ(𝑟𝐷).        (S71) 340 

where 𝐺 = 𝑒𝑥𝑝(𝑟𝐷/2)𝐶̅𝑚𝐷 and ℓ(𝑟𝐷) = 𝑒𝑥𝑝(𝑟𝐷/2)𝑟𝐷Λ. 341 

The boundary conditions of Eqs. (S5) and (S70) could be rewritten as： 342 

𝐺(𝑟𝐷, 𝑠)|𝑟𝐷=∞ = 0,         (S72a) 343 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝐺 −

𝜕𝐺

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷, 𝑡𝑟𝑒𝑠,𝐷),  (S72b) 344 
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One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to 345 

homogenize it first. Assigning 𝐺 = 𝑈(𝑟𝐷) + 𝑉(𝑟𝐷) and 𝑉(𝑟𝐷) = 𝜎1 + 𝜎2𝑟𝐷, and substituting 346 

them into Eqs. (S72a) and (S72b) yields: 347 

𝑈(𝑟𝐷, 𝑠)|𝑟𝐷=∞ = 0,         (S73a) 348 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝑈 −

𝜕𝑈

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,       (S73b) 349 

where 𝜎1 = −
𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷,𝑡𝑟𝑒𝑠,𝐷)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝑟𝑤𝐷−1−(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝑟𝐷|𝑟𝐷→∞

𝑟𝐷|𝑟𝐷→∞, 350 

𝜎2 =
𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷,𝑡𝑟𝑒𝑠,𝐷)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝑟𝑤𝐷−1−(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝑟𝐷|𝑟𝐷→∞

. 351 

After defining a spatial operator:L = −
𝑑2

𝑑𝑟𝐷
2 + (𝑟𝐷𝜁 +

1

4
), one has: 352 

𝐿𝐺 = 𝐿𝑈(𝑟𝐷) + 𝐿𝑉(𝑟𝐷) = ℓ(𝑟𝐷),       (S74)  353 

and  354 

𝐿𝑈(𝑟𝐷) = ℓ(𝑟𝐷) − 𝐿𝑉(𝑟𝐷).       (S75) 355 

Let 𝑓(𝑟𝐷) = ℓ(𝑟𝐷) − 𝐿𝑉(𝑟𝐷), one has: 356 

𝜕2𝑈

𝜕𝑟𝐷
2 − (𝑟𝐷𝜁 +

1

4
) 𝑈 = −𝑓(𝑟𝐷).        (S76) 357 

where 𝑓(𝑟𝐷) = 𝑒𝑥𝑝(𝑟𝐷/2)𝑟𝐷Λ − (𝑟𝐷𝜁 +
1

4
) (𝜎1 + 𝜎2𝑟𝐷). 358 

Right now, the model with an inhomogeneous boundary condition becomes a regular 359 

Sturm-Louisville problem. The general solution of Eqs. (S73a) - (S73b) and (S76) is: 360 

𝑈(𝑟𝐷, 𝜁; 𝜀) = ∫ 𝑔(𝑟𝐷, 𝜁; 𝜀)
∞

𝑟𝑤𝐷
𝑓(𝜀)𝑑𝜀.      (S77) 361 

where 𝜀 is a positive value varying between 𝑟𝑤𝐷 and ∞ (e.g. 𝑟𝑤𝐷 ≤ 𝜀 ≤ ∞); 𝑔(𝑟𝐷, 𝜁; 𝜀) is the 362 

Green's function, and could be expressed as : 363 

𝑔(𝑟𝐷, 𝜁; 𝜀) = {
𝑔1(𝑟𝐷 , 𝜁; 𝜀) = 𝑃1𝐴𝑖(𝑦𝑒𝑥𝑡) + 𝑃2𝐵𝑖(𝑦𝑒𝑥𝑡)       𝑟𝑤𝐷 ≤ 𝑦𝑒𝑥𝑡 ≤ 𝜀

𝑔2(𝑟𝐷 , 𝜁; 𝜀) = 𝑃3𝐴𝑖(𝑦𝑒𝑥𝑡) + 𝑃4𝐵𝑖(𝑦𝑒𝑥𝑡)          𝜀 ≤ 𝑦𝑒𝑥𝑡 ≤ ∞
, (S78) 364 
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where 𝑓(𝜀) = 𝑒𝑥𝑝(𝜀/2)𝜀Λ − (𝜀𝜁 +
1

4
) (𝜎1 + 𝜎2𝜀), 𝑦𝑒𝑥𝑡 = 𝜁1/3 (𝑟𝐷 +

1

4𝜁
)，𝑃1，𝑃2，𝑃3 and 𝑃4 365 

are coefficients to be determined. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 → ∞ , 𝑃4 has to be zero. 366 

Substituting Eq. (S78) into Eq. (S73b), one has: 367 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝑔1 −

𝜕𝑔1

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,       (S79) 368 

which leads to 369 

𝑃1 = −𝑃2𝑊.          (S80) 370 

where 𝑊 =
(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝐵𝑖(𝑦𝑒𝑥𝑡,𝑤)−𝜁1/3𝐵𝑖

′(𝑦𝑒𝑥𝑡,𝑤)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝐴𝑖(𝑦𝑒𝑥𝑡,𝑤)−𝜁1/3𝐴𝑖

′(𝑦𝑒𝑥𝑡,𝑤)
, 𝑦𝑒𝑥𝑡,𝑤 = 𝜁1/3 (𝑟𝑤𝐷 +

1

4𝜁
). 371 

According to the properties of Green’s function , one has: 372 

𝑃1𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+) + 𝑃2𝐵𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+) = 𝑃3𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀−).    (S81) 373 

[𝑃3𝜁1/3𝐴𝑖
′(𝑦𝑒𝑥𝑡)]

𝑟𝐷=𝜀− − [𝑃1𝜁
1

3𝐴𝑖
′(𝑦𝑒𝑥𝑡) + 𝑃2𝜁

1

3𝐵𝑖
′(𝑦𝑒𝑥𝑡)]

𝑟𝐷=𝜀+
= −1.  (S82) 374 

The values of 𝑃1，𝑃2 and 𝑃3 could be determined by Eqs. (S69) - (S71), namely: 375 

𝑃1 = −
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 𝑊 ，𝑃2 =
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 ,  376 

 𝑃3 =
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 [
𝐵𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+)
− 𝑊]. 377 
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S2. Numerical simulations  381 

To test the assumptions used in the analytical solution of this study, a 3D finite-element 382 

method with the help of COMSOL Multiphysics will be used to solve the three-dimensional 383 

model. The grid mesh of the aquifer-aquitard system in the numerical modeling could be seen in 384 
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Figure S1. The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The 385 

hydraulic parameters are: 𝐾𝑎=0.1 m/day, 𝑆𝑎= 𝑆𝑢= 𝑆𝑙=10-4 m-1, and the other parameters 386 

are 𝑅𝑚 = 𝑅𝑖𝑚 = 𝑅𝑢𝑚 = 𝑅𝑢𝑖𝑚 = 𝑅𝑙𝑚 = 𝑅𝑙𝑖𝑚=1, 𝜃𝑢𝑚 = 𝜃𝑙𝑚 = 0.1, 𝛼𝑟 = 2.5m, 𝛼𝑢 = 𝛼𝑙 = 0.5m, 387 

𝜇𝑚 = 𝜇𝑖𝑚 = 𝜇𝑢𝑚 = 𝜇𝑢𝑖𝑚 = 𝜇𝑙𝑚 = 𝜇𝑙𝑖𝑚=10-7s-1, 𝑟𝑤 =0.5m, 𝑄𝑖𝑛𝑗=𝑄𝑐ℎ𝑎 =50 m3/d, 𝑄𝑟𝑒𝑠=0 m3/d, 388 

𝑄𝑒𝑥𝑡=-50 m3/d, 𝑡𝑖𝑛𝑗=250day, 𝑡𝑐ℎ𝑎=50day, 𝑡𝑟𝑒𝑠=50day, 𝐵=10m, 𝜃𝑚=0.25, 𝜃𝑖𝑚=0.05, 389 

and 𝜔=0.01d-1. In this modeling, the finite thickness of the aquitard is used to approximate the 390 

infinite thickness of the aquitard, and the finite radial length of the aquifer is used to approximate 391 

the infinite radial length of the aquifer. Such treatment works well when the tracer has not 392 

approach the boundary. 393 

 394 

Figure S1. The grid mesh of the aquifer-aquitard system used in the Galerkin finite element 395 

program using COMSOL Multiphysics. 396 
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 397 
Figure S2. Spatial distribution of the flow velocity for different time. The parameters are the 398 

same with ones in Figures 2 and 3. 399 

 400 
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S4. Parameter range used in sensitivity analysis 433 

Table S1: parameter range used in sensitivity analysis 434 

Parameter Unit Range 

𝛼𝑢 m 0.05-0.50 

𝛼𝑟 m 0.50-1.00 

𝑣𝑢𝑚 m/d 0-0.01 

𝜃𝑢𝑚 - 0-0.2 

ω 1/s 0.0001-0.001 

𝜃𝑚 - 0.20-0.40 

𝑉𝑤 m3 0.10-500 

“-” represents dimensionless unit.  435 

 436 


