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Supplementary Materials

S1. Derivation of analytical solutions for the SWPP test

To reduce the complexity in analyzing the influence of input parameters on the output, the

. . . C C; Cinj
dimensionless parameters are introduced as follows: Cyp = 2%, Cimp = ==, Cinjmp = —
0 0 0
C. :. — Cinj,im — Ccham ) — Ccha,im — Cres,m ) — Cres,im
inj,imD Co v “cha,mD Co v “cha,imD Co v “res,mD Co y “res,imD Co ’

C _ Cext,m _ Cext,im _ Cum C _ Cuim C — Cim C — Clim tn =
extmD — y “ext,imD — Co umD — y “uimD — y “lmD — y “limD — y YD —

Co Co Co Co Co
|4 t _ T _Tw _z _ afim _ afRmttim _ afbum _
2Ry p = a_r1 Twp = a_r’ Zp = B’ Hmp = a4 ! Himp = RimA Hump = a4 Hyimp =
afRmbuim aflim afRmfim SPRPTT DY)
——= UWmp = and yimp = ———, where the subscript “D” represents the
RimA A Rim
Q

dimensionless parameter hereinafter, A = " By substituting these dimensionless parameters

B0y,
into the governing equations, one could obtain the dimensionless model of the SWPP test:

0Cmp __ iaZCmD 1 3Cmp Bum @ vum C

- gm(CmD - CimD) = UmpCmp — (m umD

dtp - D arg rp 0rp
Bumaf Dy aCumD) (Blmagvlm 01ma#D; dCimp
e D > Sla
246mB?  9zp /1, _4 + 24B0,, ™MD 2ap20, oz, zD=—1’ D = 'wD: (Sla)
aCimD _
W - gim(CmD - CimD) = WimpCimp, 7o = Twp, (S1b)

0Cymp __ Rma#Dy 0%Cymp  RmVyma? 0CymD
o - — €um (Cump — Cuimp) — tump Cump,

dtp AB?Rym 0zh ABRym  0zp
zp 2 1, (S2a)
9Cyimp

au;;n = Euim(cum[) - CuimD) — Muimp Cuimp, Zp 2 1, (S2b)

9Cimp _ Rma’12"Dl 62ClmD Rmvlma'% 0Cimp
dtp AB2Ry, 0z} ABRy, 9zp

— &m(Cimp = Climp) — Mimp Cimp,

Zp < _1, (SBa)
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9Ciimp

atp = 8lim(ClmD - ClimD) — Wimp Climp» Zp < —1, (S3b)

where g, = e — @a@%Rm _ @u@Rm _ _@uafRm _ @a}Rm
mn A6y T AOmRim” W AOyumRym” M ABymRyim’ tm ABpmRim’ lim

W1A%Rm
ABO1mRiim’

The analytical solution will be derived using the Laplace transform method and the Green’s

functions method, and the detailed information could be seen in the following sections.

S1.1 Solutions in the injection phase: Egs. (25a) and (25f)
Substituting the dimensionless parameters into Egs. (5) - (6), one could obtain the
dimensionless boundary conditions and dimensionless initial conditions for the injection phase:
Cmp (p, tp)lep=0 = Cimp (p, tp)lep=0 = Cump (Tps Zps tp)ltp=0 = Cuimp (p, Zp, tp)lep=0 =
Cimp ("ps Zps tp)lep=0 = Ciimp (Tp, Zp, tp)lep=0 = O, (S4)
Cop ps tp)lrpseo = Cimp (Tps tp) lrpseo = Cump (s 2D, tp) 1 7p—00 =
Cuimp ("p, Zp, tp) | 200 = Cimp ("D Zps )| zp~—0 = Climp (", Zp, tp) | 7p——0 = 0, (S5)
Cmp (p, tp) = Cump (p, 2p = 1, tp), (S6a)
Cop (1ps tp) = Cimp (1p, zp = —1, tp). (S6b)
Conducting Laplace transform to Egs. (S2a) - (S2b), one has:

_ Rma?”Du azc_'umD _ Rmvumaﬁzﬂ 0Cyumb

SC_umD - ABZRy 62[2, ABRym  0zp - (Eum + HumD)éumD + gumﬁuimD ’
zp > 1, (S7a)
SC_uimD = guim(éumD - EuimD) - .uuimDC_uimDa Zp = 1: (S7b)

Substituting Eq. (S7b) into Eq. (S7a) will lead to:

_ RnafDy 0%Cump _ RinVum@# 8Cump _

SCymp = (s + -
umb = sp2g .. 0z} ABRym  0zp um + Hump

Euméuim ) C_v
umbD’
S+UyimptEuim
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Zp > 1,
Similarly, Egs. (S3a) - (S3b) become:

_ RmafD; 3*Cimp | RmVim@f 9Cimp

(S8)

(S9a)

(S9b)

SélmD - AB2R, 62,2) + ABR, 0zp - (glm +MlmD)élmD + glmEZimDv
zp < —1,

$Ciimp = €um(Cump — Climp) — Miimp Ciimp 20 < —1,

Substituting Eq. (S9b) into Eq.(S9a) results in:

SELmD = iggj;ﬁ azaleglb + RZ]:;T:% angzD - (Elm + Uimp — %) C_lmD,
zp < —1,

where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform

parameter in respect to dimensionless time.

Eqgs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential

equation (ODE) with boundary conditions, the general solution of Eq. (S8) is:
C_umD = AlealzD + BleazzD.

Similarly, the general solution of Eq. (S10) is:

ClmD == AzeblzD + BzebzzD.

2
Rrrlvum‘?f?z”+ (Rmvum“%) 4Rm0-’12”Dufs+£ +u __ tumé&yuim )
h ABRym ABRum ABZRym\~ wmTPuUmMD Ty D+ euim
wnere a, =
1 Rma2Dy '
AB%Rym
2
Rmvumod (RmVuma%) +ARm“12"DufS+£ +u __ fuméyim )
ABRym ABRym ABZRym\> WM EUMD Ty imD+euim
az = RynaZDy '
AB2Rym
2 2
Rmvim@% | |(Rmvim@?\~ , ,RmafD;( ___ fmflim
+ 41— S+Eim+Uimbp
b ABRy, ABR};, ABZRp, \ S*+UimD *Elim q
= n
1 Rma?D; a
AB2Rpy,

(S10)

(S1la)

(S11b)
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ElméElim )

R 2 R 2\%  Rpa2p
VT T ( m"lm“T) s l(s+£lm+lilmn—

ABRpy, ABRy, “ABZRp, \ StUIimD*Elim
b, = RmaiD;
AB2Rpy,
Substituting Egs. (S11a) - (S11b) into Egs. (S5)-(S6b) leads to:
C_‘umD = BleazzD. (SlZa)
C_‘lmD == AzeblzD. (S].Zb)
Whel’e Bl = CmDexp(_az), BZ = O, Al = O and AZ = C_mDexp(bl).
Thus, we could obtain the solutions for the aquitards as:
Cump = Cmpexp(azzp — ay). (S13a)
Cutmp = 57— Cum, (S13b)
élmD = émDexp(blzD + bl) (Sl4a)
Ciimp = Heh:ﬁ Cimp: (S14b)
In the injection phase, the dimensional boundary conditions Eqg. (8) and Egs. (12a)-(12b) are
transformed into their dimensionless forms:
Cmp(rp.t
|Cnp = 222522 | = G (60), 0 <t < tinjp (S15)
6TD r=rup
dcin',m (t )
.Binj% =1— Cinjmp(tp) , 0 <tp < tinjp, (S16a)
Cinjmp(tp =0) =0, (S16b)
Vw,injTwbD
where ﬁinj = W]ar.
Conducting Laplace transform to Egs. (S1a) - (S1b), one has:
= 1 9%Cpy, 1 dCpy, = =
SCmD = E arlz)D - E arDD - (gm + .umD)CmD + ngimD -
(guma%vum ~ _ OumafDy aCTv.mD) + (elma%vlm ~ _ 61mazD; aélmD)
246,,B WMD 549,82 9zp 2p=1 246,B MD  oap2g9. 9zp 2p=1
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p = TwD- (Sl7a)
Comp = mémuy Tp = Twp, (S17b)
Substituting Egs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has:
108%Cup 1 8Cmp =
where
_ _ Eméim Bum@FVym _ 01maFvim _ a20um@fDy | b16imaiD;
E=s+en+tmo S+Uimp+Eim 246,B 2AB6,, 2A6,,B? 24B20,, '
The boundary conditions of the wellbore and infinity in the Laplace domain are:
— Cm , -
[CmD - % = Linjmbp (S), (8193_)
b r=TwD
EmD (rD' S)er—wo = 0. (Slgb)
Conducting Laplace transform on Egs. (S16a)- (S16b), one has:
= 1
Cinjmp(Tw,S) = R e (S20)
Egs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary
differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is:
~ YVinj YVinj
Cnp (1p, 5) = ¢y exp ( 5 1) Ai(E"Pyinj) + $oexp ( 5 j) Bi(E™Yinj). (S21)
where y;,; = 1p + é, Yinjw = Twp + ﬁ; ¢, and ¢, are constants which could be determined by

the boundary conditions; A4;(*) and B; () are the Airy functions of the first kind and second kind,

respectively. As B;(rp) diverges when 1, = o , ¢, has to be zero.

Substituting Egs. (S21), (S20) and ¢, = 0 into Eq. (S19a), the value of ¢; is:

1 1

Ai(EY3yinjw)
2

¢, = (S22)

s(sBinj+1) exp(yinj,w)

B E1/3A;(E1/3yinj)

where A;(+) is the derivative of the Airy function.



97 Substituting Eq. (S22) and ¢, = 0 into Egs. (S21) and (S17b), one could obtain the
98 Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test.
99

100  S1.2 Solutions in the chaser phase: Egs. (26a) - (269)

101 For the chaser phase, conducting Laplace transform on Egs. (S2a)-(S2b), one has:
102 Rm @Dy 0*Cump _ RmVum@f 9Cump _ ( + + )C_v + C_‘ +

ABZRym azlz) ABRym 97p ST &um T Hump)bumb EumLuimp
103 Cump (T, Zp, tinjp) =0, zp =1, (S23a)
104 SEuimD - CuimD (TDrZDl tinj,D) = <c—'uim(C_umD - EuimD) - ﬂuimDEuimD ) (823b)
105 Eq. (S23b) could be rewritten as:

~ _ Euim = Cuimp(TD.ZD tinj,p)
106 CuimD B SteyimtHuimbp CumD + s+euimtbuimp (8230)
107 Substituting Eq. (S23c¢) into Eq. (S23a), one has:

Rm@7Dy 9*Cump RinVum@7 Cump Euméuim ~
108 AB?Ry,, 0z3  ABRyy 0zp (S + &um + Hump ~ s+£uim+uuimD) Cump +

EumCuim (T ZDitinj, )

109 CumD (T‘D' ZD' tlTl],D) + S+£uiDm+DMu?mD j,D = O ZD 2 1, (824)
110 Similarly, Egs. (S3a) - (S3b) become:

Rma#D; 02Cy RinVima? 8Cpm = =
111 AB;Zlel azllz)D A;;;h: alZDD - (5 +E&m + .ulmD)ClmD + glmClimD +
112 Cmp (7, 2p, tinjp) =0, zp < —1, (S25a)
113 $Ciimp — Climp (TD'ZDJ tinj,D) = &im (Cimp — Climp) — Himp Climp (S25b)
114 Eq. (S23b) could be rewritten as :

~ _ Elim = Climp(TD,2D tinj,p)
115 ClimD N StEelimtHiimD ClmD + s+eim+llimp (SZSC)
116 Substituting Eq. (S25¢) into Eq. (S25a), one has:
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Rma#D; 8?Cimp RmVimaf 0Cimp
AB2Ry, 0z} ABRy, 0zp

ElmElim ~
— s+ em+ — —) Cimp +
( Im Himb S+&1im+Liimb ImD

€imClimp(TD.2D.tinjp) _ 0. 7
= 0. zp
StEim+HUiimD

A

Cimp (TD, Zp, tinj,D) + -1, (S26)

where CumD(rD,zD, tinj_D) and Cyimp (rD,zD, tinj,D) are respectively the mobile and immobile
concentrations [ML®] of the upper aquitard at the end of the injection phase, C;,,,p (rD, Zp, tinj,D)
and Cjimp (rD,zD, tinj,D) are respectively the mobile and immobile concentrations [ML] of the
lower aquitard at the end of the injection phase. In this study, we use the Green’s function
method to derive the analytical solution of Egs. (S24) and (526).

Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to

homogenize it first. Letting Cynp = #(zp) + 8, + 8,2p, and substituting them into Egs. (S5)

and (S6a) yields:

[#(zp)]lzp-e = 0, 27
[%(zp)]l;p=1 = O, (S27b)
where 8, = —38,2,p and 8, = W.
—<4eD
2 2 2
Defining the spatial operator: L,, = — %;7 _ Rzgzmard% _ Eu], one has:
um D um D

LuEumD =Ly [k(ZD) + 51] = Fu(ZD)' (S28)
Let f,,(zp) = E,(zp) — L [81 + 822p], one has:

Rma?Dy d’k  Rpvyma? dk
AB2Ryy, dz} ABRy;, dzp

E,f = _fu(ZD) ' (S29)

EumEui
where Eu =S+ &um T Uump — S+5uui:+1:ll:imp’ Fu(ZD) = CumD (rDJZD» tinj.D) +

gumcuimD(rDrZD'tinj,D) _ RmVyma?

eumCuimp(TDZDtinjD) _
and f,,(zp) = s+euim+Huimb ABRym

St+éyimtHuimbD

Cump (TD; Zp, tinj,D) +

E, (81 + 832p).
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The general solution of Eq. (S24) is:
C_'umD = floo gu(ZDJ Eu; nu) fu(nu)dnu + % CmD (TDI S)' Zp = 1. (830)

gumcuimD(TDvnu'tinj,D) _ Rm”uma’?z"
St+eyimtHuimbD ABRym

where fu(nu) = CumD(rD' Nw tinj,D) + 82 — Eu(‘sl + 5277u), Ny

is a positive value varying between 1 and o« (e.g. 1 < n,, < ©); g,.(zp, Ey; 1,,) 1S the Green's
function, and could be expressed as :

u1(zp, Ey;ny) = Nyexp(a,zp) + Nyexp(azzp) 1< 2zp <ny (S31)

Z ,E : = { '
9u(zp, Eui ) 9u2(Zp, Ey;my) = Nzexp(aqzp) + Nyexp(azzp) ny < zp < ©

where N;, N,, N; and N, are coefficients to be detrmined using the following conditions
[Chen and Woodside ,1988]:
a) g, (zp, Ey; ) satisfying the model of Egs. (S29) and (S27a)-(S27b);

b) Ju1 (ZD' Ey; nu) = Gu2 (ZDr Ey; nu);

d d AB2R
C) Ju2 _ %9u1 _ um.

dzp dzp - Rm(l‘,%Du’

—p . -
Zp=Nu Zp=Ty

Substituting Eqg. (S31) into Eq. (S27a), one has:

N; =0, (S32)
Substituting Eq. (S31) into Eq. (S27b), one has:

Nyexp(a,) + Nyexp(a,) =0, (S33a)
According to Eq. (S33a), one has:

N, = —N,exp(a, —a,), (S33b)
According to above condition of b), one has:

Nyexp(ainy) + Nyexp(azn,) = Nyexp(azn,), (S34)
According to above condition of c), one has:

AB?Rym

RmaZDy’

Nyayexp(azn,) — [Nia,exp(a;n,) + Nyaexp(an,)] = (S35)
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In the chaser phase, the values of N;, N, , Nsand N, could be determined by Egs. (S33a) -

(S35), namely:

—AB?Rym

Rma?Dyl(as—az)exp(az—aq)exp(agny)]’

N, = —Nzexp(az - al)’ N, = N; =0 and

Ny = N;—Nexp(a, — a)exp(aimy, — azny,).
As for the analytical solution of the lower aquitard, one could use a similar approach as that
used for deriving the analytical solution of the upper aquitard to obtain, and the general solution

of Eq. (S26) could be described as:

5 -0 Zep+Zp &
ClmD = f—l gl(ZDlEl;r]l)fl(nl)dnl + ZeeDD—lD CmD(T‘D,ZD,S), Zp < -1. (3363.)
911 (zp, E;;ny) = Myexp(byzp) + Myexp(byzp) —1<zp <1
20, B ={ ., (S36b
9120, Eiimo) 912(zp, E;; ) = Mzexp(byzp) + Myexp(byzp) 1 < zp < — ( )
EmClim (T MNuting, ) Rmv ma% Cm ~ ZeptT
fi(n) = Cump (15, M0, tinjip) + S+£lli)mfmiijD + AB;lm zgpfl — CnpEy #_;, (S36¢)

where 7, is a negative value varying between —1 and —oo (e.g.—1 <1, < —); g,(zp, E;; 1) iS

the Green's function, E; = s + €, + timp — —2U™  and the values of My, M, , Msand M,
S+Elim+UiimD

—AB?Rim

could be described as: M; = —M,exp(b; — b,), M, = T e A

M3:

M,exp(b,n; — bin;) — Myexp(b, — b,), M, = 0, and the values of a,, a, , b, and b, are the
same as used in the injection phase.
In the chaser phase, the dimensional boundary conditions Egs. (15a)-(15b) are transformed

into dimensionless forms as:

dCmp(rp,tp)

ot = Cpp(Tps tp), tinjp < tp < tehap, (S37a)

D=TwD

ﬁcha,D

= Cinjmp (Tp» tp)| v tinjp <tp <tepgp- (S37b)

Ccha,mD (TDr tD) | tp=tinjp

tp=tinj,p

_ Vw,.chawbD

where Bepap = R
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Conducting Laplace transform on Egs. (S1a)-(S1b) in the chaser phase, one has:

1 aZCmD 1 dCmp = =
_ - - (Sm + .umD)CmD + ngimD -

SCmp — Comp (rD' tinj,D) =

D 67‘5 rp Orp
(Guma%vum ~ _ Buma7 Dy aCTumD) + <9lma1z”vlm ~ _ 81maiDy aCTlmD)
umbD IlmD !
2460, B 2460,,B% 9zp zp=1 2460, B 2AB%6,, 0zp Zp=—1
Tp = Tywp- (S38a)
— & — C; D TD,t' j,D
Comp = ——2——Cpp + M’ D = Twp, (S38b)

(s+uimp+eim) ™ T (s+uimp+eim)
where Cpp (7p, tinjp) @d Cimp (7p, tinj,p) are respectively the mobile and immobile
concentrations [ML] of the aquifer at the end of the injection phase, which could be calculated
by Egs. (S21) and (S17b).
After substituting Egs. (S30), (S36a)-(S36¢) and (S38b) into Eq. (S38a), one has:

i aZCmD _ i aémD

—E,.Chp+F=0,1p =T, S39
™D 67"5 rp 0Tp at“mD v I'D = 'wD» ( )
Eméim Oum AFVym O1maEvim 1 OumafDy 1 OmafD;
where E;, = s+ &, + Ump — - o > >
S+Uimp+Eim 2460,,B 24B20,, 1-zep 2A0,B Zep—1 2AB20,,

EmCimbD (rD:tinj)

S+UimDptEim

and F = C,,,p (TD, tinj,D) +

The boundary conditions of Egs. (S37a)-(S37b) in Laplace domain becomes:

~ .Bc a,

Cenamp (Twp, S) = sﬁC;fT[:-l Cinjmp (Tp, tp) |tD=tinj_D ' (S40)
The boundary conditions of the wellbore and infinity in Laplace domain are:

~ _ 0Cmp(p.S) Bcha,D o
[CmD ) T=TwD B SBcha,pt1 ij,mD (TD’ tD) |tD=tin]'.D’ (8413_)
C_‘cha,mD (Twp, S)l =0, (S41b)

rp—©

Similar to the model of the SWPP test in the injection phase, Egs. (S39) and (S40)-(S41b)

compose a model of the second-order ordinary differential equation (ODE) with boundary

10
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conditions, however, the governing equation is an inhomogeneous differential equation. In this

study, we use the Green’s function method to derive the analytical solution of Eq. (S39).
Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to

homogenize it first. Assigning C,,p = ¥ (1) + 8; + 8,1p, and substituting it into Egs. (S41a)

and (S41b) yields:

=0, (S42a)

r="TwbD

[l[l( To, S ) . 0¥ (rp, s)]

6rD

Y(1p,S)|rpoe =0, (S42b)

.Bcha,D rD|TD—>°°
Sﬁcha,D +1 (er —TrD |TD—>oo

where &, = vy Cinjmp (7o tp)] and

tp=tinj,p

62 — ﬁcha,D 1

C.. ot
SBcha,p+1 (rwp—rD|TD_,°o_1) m],mD( D’ D)l

tp=tinj,p

2
Defining a spatial operator:L = — [d—z -2 rDEa], one has:
drp drp

LCpp = L[¥W(1p) + 81 + 8,1p] = Frp, (S43)
Let (rp) = Frp — L(6;, + 8,1p), one has:

o — 2 1pEY = —p (). (544)

or2  orp
where @ (rp) = Frp — [0, + 1pE (61 + 8,1p)].

The general solution of Egs. (S42a) - (S44) is:

W(rp, Eim) = . 9(ro, i) 9()dln. (S45)
where 7 is a positive value varying between r,,, and o (e.9. 1,p < 1 < ); g(1p, E4; 1) is the

Green's function, and could be expressed as :

(S46)

e ) = {gl(TD Egn) = Tlexp(y”‘a)A ( 3ycha) + T, exp (J’cna) B; (Ea%’cha) Twp < Yena <1
o 92(rp, Eq;m) = Tyexp (LA (E 3ycha) + Ty exp (yCha) B (Ea§}1cha) N < Ycha <

11
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233

where p(n) = Fn — [6, + nE (61 + 6., Venha = 1o + i. As B;(rp) diverges when rp —

oo , 7, has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has:

=0, (S47)

According to Eq. (S47), one has:

T, = —T,X. (S48)
> (Ea ZVChaw)_Ea1/3Bi,(Ea1/3J’chaw) 1
where X =2 : — and =1,p +—.
% l(Ea YCha,w)_Ea1/3A£(Ea1/33/cha,w) Yena,w wb 4Eq

According to above condition of b), one has:

T4 (Eayenalrpmn®) + BBi (Ea¥Yenalromnt ) = T5Ai(Ea*Yenalrpen-).  (549)

According to above condition of c), one has:

[ T3 exp (yCha) 4 (E 3ycha) +E 37’3 exp (yCha) A’ (EaéyCha)”rD:n B

057 exp (%42) 4 (Barvena) + Bt e (*42) 41 (Baiyana), . -

[ T, exp (yCh“) B; (E 3ycha) +E 37"2 exp (yCha) B; (Ea%ycha)”TD:n =-1.  (S50)

For solution in the chaser phase, the values of 73, 75 , 75 and T, could be determined by Eqgs.

(S48) - (S50), namely:

”Ai(J’ext|rD=n+) 7TAi(3’ext|rD=,7+) 7TAi(Yext|rD=n+) [Bi(J’ext|rD=n+) _

=X =— 0= Xland 7, =
Eq'/® Eq'/? 3 Eq'/? Ai()’ext|rD=n+)

S1.3 Solutions in the rest phase: Egs. (27a) - (27f)

12



234 In the rest phase, the flow velocity become zero, and the advection and dispersion terms
235  drop out of the governing equations. After conducting Laplace transform on Egs. (S2a)-(S2b),

236  the following equations would be obtained:

237 (S + &um T .uumD)CumD - SumC_uimD - CumD (rDtZD' tcha,D) = 0. Zp = 1 (8513-)

~ — _ &uim  ~ CuimD(TD:ZD'tcha,D)
238 CuimD N St+&yimtHumbD CumD + S+eyim*+tump Zp =1, (851b)
239 Substituting Eq. (S51b) into Eq. (S51a), one has:

umecuim ~ umCuim ZDitcha,

240 (S + Eum + Hymbp — m) CumD - CumD (rD'ZD, tCha,D) _¢& s+€u?inMiDimDh D) =
241 0.z, > 1. (S52)
242 Similarly, Egs. (S3a) - (S3b) become:
243 (S + Eim + MlmD)élmD - 8lmC_limD - ClmD (TD'ZD: tcha,D) = 0. Zp <-L (8533.)

~ _ Elim ~ Ciimp("D.2D:tcha,D) .
244 ClimD = mclmD + St ermtmp Zp < 1, (S53b)
245 Substituting Eq. (S45b) into Eq. (S45a), one has:

ElmElim ~ EmClim (T Z :tca,)_

246 (s + &m + Wimp — m) Comp = Cimn 0+ 20, tehap) — = ; +€[;mi Hngh =
247  0.zp < —1. (S54)
248 According to Egs. (S52) and (S54), one has:

SumcuimD(rD'ZDltcha,D)
Steyim*tHuimbD
T ) , Zp = 1, (S55a)
StéyimtHuimbD

_ CumbD (TD:ZDJ—'cha,D)+

249 CumD =

(5+5um+ﬂumD—

glmclimD(TDrzD’tcha,D)

Stelim T HlimD

i R < -1, (S55b)
steim+RiimD

_ Cimp(TD/ZD.tcha,p)+

250 ClmD =

(5+Slm +Uimbp—

251 where Cump (70, Zp, tena,p )aNd Cuimp (T, Zp, tena,p ) are respectively the mobile and immobile

252  concentrations [ML®] of the upper aquitard at the end of the chaser phase, Cyyp (rD,ZD, tcha'D)
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253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

and Cyimp (rD,zD, tcha,D) are respectively the mobile and immobile concentrations [ML] of the

lower aquitard at the end of the chaser phase.

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is:

9Cm
TDD = _Sm(CmD - CimD) — UmpCmp, 0 = Twp- (S56a)
OCim
TDD = gim(CmD - CimD) — Uimp Cimps Tp = Twp, (S56b)

Conducting Laplace transform to Eqgs. (S56a) and (S56b) for the rest phase, one has:
$Cmp = Conp (1, tchap) = —&m(Cnp = Cimp) = MimpCmp: o = Twp- (S57a)
$Cimp = Cimp ("ps tenap) = €m(Cmp = Cimp) = Kimp Cimp: ™o = Twp, (S57b)
According to Egs. (S57a)-(S57b) , one has:

emCimp\"D-tcha,D

Cmp(TDstcha, D)+ (szzin(wﬂim) )

= i) (5582)
S+em+imp—Fr—
[ m (S+ﬂimD+8im)]

C_- — CimbD (rD'tcha,D) €imCmb (S58b)
MMD T (stppmpteim) | (StimptEmm)

S1.4 Solutions in the extraction phase: Egs. (28a) - (289)
Contrary to the injection and chaser phases, the direction of advective flux is reversed in the

extraction stage, Eqgs. (S2a) and (S3a) are modified as:

0Cymp __ RmU‘%Du 62CumD Rm”um“% 0CymD

= — €um (Cump — Cuimp) — C
dtp ABZRum 62[2, ABRym dzp um( umD ulmD) HympLump

Zp >1 y (Ssga)

9Cimp _ Rma’12"Dl 62ClmD _ Rmvlma'% 0Cimp
dtp AB2Ry, 0z} ABRy, 9zp

— &m (Cimp — Climp) — Mimp Cimp,
zp < —1, (S59b)

Conducting Laplace transform on Egs. (S2b) and (S59a), one has:

14



273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

Rma2Dy 8%Cymp ~ RmVum@?Z 0Cymbp = =

SCyump — Cump (rD' Zp, tres,D) =

AB2Ry;,m 0z} ABRy;m  0zp
Pump Cump, Zp 2 1, (S60a)
= EuimC. Cuimbp\T'D.ZDtres,D
CuimD — uimtumbD + uim. ( Tes, )’ ZD 2 1’ (S60b)
S+&yimtHuimb SteyimtHUuimb

Substituting Egs. (S60b) into Eq. (S60a) ,one can has:

Rm@#Dy 0*Cump | RmVum@? 9Cump _
AB2Ry;, 073 ABRym 0zp

Euméuim ~
S+ eyum + - —) Cump +
( um Hymb S+&yim+Huimb umD

EumCuimbD (rDrZD'tres,D) _
Cump (TD'ZD' tres,D) + =0.zp =21, (861)
St+euimtHuimbD

Similarly, conducting Laplace transform on Egs. (S3b) and (S59b), one has:

RmafD; 9*Cimp _ RmVim@? 9Cimp

SélmD — Cimp (rD: Zp, tres,D) = — &m (ClmD - C_limD) -

AB2Rpy, 073 ABR;, 0zp
Himp Cimp» Zp < —1, (S62a)
= £1im C, Cl' p\"D,Zp,t D
Ciimp = —imCim_ . Cump'oibtresp) /< g, (S62b)
limTHlimD St+EeimtUimD

Substituting Egs. (S62b) into Eq.(S62a), one has:

Rma?D; 8?Cimp _ RmVimaf 9Cimp
AB2Ry, 0z} ABRy, 0zp

- (S + €m + Himp — M) ElmD +

St+eimtHULimD

SlmclimD(TDJZD'tres D)
C Tp, Zp, t + —=0.zp, < -1 S63
lmD( D»“4D» res,D) S+&1im+HiimD D —= ’ ( )

where Cump (70, Zp) tres.p )and Cuimp (Tp, Zp, tres p) are respectively the mobile and immobile
concentrations [ML"®] of the upper aquitard at the end of the rest phase, Cjp (rD,zD, tres’D) and
Crimp (rD, Zp, tres‘D) are respectively the mobile and immobile concentrations [ML] of the
lower aquitard at the end of the rest phase.

One could use a similar approach of obtaining the analytical solution of aquitards in the
chaser phase to derive the solution of aquitards in the extraction phase. The general solution of

(S61) is:
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293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

umD f gu(ZDJEw’&u)fu(& )d’& +ZD ZEDC D(rD'S):ZD = 11 (8648.)

9u1(zp, Ey; by) = Hyexp(myzp) + Hyexp(mazp) 1<z, < by , (S64b)

ulzp, Bui b) = {guZ(ZD'Ewﬁ' ) = Hzexp(myzp) + Hyexp(myzp) by < zp < o

SumcuimD(rD'f“u'tres,D) Rmvumoﬁzﬂ Cmp(D,S) _
fu (f”u) umD (rD’ f"u, tr‘es D) + SteyimtHuimbD + ABRym 1-Zep
&
1u ZZeDD E C D(TD' S), (S64C)

The general solution of Eq. (S63) could be described as:

+Ze

ClmD - f gl(ZD;El;ﬁ’l)fl(’&l)d’&'l ZD Zeb C D(rDiS)! Zp < _1! (8653-)

JEp b)) = Lexp(nyzp) + Lexp(nyzp) —1<zp <4
B b z{gll(zD LUl 1 1Zp 2 2Zp D , S65b
i, Ei ) 912(zp, E; &) = Lexp(nyzp) + Liexp(nyzp) 4 <z, < —o ( )

glmCleD(rD b tres D) Rmvlm‘)—'?z" Cmp(D,S) _

fl(/gyl) - mD(rD,/&l' TeSD) + St+elimtUiimp ABRim Zep—1

Dy G (7, 5), (S65¢)

where &, is a positive value varying between 1 and <=; & is a negative value varying between
—1and —<=; g, (zp, Ey; #,,) and g;(zp, E;; 6;) are the Green's functions, H;~H, and I, ~I, are
contants which could be determined by the boundary conditions and conditions of a)~c), the

values of H;~H, and I, ~1, are as follows: H; = —H,exp(m, — m,),

— ARy B2
RmarD [(my—my)exp(m,— m1)exp(m10u)]

H2:

O H4_ - H2 Hzexp(mz - ml)exp(ml’&u - mz/glu),

—AB?Rim
Rma?Di[exp(nyb1—ny6))—nzexp(na 4]’

I, = —Lexp(ny —ny), I, =

I; = Lexp(ny &y — nyby) — Lexp(ng —ny), I, =0

2 2p
Rmvuma;+ Rmvuma? +4Rmar ulo e +u fuméyim )
_ ABRum ABRum AB%Rym > TR umD St ity g p e
my = 2 ’
ZRmarDu

AB%Rym
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310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

2
Rmvuma? \](Rmvumavg) ARma;Du( Euméyim )

4 steumt —
- ABRym ABRym A8 R\ D TSR i+ e
L Rma#D,, !
AB%Rym
2
2 2 2
Rmvlmar+ (Rmvlmar> +4RmarDl/S+£l P EimElim )
ABRp, ABRpy ABlem\ M EEmD st pteim,
n = - and
szarDl
AB®R),
2
2 2 2
Rmvy,af (Rmvlmar> +4RmarDl{s+£l N EimElim )
ABR ABRp, ABZle\ mEEmD s+ p e,
n, =
2 ZRma%Dl
AB®Ry,

Similarly, contrary to the injection and chaser phases, the direction of advective flux is
reversed in the extraction stage, and Eqg. (S1a) is modified as:

0Cmp _ 1 9%Cmp 1 9Cmp Bum@Fvum

_ — &m(Conp = Cimp) — HmpCmp — (- -
atp o Or2 5 97D 'm(Cmp imp) — UmpCmp 240,58 “umD

9um“12" Dy 0 CumD)

(_ 01m Q7 Vim _ BimaiDy aClmD)
246B  dzp

24B26,, ™MD 24p2¢9. azp

,Tp = Typ- (S66)

z=1 z=-1
In the extraction phase, the dimensional boundary conditions Egs. (14a)-(14b) are
transformed to the dimensionless format:

9Cmp(p,tp) _ 9Cmp(rpitp)

ﬂext,D ot ar ) tres,D < tD < text,D (8673-)
b TD=TwD b TD=TwD
Cono ("0 tp) | tp=t,es p = Cresmp(ps tp) |tD=tresD' (S67b)
174
where B p = — —‘”;;’Z;V:D .

Conducting Laplace transform on Egs. (S58) and (S1b) in the extraction phase, one has:

_ 10%C,,, 109C,p
SCmp = Cnp (T, tres) = — - ——=

— (em + Cop + EmCimp —
- aTg - aT'D (m UmD) mD m%“imD

(_ Bum @7 VumCump _ BumaiDy aCTumD)

_ (elmagvlmélmD 01m a7 Dy afzmn)
246,,b 240,,b  9zp

2Ab2%0,, 2Ab2%0,, 0zp

'
zZp=—1

zZp=1
o = Twp- (S68a)
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326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Ei Cimp(TD.tres)
Cipp = ——2——Cpyp + 222 10 > 1ups S68b
tmD (s+uimp+eim) mb StUimDptEim b= "wb ( )

After substituting Egs. (S64a)- (S65¢) and Eq. (S68b) into Eq. (S68a), one has

0%Cmp , 9Cmp

arg oD - TD(CmD + T‘DA = 0. (869)

Eim&m _ Bum@Fvum | O1m@FVim 1 BumaF Dy 1 6maiD
S+Uimp+Eim 2A0,,B 2AB20,, 1-zep 2A0,b Zep—1 2Ab26,,’

where { = s+ &, + Ump —

C; ) e e
A= Chpp(rp, tres) + M; Cimp (T, tres) @nd C,,,p (1, tres) represent the initial
StUimptEim

concentrations in the immobile and mobile domains of the SWPP test in the rest phase.
The boundary condition of Egs. (S67a)-(S67b) in Laplace domain becomes:

_ 9Cmp(rp,s)
tp=tyes,D orp

(S70)

S.Bext,D EmD (rD' S) |rD=er - .Bext,D Cres,m (TDr tD) |

TD=TwD
Similar to the model of the SWPP test in the injection phase, Egs. (S5), (S61) and (S70)
compose a model of the second-order ordinary differential equation (ODE) with boundary
conditions. However, the governing equation is an inhomogeneous differential equation. In this
study, we use the Green’s function method to derive the analytical solution of Eq. (S69).
Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint

form:

327;" — (g +3)6 = —e(rp). (S71)

where G = exp(1p/2)C,p and £(1p) = exp(rp/2)1pA.
The boundary conditions of Egs. (S5) and (S70) could be rewritten as:

G(rD'S)erzoo = 01 (8723.)

_ 96
aT‘D

= Bext,D exp(ryp/2)Cinp (er: tres,D)a (S72b)

D=TwD

[(sﬁext,D + %) G
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345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to
homogenize it first. Assigning G = U(rp) + V(rp) and V (rp) = 0y + a,1p, and substituting
them into Eqgs. (S72a) and (S72b) yields:

U(rp, S)lrp=o = 0, (S73a)

[(Sﬁext,D + %) U - 6_U]

aTD

~ 0, (S73b)

D=TwD

Bext,pex0(Twp/2)Cmp (er:tres,D)

1 1
SBext,D +E)TWD_ 1_(5Bext,D +E)TD lrp—oo

where g; = —( 7D lrp—oos

ﬁext,D exp(rwp/2)Cmp (erJtres,D)

1 1 .
SBext,p +§)er _1_(Sﬁext,D +§)7”D |rD—>oo

02=(

2
After defining a spatial operator:L = — d—z + (rD( + 3), one has:
drp 4

LG = LU(rp) + LV (rp) = £(rp), (S74)
and
LU(rp) = €(rp) — LV (1p). (S75)

Let f(rp) = £(rp) — LV (1), one has:

02U

7= (g +3)U=—r0m). (S76)

where f(rp) = exp(rp/2)1p A — (rD{ + i) (01 + 0y1p).
Right now, the model with an inhomogeneous boundary condition becomes a regular

Sturm-Louisville problem. The general solution of Eqgs. (S73a) - (S73b) and (S76) is:

UG, e) = [, g0, T €) f(e)de. (S77)
where ¢ is a positive value varying between r,,, and oo (e.g. 1,p < € < ); g(1p, {; €) is the
Green's function, and could be expressed as :

gl(TD' (; g) = PlAi(yext) + PZBi(yext) Twp < Yext <€

, S78
p) (TDr ¢ g) = P3Ai(yext) + P4Bi(yext) E S Veoxt S ® ( )

g(TD:CE):{
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366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

where f (&) = exp(e/2)eA — (e( + i) (01 + 028), Vore = (/3 (rD + é), P, P,, Pyand P,

are coefficients to be determined. As B;(rp) diverges when 1, = o , P, has to be zero.

Substituting Eq. (S78) into Eq. (S73b), one has:

491
|($Bexep +3) 91 = 22 =0, (S79)
D=TwD
which leads to

(Sﬁext,D +%)Bi(3’ext,w) _51/3 Bi, (J’ext,w)

where W = :
(Sﬁext,D +%)Ai(yext,w)_€1/3A;(yext,w)

Yextw = (1/3 (er + 4_1()

According to the properties of Green’s function , one has:

PlAi(yexter=s+) + PZBi(YextIrDzs*’) = PSAi(yexterzs_)- (881)

1 1
PiG A Vexe) + PoC3B(Yex)| |, =—1.  (S82)

rp=¢*

[P361/3A; (yext)]

rp=&" - [
The values of P;, P, and P; could be determined by Egs. (S69) - (S71), namely:

”Ai()’ext:|rD=£+) ”Ai(Yext|rD=£+)

P1=_—(1/3 W7 P2= (1/3 y
7"-'Ai(3’2xl:|rD=‘g+) Bi(Yext|rD=£+)
P3 - g3 Ai(Yext| +) -
TD=£
References
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S2. Numerical simulations
To test the assumptions used in the analytical solution of this study, a 3D finite-element
method with the help of COMSOL Multiphysics will be used to solve the three-dimensional

model. The grid mesh of the aquifer-aquitard system in the numerical modeling could be seen in
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385  Figure S1. The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The
386 hydraulic parameters are: K,=0.1 m/day, S,= S,,= $;=10* m™1, and the other parameters

387 areR,, = Ry, = Rym = Ruim = Rim = Riim=1, 0ym = Oyp, = 0.1, a,, = 2.5m, a,, = a; = 0.5m,
388 i = Mim = Mum = Huim = Hom = Mim=10"5", 1, =0.5M, Q1,;=Qcnq =50 M*/d, Q,.cs=0 m°/d,
389 Qext=-50 m¥/d, t;,;=250day, t.,,=50day, t,s=50day, B=10m, 6,,=0.25, 6;,,=0.05,

390 and w=0.01d. In this modeling, the finite thickness of the aquitard is used to approximate the
391 infinite thickness of the aquitard, and the finite radial length of the aquifer is used to approximate

392 the infinite radial length of the aquifer. Such treatment works well when the tracer has not

393  approach the boundary.
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395  Figure S1. The grid mesh of the aquifer-aquitard system used in the Galerkin finite element

396  program using COMSOL Multiphysics.
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Figure S2. Spatial distribution of the flow velocity for different time. The parameters are the

same with ones in Figures 2 and 3.
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S4. Parameter range used in sensitivity analysis

Table S1: parameter range used in sensitivity analysis

Parameter Unit Range
ay m 0.05-0.50
a, m 0.50-1.00
Vum m/d 0-0.01
Oum - 0-0.2
W 1/s 0.0001-0.001
O - 0.20-0.40
|4 m’ 0.10-500

“-” represents dimensionless unit.
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