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S1. Representation of water reservoirs in VIC-Res 

To represent the location of dams and upstream impoundments, VIC-Res exploits the 
organization of the modelling domain into a discrete number of computational cells. In 
particular, VIC-Res uses a two-dimensional array that has the same number of rows and 
columns of the flow direction matrix. As illustrated in Figure S1, each cell of the reservoir 
location matrix indicates whether a given area contains a dam, part of the upstream 
impoundment (“Res”), or other land uses (blank). The specifications of each reservoir are 
contained in dedicated files. These specifications include both design aspects (e.g., storage 
capacity) and parameters characterizing the reservoir operations. More details of VIC-Res 
implementation are available at https://github.com/thanhiwer/VICRes.  

 

Figure S1. Panel (a) illustrates the discretization of the model spatial domain into a number of 
computational cells. Specifically, the domain is organized into one dam cell, reservoir cells 
(blue borders), and cells characterized by other land uses (yellow borders). The corresponding 
flow direction and reservoir location matrices are shown in Panels (b) and (c). 

 

S2. Sensitivity analysis 

We use the extended Fourier Amplitude Sensitivity Test (eFAST) to determine the influence 
of soil parameters on the output of the Variable Infiltration Capacity (VIC) model, implemented 
with and without water reservoirs. Specifically, we used the Nash-Sutcliffe efficiency (NSE) 
and Transformed Root Mean Square Error (TRMSE), which account for errors on the high and 
low flows, respectively. Since we have a total of six parameters (Ds, Dmax, Ws, b, d1, and d2; 
also called variables in eFAST), we used a minimum sampling size equal to 393 (Cukier et al., 
1978; Saltelli et al., 1999). As a result, we carried out a total of 1,572 simulations, given by the 
two scenarios (with / without reservoirs) and two model outputs. These experiments were 
implemented with the Python version of the SAFE toolbox (Pianosi et al., 2015). 

As illustrated in Figure 1, results reveal a few important insights. First, all parameters appear 
to influence the model output (either NSE, TRMSE, or both). The only exception is the 
thickness of the second soil layer (d2), which is indeed the only parameter that does not seem 
to depend on the presence / absence of water reservoirs (see Figure 6). Second, the spread 
of some parameters observed in Figure 6 can be explained by looking at the sensitivity of the 
model output. If we consider Dmax, for example, we note that the parameterizations of the 
model with reservoirs belong to a narrow range, suggesting that the model output is strongly 
influenced by its value. This intuition is confirmed in the figure below, where we see that Dmax 
influences more the output (especially high flows) of the model with reservoirs. A similar 
observation applies to the parameter d1 of the model without reservoirs.   



 

Figure S2. Bar plots of main effect (first-order) sensitivity indices for each of the six soil 
parameters in the VIC model implemented with (blue bars) and without (red bars) reservoirs. 
Left and right plots report the results for two different output, namely NSE and TRMSE. 

 

S3. Data for climate change impact assessment 

The climate change impact assessment is based on the CMIP5 climate projections for the 
period 2050-2060. We consider five Global Circulation Models (GCMs: ACCESS1-0, CCSM4, 
CSIRO Mk3.6, HadGEM2-ES, and MPI-ESM-LR) and two Representative Concentration 
Pathways (RCPs: 2.6 and 4.5). We interpolate the GCMs outputs to the spatial resolution of 
the VIC model (0.0625 o x 0.0625o) with the bilinear interpolation method. The delta method, 
which is applied in a similar study site in Lauri et al. (2012), is used to bias-correct the GCMs 
outputs. Figures S2 and S3 show the projected changes in total annual precipitation, and 
maximum and minimum temperature under future change (2050-2060) compared to the 
baseline (1996-2005). 

 

 



 

Figure S3. Projected changes in total annual precipitation (%) under future climate (2050-
2060) compared to the baseline (1996-2005). These changes are produced by five Global 
Circulation Models (GCMs) and two Representative Concentration Pathways. 



 

Figure S4. Projected changes in daily maximum and minimum temperature under future 
climate (2050-2060) compared to the baseline (1996-2005). These changes are produced by 
five Global Circulation Models (GCMs) and two Representative Concentration Pathways. 
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