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Abstract. Stochastically generated streamflow time series
are used for various water management and hazard esti-
mation applications. They provide realizations of plausi-
ble but as yet unobserved streamflow time series with the
same temporal and distributional characteristics as the ob-
served data. However, the representation of non-stationarities
and spatial dependence among sites remains a challenge
in stochastic modeling. We investigate whether the use of
frequency-domain instead of time-domain models allows
for the joint simulation of realistic, continuous streamflow
time series at daily resolution and spatial extremes at mul-
tiple sites. To do so, we propose the stochastic simula-
tion approach called Phase Randomization Simulation us-
ing wavelets (PRSim.wave) which combines an empirical
spatio-temporal model based on the wavelet transform and
phase randomization with the flexible four-parameter kappa
distribution. The approach consists of five steps: (1) deriva-
tion of random phases, (2) fitting of the kappa distribution,
(3) wavelet transform, (4) inverse wavelet transform, and
(5) transformation to kappa distribution. We apply and eval-
uate PRSim.wave on a large set of 671 catchments in the con-
tiguous United States. We show that this approach allows for
the generation of realistic time series at multiple sites exhibit-
ing short- and long-range dependence, non-stationarities, and
unobserved extreme events. Our evaluation results strongly
suggest that the flexible, continuous simulation approach is
potentially valuable for a diverse range of water management
applications where the reproduction of spatial dependencies
is of interest. Examples include the development of regional
water management plans, the estimation of regional flood or
drought risk, or the estimation of regional hydropower poten-
tial.

Highlights.

1. Stochastic simulation of continuous streamflow time se-
ries using an empirical, wavelet-based, spatio-temporal
model in combination with the parametric kappa distri-
bution.

2. Generation of stochastic time series at multiple sites
showing temporal short- and long-range dependence,
non-stationarities, and spatial dependence in extreme
events.

3. Implementation of PRSim.wave in R package PRSim:
Stochastic Simulation of Streamflow Time Series using
Phase Randomization.

1 Introduction

Stochastic models are used to generate long time series or
large event sets showcasing the full variability of a phe-
nomenon. In hydrology, we use stochastically generated time
series or event sets to refine water management plans, to get
a better idea of potential reservoir inflows, or to develop suit-
able adaptation strategies for droughts and floods. If the focus
is on such extreme events, event-based instead of continu-
ous simulation approaches are often employed (e.g., Bracken
et al., 2016; Diederen et al., 2019; Quinn et al., 2019). This
strategy requires an a priori definition of extreme events and
leads to a loss of temporal information, e.g., on the season
of occurrence. In contrast, continuous simulation approaches
allow for the simulation of time series including, but not lim-
ited to, extreme events which are provided together with their
time of occurrence. Such continuous approaches enable the
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investigation of drought and flood characteristics going be-
yond magnitude and extending to timing, duration, or vol-
ume. However, the model representation of this additional
information on timing adds some challenges because the
temporal characteristics of the data need to be represented
in addition to their distribution. These temporal characteris-
tics include fluctuations on short and long timescales (Ra-
jagopalan et al., 2010) and potential non-stationarities in the
data (Nowak et al., 2011).

There exists a variety of continuous, stochastic model-
ing approaches (corresponding to discrete-time models in
the stochastic literature) which differ in their capability of
representing distributional and/or temporal characteristics in
the data. Here, we focus on direct modeling approaches
that directly simulate streamflow using a stochastic model
as opposed to indirect approaches which use a hydrologi-
cal model to transform stochastically generated precipitation
into streamflow. The most commonly used stochastic sim-
ulation approaches belong to the two classes of parametric
and nonparametric models. Parametric models include au-
toregressive moving average (ARMA) models and their mod-
ifications (Stedinger and Taylor, 1982; Papalexiou, 2018) and
fractional Gaussian noise models (Mandelbrot, 1965) com-
prising fast fractional Gaussian noise models (Mandelbrot,
1971), broken line models (Mejia et al., 1972), and fractional
autoregressive integrated moving average models (Hosking,
1984). Nonparametric models include kernel density estima-
tion (Lall and Sharma, 1996; Sharma et al., 1997) and vari-
ous bootstrap approaches such as simple bootstrap, moving-
block bootstrap, nearest-neighbor bootstrap (Salas and Lee,
2010; Herman et al., 2016), matched-block bootstrap (Srini-
vas and Srinivasan, 2006), or maximum-entropy bootstrap
(Srivastav and Simonovic, 2014). These parametric and non-
parametric methods have different strengths and weaknesses
as, e.g., discussed in Rajagopalan et al. (2010), and the repre-
sentation of spatial dependence in such time-domain models
is challenging. For parametric models, the number of param-
eters grows rapidly with the number of locations (Caraway
et al., 2014) and the spatial dependence structure is simi-
lar for high-, medium-, and low-flow values, which is not
the case for observed data (Sharma et al., 1997). Similarly,
non-parametric approaches are not effective for multiple-site
streamflow generation because of the high dimension of the
problem (Nowak et al., 2010).

In contrast to most time-domain models, frequency-
domain models allow for the simulation of surrogate data
with the same Fourier spectra as the raw data (Theiler et al.,
1992) and can easily be extended to multiple sites (Prichard
and Theiler, 1994; Schreiber and Schmitz, 2000). Such meth-
ods are based on the randomization of the phases of the
Fourier transform and are known as the amplitude-adjusted
Fourier transform (AAFT) (Lancaster et al., 2018). They
have only recently been used in hydrology for other applica-
tions besides hypothesis testing, trend detection (Radziejew-
ski et al., 2000), and the identification of nonlinearities in

time series (Schmitz and Schreiber, 1996; Kugiumtzis, 1999;
Venema et al., 2006; Maiwald et al., 2008). Serinaldi and
Lombardo (2017) used an iterative AAFT method to gener-
ate binary series of rainfall occurrence and non-occurrence.
Brunner et al. (2019) used a phase randomization approach
in combination with the flexible four-parameter kappa dis-
tribution (Hosking, 1994) to simulate continuous discharge
time series including unobserved extremes. The approach
is implemented in the R package Stochastic Simulation of
Streamflow Time Series using Phase Randomization PRSim
(Brunner and Furrer, 2019) and can be applied to both indi-
vidual and multiple sites. This phase randomization approach
has been shown to reproduce the distributional and temporal
characteristics of the data at individual sites well (Brunner
et al., 2019; Brunner and Tallaksen, 2019). However, the ap-
proach has some deficiencies when applied to multiple sites
because spatial dependencies in both daily discharge and ex-
treme events are underestimated. In addition, the approach
does not allow for the consideration of non-stationarities.

In contrast to the Fourier transform, the wavelet transform
allows for the representation of non-stationarities in time se-
ries (Rajagopalan et al., 2010). For a short introduction to the
wavelet transform, see Sect. 2. In addition, it may help to im-
prove the representation of spatial dependencies because it
does not require a transformation to the normal distribution
and back to the original, skewed distribution, which usually
weakens spatial correlations (Embrechts et al., 2010). This
weakening is because phase randomization preserves the
cross-correlation in the normal domain but not necessarily in
the domain of the original distribution as linear correlation is
not invariant under nonlinear strictly increasing transforma-
tions. Because of its favorable properties, the wavelet trans-
form has been used in stochastic time series generation in
various ways. Kwon et al. (2007) proposed a wavelet-based
autoregressive modeling (WARM) approach suitable for sys-
tems with a quasi-periodic long memory behavior. They used
the continuous wavelet transform to decompose a time se-
ries into several statistically significant components. Each
of these components was fitted using a linear autoregressive
(AR) model which was subsequently used for simulation.
Later, Nowak et al. (2011) adapted this WARM approach
such that it can handle non-stationarities. Another possibil-
ity for handling non-stationarities is the wavelet-based time
series bootstrap model introduced by Erkyihun et al. (2016)
which generates wavelet-derived signal components with a
block resampling approach, therefore replacing the AR com-
ponent of WARM.

An alternative to these approaches where only certain sig-
nal components are modified are approaches that random-
ize the wavelet coefficients for all components. These ap-
proaches typically perform a discrete wavelet decomposi-
tion using real wavelet functions (as opposed to complex
wavelet functions), randomize the real-valued wavelet coef-
ficients (i.e., amplitudes), and then invert the transform to
produce a new realization of a time series (Breakspear et al.,
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2003; Keylock, 2007; Wang et al., 2010; Lancaster et al.,
2018). However, a completely random shuffling of coeffi-
cients destroys their periodicity. To overcome this drawback,
Breakspear et al. (2003) used block resampling on coeffi-
cients and Keylock (2007) introduced a threshold criterion
that is used to pin particular wavelet coefficients to the same
position in the wavelet domain for both the original and sur-
rogate data. Despite these workarounds, some of the long-
term periodicities and/or non-stationarities may not be pre-
served (Breakspear et al., 2003). Using a continuous instead
of discrete wavelet transform allows for the use of com-
plex wavelet functions which provide complex-valued coef-
ficients containing information on the phase in addition to
amplitude. The use of this additional phase information in
the randomization process instead of the amplitude can pre-
vent the loss of non-stationarities. To generate non-stationary
surrogate time series, Chavez and Cazelles (2019) extended
the classic phase-randomized surrogate data algorithm to the
time–frequency domain using a dataset of weekly measles
notifications and an electroencephalographic recording. They
randomized the phases resulting from the continuous wavelet
transform instead of the real-valued amplitudes. This ap-
proach has the advantage of being non-parametric, avoids as-
sumptions about the distribution and dependence structure of
the data, allows for multiple realizations, and can be extended
to multiple sites by randomizing the phases for multiple time
series in the same way (Prichard and Theiler, 1994; Schreiber
and Schmitz, 2000).

We investigate whether such a wavelet-based phase ran-
domization approach allows for a realistic representation of
spatial dependence in both continuous streamflow time se-
ries and spatial extremes. To do so, we propose a continu-
ous wavelet-based approach for the stochastic generation of
streamflow time series, hereafter referred to as PRSim.wave,
which is based on the empirical spatio-temporal model used
by Chavez and Cazelles (2019), i.e., wavelet-based phase
randomization. This empirical approach is supposed to over-
come difficulties in modeling spatial dependence over a large
domain as occurs when using parametric models (Caraway
et al., 2014). We combine this empirical spatio-temporal
model with a parametric distribution to enable the generation
of hydrological extremes exceeding the range of the observed
values. By doing so, we extend the approach by Brunner et al.
(2019) from the Fourier to the wavelet domain, therefore im-
proving the representation of spatial dependencies and non-
stationarities.

We implement PRSim.wave in the R package PRSim
(Brunner et al., 2019) and apply and evaluate it on a large
dataset of 671 catchments in the contiguous United States.
Our evaluation results indicate that the flexible, continuous
simulation approach can be used for a diverse range of wa-
ter management applications requiring continuous discharge
time series at multiple sites or for regional drought and flood
hazard assessments not limited to peak magnitude or maxi-
mum deficit, but extending to event duration and volume.

2 Theoretical background

Wavelet decomposition transforms a one-dimensional
time series to a two-dimensional time–frequency space
(Daubechies, 1992; Torrence and Compo, 1998) using
either a discrete or continuous wavelet transform. Both
transforms decompose a hydrological series into a set of
coefficients, representing different scales or frequency bands
(Sang, 2012). The coefficients of the discrete transform
are real numbers representing amplitudes. In contrast, the
coefficients derived from the continuous transform have a
real and an imaginary part corresponding to an amplitude
and phase, respectively. This additional information on the
phases makes complex wavelet functions more suitable for
capturing oscillatory behavior (Torrence and Compo, 1998).

The wavelet function used for the transform should reflect
the features present in the time series. Because of its smooth
features, the Morlet wavelet has often been used in hydrolog-
ical applications (Labat et al., 2005; Lafrenière and Sharp,
2003; Schaefli et al., 2007) and is given by (Torrence and
Compo, 1998)

ψ0(η)= π
−1/4eiω0ηe−η

2/2, (1)

where η is a non-dimensional time parameter, ω0 is the non-
dimensional frequency, and i =

√
−1 is the imaginary unit.

The continuous wavelet transform is defined as the convo-
lution of a time series xn of length n with a scaled version
of ψ0(η):

Wn(h)=

N−1∑
n′=0

xn′ψ
∗

[
(n′− n)δt

h

]
, (2)

where ∗ indicates the complex conjugate. Varying the
wavelet scale h and translating along the localized time in-
dex n allows for showing of the amplitude of certain features
vs. scale and how the amplitude varies with time and scale.
An inverse filter can be used to reconstruct the original time
series as the sum of the real part of the wavelet transform
over all scales (h1, . . . ,hJ ):

xn =
δjδt1/2

Cδψ0(0)

J∑
j=0

R
(
Wn

(
hj
))

h
1/2
j

, (3)

where the factor ψ0(0) removes the energy scaling, h1/2
j con-

verts the wavelet transform to an energy density, and the fac-
tor Cδ is a constant for each wavelet function (0.776 for the
Morlet wavelet).

3 Data and methods

We develop and apply the stochastic simulation approach
PRSim.wave using a large-scale dataset of 671 stations in

https://doi.org/10.5194/hess-24-3967-2020 Hydrol. Earth Syst. Sci., 24, 3967–3982, 2020



3970 M. I. Brunner and E. Gilleland: Wavelet-based stochastic simulation

Figure 1. Location of 671 stations in the dataset and of four catch-
ments chosen per example region: (1) Pacific Northwest (red; 590,
608, 661, and 668), (2) Texas (light green; 431, 451, 464, and 474),
and (3) Mid-Atlantic (purple; 43, 104, 117, and 249).

the contiguous United States (CONUS). We evaluate the ap-
proach with respect to distributional and temporal character-
istics at individual sites and with respect to spatial dependen-
cies across multiple sites in general and for floods in particu-
lar.

3.1 Study area

The 671 catchments in the United States cover a wide range
of discharge regimes minimally influenced by human activ-
ity (Newman et al., 2015; Addor et al., 2017; Brunner et al.,
2020b). Daily discharge data were downloaded for the pe-
riod 1981–2018 from the USGS water information system
(USGS, 2019) using the R package dataRetrieval (De Cicco
et al., 2018).

For illustration and validation purposes, we select three
regions which are distinct in terms of their hydrological
regimes and their flood behavior. Flood similarity regions
were determined by Brunner et al. (2020a) using hierarchi-
cal clustering (Gordon, 1999) on a distance matrix computed
from the F-madogram, which is a measure of extremal de-
pendence between pairs of stations (Cooley et al., 2006). The
clustering was applied to the 671 catchments and resulted
in 15 clusters, among which we selected 3 for illustration
purposes: (1) catchments in the lower-elevation coastal Pa-
cific Northwest characterized by high mean annual precipi-
tation and a strong discharge seasonality experiencing floods
mainly in December and January, (2) catchments in Texas
with low mean discharge, weak seasonality, and flood oc-
currence in spring to fall, and (3) catchments in the Mid-
Atlantic coastal plain and central Appalachian Mountains
with a strong streamflow seasonality showing flood occur-
rence for much of the year except early–mid summer. For
each of these regions, four catchments are chosen for illus-
tration purposes (Fig. 1).

3.2 Simulation procedure

The stochastic simulation procedure PRSim.wave for mul-
tiple sites consists of five main steps (Fig. 2), which can be
run p times to generate p spatially consistent time series over
n sites at daily resolution.

1. Derivation of random phases: a random discharge time
series (white noise) of the same length as the input series
is sampled from a normal distribution with mean 0 and
standard deviation 1 (Chavez and Cazelles, 2019). We
also tested the kappa distribution, which did, however,
not significantly change the model performance. The
wavelet transform is applied to the white noise series
using the Morlet wavelet (Eq. 1) for h= 100 wavelet
scales; 100 scales are used as using only a few scales
(e.g., 20) results in reconstructed time series that do not
reflect all the necessary detail, while further increasing
the number of scales no longer improves reconstruction
performance. The phases of the wavelet transform are
derived. These same phases are used for all the sites
considered to retain spatial dependencies among sites
(Prichard and Theiler, 1994; Schreiber and Schmitz,
2000).

2. Fitting of kappa distribution: the flexible four-parameter
kappa distribution (Hosking, 1994) is fit to the daily val-
ues of the observed input time series using L moments.
These daily distributions will be used for the transfor-
mation in Step 5 to simulate extreme values going be-
yond the empirical distribution. The cumulative distri-
bution function of the kappa distribution is expressed as

F(x)=
{

1− ξ
[
1− κ(x−µ)/σ

]1/κ}1/ξ
, (4)

where µ is the location parameter, σ is the scale param-
eter which must be positive, and κ and ξ are the shape
parameters (R package homtest; Viglione, 2009).

The kappa distribution was found to be suitable for fit-
ting observed streamflow data in US catchments (Blum
et al., 2017). A suitable fit is also found for our data, as
confirmed by the Kolmogorov–Smirnov and Anderson–
Darling tests (Chernobai et al., 2015), which did not
reject the null hypothesis at α = 0.05 for most catch-
ments. We fit a separate distribution for each day using a
moving window approach to take into account seasonal
differences in the distribution of daily streamflow val-
ues. To do so, we use the daily values in a 30 d window
around the day of interest. This procedure guarantees a
large enough sample for the parameter fitting procedure
and allows for smoothly changing distributions along
the year. For leap years, flows from 29 February are re-
moved to maintain constant sample sizes across years as
in Blum et al. (2017). In a few regions with many zero
discharge values (e.g., some catchments in the Great
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Plains) fitting the kappa distribution is not possible and
we therefore use the empirical distribution instead. Af-
ter fitting the daily distributions, the mean discharge is
subtracted from the observed discharge values to center
the observations.

3. Wavelet transform: the wavelet transform (Eq. 2) is ap-
plied to the input time series using the complex-valued
Morlet wavelet (Eq. 1) to derive the amplitudes for
h= 100 number of wavelet scales. The complex part of
the wavelet transform Wn(h) comes in via the complex
conjugate ∗ in Eq. (2). The complex conjugate is de-
rived using the modulus and argument, i.e., the phases
of the complex numbers contained in the Morlet wavelet
(Eq. 1). The wavelet coefficients Wn(h) resulting from
the transform are also complex numbers, where the
argument of the complex wavelet value Wn(h) corre-
sponds to the wavelet phase.

4. Inverse wavelet transform: reconstruction of the series
in the time domain by using the inverse wavelet trans-
form (Eq. 3) combining the random phases derived in
Step 1 and the amplitudes derived in the previous step.
During back transformation in Eq. (3), the phases come
back in when deriving the real part at each scale h
through R(Wn(hj )).

5. Transformation to kappa distribution: the simulated val-
ues are transformed to the kappa domain using the fit-
ted daily kappa distributions from Step 2. For each day,
a random sample is generated from the fitted, daily
kappa distribution. Negative simulated values are re-
placed by 0. The simulated values are replaced by the
values generated from the kappa distribution using rank-
ordering. This procedure is repeated for each day in the
year.

Step 1 is run only once per iteration to maintain spatial
dependencies in the data, while Steps 2–5 are run for each
station separately.

3.3 Evaluation

We run the stochastic simulation algorithm for the 671 catch-
ments in the dataset n= 100 times to generate 100 time
series of the same length as the observed time series,
i.e., 38 years. We look at (1) individual sites to evaluate
the general distributional and temporal correlation charac-
teristics as well as the reproduction of high and low flows;
(2) three sets of four stations each to evaluate the spatial
consistencies in daily discharge and floods: Pacific North-
west, Texas, and Mid-Atlantic (Fig. 1); and (3) at the set
of 671 catchments to evaluate spatial consistencies in floods
across large scales.

The evaluation at individual sites encompasses a com-
parison of observed and simulated distributional and tem-

poral discharge characteristics. The distributional character-
istics considered are the mean annual hydrograph show-
ing variation of flow with season, 3 years of daily data il-
lustrating the overall behavior of the series, the seasonal
distributions (winter: December–February, spring: March–
May, summer: June–August, fall: September–November),
and monthly mean, maximum, and minimum values. The
temporal characteristics considered include the autocorrela-
tion (acf) and partial autocorrelation (pacf) functions mea-
suring the strength of temporal dependence for different time
lags, the power spectrum indicating how power varies with
frequency and showing high values at those frequencies that
correspond to strong periodic components (Shumway and
Stoffer, 2017), the normalized average power per scale over
all time steps indicating oscillations, and the scale-averaged
wavelet power (Erkyihun et al., 2016) for the three scales
with the highest average power revealing non-stationarities
in oscillations. To evaluate the capability of the approach to
simulate extreme values, we compare observed and simu-
lated low and high flows, i.e., flows below or above a thresh-
old corresponding to the 0.05th and 0.95th percentiles, re-
spectively.

The evaluation at multiple sites comprises both an assess-
ment of how the general spatial dependence structure in the
data is reproduced and an assessment of how the spatial de-
pendence in high extremes is captured. The assessment of the
general dependence structure encompasses a comparison of
observed and simulated discharge time series for the catch-
ments in the three example regions, a comparison of pairwise
observed and simulated cross-correlations for the example
stations in the Pacific Northwest region, and a comparison
of variograms of the observed and simulated series across all
stations (R package SpatialExtremes; Ribatet, 2019) given by
(Cressie, 1993)

2γ (s1, s2)= var(Z (s1)−Z(s2))= E
[
(Z (s1)−Z(s2))

2
]
, (5)

where Z is a random variable (here, streamflow) measured
at two locations s1 and s2. In order to be able to discern
the shapes of the variograms, they are first smoothed using
splines.

To assess how spatial dependencies in extremes are re-
produced, we first compare observed and simulated times of
occurrences of flood events for the catchments in the three
example regions. We then compare observed to simulated
F-madograms for flood events across all stations. The F-
madogram is a measure of spatial dependence taking val-
ues between 0 and 1 that compares the ordering of extreme
events between two time series of extreme events (Cooley
et al., 2006) and is expressed as

vF(d)=
1
2
E |F [Z(s+ d)] −F [Z(s)]| , (6)

where Z(s) are transformed to have Fréchet margins so that
F(s)= exp(−1/s), and d is the distance between a pair of
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Figure 2. Illustration of stochastic simulation approach PRSim.wave: (1) derivation of random phases which are uniformly distributed over
the range of −π to π , using a white noise time series to be used for the simulation at all stations; for each station: (2) fitting of kappa
distribution to the observed streamflow time series using L moments; (3) wavelet transform to derive the amplitudes and phases of the time
series; (4) inverse wavelet transform recomposing a time series using the random phases from Step 1 in combination with the amplitudes
of Step 3; and (5) transformation to the kappa distribution using the kappa distribution fitted in Step 2. Steps 1–5 are repeated p times to
generate p time series.

stations (R package SpatialExtremes; Ribatet, 2019). We fi-
nally compute the tail dependence coefficient χ across all
stations defined as (Coles, 2001)

χ(u)= Pr
{
Y > G−1(u)|X > F−1(u)

}
= Pr{V > u|U > u}, (7)

where X and Y are uniformly distributed random variables
with distribution functions F and G, and u is a threshold (R
package extRemes; Gilleland and Katz, 2016). Tail depen-
dence estimators depend heavily on the sample size and are
subject to large uncertainty given the sample size of 38 years
(Serinaldi et al., 2015).

4 Results

4.1 Single-site simulations

Both the distributional and temporal dependence characteris-
tics of the time series at individual sites are well modeled, as
shown by comparing observed and stochastically simulated
time series for the two stations on the Nehalem and Navidad

rivers (Figs. 3 and 4). The hydrological regimes (Fig. 3a),
the overall behavior of the time series (Fig. 3b and c), and
the seasonal (Fig. 3d) and monthly distribution characteris-
tics (Fig. 3e–g) are well captured by the simulations. The
simulations, however, are capable of simulating values go-
ing beyond the range of the observations as intended by
using the kappa distribution. In addition to these distribu-
tional characteristics, the temporal correlation characteristics
(Fig. 4a–c), the oscillations in the data (Fig. 4d), and the non-
stationarities in these oscillations (Fig. 4e) are well captured
by the simulations as well.

Both high and low extremes are realistically modeled as
illustrated by the boxplots depicting the distributions of the
above and below threshold events of the four catchments in
the Pacific Northwest (Fig. 5). While the median of the ob-
served low- and high-flow distributions is well met by the
simulated medians, again the simulations allow for the gen-
eration of extreme low and high flows going beyond the ob-
served values because of the use of the theoretical kappa dis-
tribution.

Hydrol. Earth Syst. Sci., 24, 3967–3982, 2020 https://doi.org/10.5194/hess-24-3967-2020



M. I. Brunner and E. Gilleland: Wavelet-based stochastic simulation 3973

Figure 3. Comparison of observed (black) and simulated (orange) distributional discharge characteristics for (i) the station Nehalem River
near Foss, OR (USGS 14301000, id 661) in the Pacific Northwest and (ii) the station Navidad River near Hallettsville, TX (USGS 08164300,
id 464): (a) mean annual hydrographs, (b, c) observed and simulated time series for 3 years, (d) seasonal discharge distribution characteristics,
(e) monthly mean discharge, (f) monthly maximum discharge, and (g) monthly minimum discharge.

4.2 Multi-site simulations

The stochastic simulation approach PRSim.wave not only al-
lows for the reproduction of the distributional and temporal
characteristics of time series at single sites, but also for the
simulation of spatially coherent time series at multiple sites
(Fig. 6). Independent of the region considered, the simula-
tions realistically represent the observed behavior of the time
series. This visual impression of a good performance with re-
spect to the reproduction of spatial correlations in daily dis-
charge data is confirmed by comparing observed and stochas-

tically simulated cross-correlation functions for the catch-
ments in the Pacific Northwest (Fig. 7). Both the shape and
magnitude of the cross-correlation functions are well sim-
ulated. The good performance in terms of reproducing the
general spatial dependence structure in the data can be gen-
eralized to other regions as shown by a comparison of ob-
served and simulated variograms indicating a slight overesti-
mation of spatial dependence for very long distances (> 30◦,
ca. 3000 km; Fig. 8). Figures A1 and A2 demonstrate that
neither the observed cross-correlation nor variogram would
be captured by the simulations if the phases were randomized
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Figure 4. Comparison of observed (black) and simulated (orange) temporal discharge characteristics for (i) the station Nehalem River near
Foss, OR (USGS 14301000, id 661) in the Pacific Northwest and (ii) the station Navidad River near Hallettsville, TX (USGS 08164300,
id 464): (a) acf, (b) pacf, (c) power spectrum, (d) normalized average power, and (e) scale averaged-wavelet power.

for each catchment individually instead of using the same
set of randomized phases across all catchments. In the case
of individual randomization, spatial dependence is not even
captured for very short distances of a few kilometers.

Spatial dependencies are maintained not only for the bulk
of the distribution, by which we mean the part of the distri-
bution excluding extremes or outliers, but also for extreme
values as illustrated by the peak-over-threshold (POT) val-
ues for the different stations in the three illustrated regions

(Fig. 9). These results show that besides regional flood co-
occurrences, the temporal clustering behavior of events is
also reproduced.

The F-madograms shown in Fig. 10 indicate that there is
generally good agreement between observed and simulated
spatial dependence despite a slight overestimation of the spa-
tial dependence of floods by the stochastic simulations. This
overestimation means that a certain pair of stations may ex-
perience more joint floods according to the simulations than
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Figure 5. Comparison of observed (grey) (a) low- and (b, c) high-flow distributions (with and without outliers) with simulated distribu-
tions of 10 runs (orange) for the four catchments in the Pacific Northwest: (i) Calawah River near Forks, WA (USGS 12043000, id 590),
(ii) Stillaguamish River near Arlington, WA (USGS 12167000, id 608), (iii) Nehalem River near Foss, OR (USGS 14301000, id 661), and
(iv) Steamboat Creek near Glide, OR (USGS 14316700, id 668).

Figure 6. Comparison of 3 years of multi-site observations (a) with multi-site stochastic simulations (b) for the four catchments in the three
example regions (i) Pacific Northwest, (ii) Texas, and (iii) Mid-Atlantic. Each region is displayed on its own scale.
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Figure 7. Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge values for pairs
of stations in the set of four catchments (i–iv) in the Pacific Northwest.

Figure 8. Comparison of observed variogram (black) with 100 var-
iograms derived from the 100 simulation runs (orange).

seen in the observations. The good agreement between ob-
served and simulated spatial dependence and the weak over-
estimation in spatial dependence is also visible if we look at
the tail dependence coefficient χ for the two thresholds 0.8
and 0.95 (Fig. 11). For most pairs of stations, both the sim-
ulations and observations indicate no tail dependence (grey
dots). If the observations indicate tail dependence, the sim-
ulations mostly also simulate upper tail dependence (green

dots). Only in very few cases do the simulations not capture
the tail dependence in the observations (black dots). There
are, however, quite a few cases where the simulations indi-
cate tail dependence despite its absence in the observations
(orange dots). Overall, the model shows good performance
in the reproduction of observed spatial (in)dependencies.

5 Discussion

Similar to the Fourier transform based simulation approach
PRSim by Brunner et al. (2019), the wavelet-based simu-
lation approach PRSim.wave presented here allows for the
generation of many time series of the same length as the ob-
served series. This means that the representation of temporal
dependence is limited to ranges within the length of the ob-
served series. However, the modeled range of dependence is
also limited to the one in the observed series if one very long
time series is generated. In addition to the representation of
temporal dependence, PRSim.wave allows for the reproduc-
tion of realistic spatial dependencies both in the general dis-
tribution and in extreme events. However, there is a slight
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Figure 9. Observed (a; black) vs. stochastically simulated (b; orange) POT events for the four stations (color shadings) in the three regions
(i) Pacific Northeast, (ii) Texas, and (iii) Mid-Atlantic. Vertical bars indicate event occurrences over the 38 years.

Figure 10. Observed (black) vs. simulated (orange) F-madograms,
a measure of the strength of spatial dependence, plotted against Eu-
clidean distance. The lower the value, the higher the dependence
between a pair of stations.

tendency of the model to overestimate spatial dependence in
extremes. A satisfactory representation of spatial dependence
is not possible when using the Fourier transform as in PRSim.
This difference between methods may be related to the fact
that the wavelet transform compared to the Fourier transform
does not necessitate a transformation to the normal domain
and a back transformation to the domain of the skewed dis-
tribution, which has been shown to weaken spatial correla-
tions (Embrechts et al., 2010; Papalexiou, 2018). A further
improvement of the representation of cross-correlations and

spatial dependencies may be achieved by using phase anneal-
ing, which modifies the phases in an iterative way in order
to optimize certain statistics but increases the computational
effort (Hörning and Bárdossy, 2018). The use of the kappa
distribution in combination with the spatio-temporal model
allows for the generation of extremes beyond the range of
the observed values. However, it requires the fitting of many
parameters, which make the model non-parsimonious (Kout-
soyiannis, 2016). Depending on the application, the approach
can therefore be used with a distribution with fewer parame-
ters, a distribution fitted to a monthly instead of daily scale,
or the empirical distribution.

The application of the approach is not limited to observed
streamflow time series. It is applicable to other variables such
as precipitation if combined with a suitable distribution as
well as to modeled time series. The use of streamflow time
series generated with a hydrological model extends the appli-
cation of PRSim.wave to climate impact studies where a hy-
drological model is driven by meteorological time series gen-
erated with global and/or regional climate models. Potential
future extensions also include the consideration of covariates
to more explicitly model non-stationarities.
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Figure 11. Observed vs. simulated tail dependence coefficient χ for the two thresholds 0.8 (a) and 0.95 (b). Grey dots indicate pairs of
stations with no upper tail dependence, green dots pairs where both observations and simulations indicate upper tail dependence, black dots
pairs of stations where only the observations indicate tail dependence, and orange dots pairs of stations where only the simulations indicate
tail dependence.

6 Conclusions

Our results show that the continuous, wavelet-based stochas-
tic simulation approach PRSim.wave reliably simulates dis-
charge and extremes at multiple sites. Thanks to a spatio-
temporal model based on phase randomization, temporal
short- and long-range dependencies, non-stationarities, and
spatial dependencies are reproduced. In combination with
the parametric kappa distribution, spatial extremes at mul-
tiple sites can be reliably simulated as well. The stochastic
approach of PRSim.wave is very flexible and easy to use
because of its availability in the R package PRSim. Its ver-
satility and advantageous properties make it generally use-
ful for various water management applications where spatio-
temporal patterns are of interest and, in particular, valuable
for hazard assessments requiring information on spatial ex-
tremes.
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Appendix A: Simulations randomizing phases for each
catchment individually

Figure A1. Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge values for
pairs of stations in the set of four catchments (i–iv) in the Pacific Northwest. Twenty simulations were generated for each site individually,
neglecting spatial dependence.

Figure A2. Comparison of observed (black) and simulated (orange) variograms for 20 simulation runs where the phases were randomized
for each station individually.

https://doi.org/10.5194/hess-24-3967-2020 Hydrol. Earth Syst. Sci., 24, 3967–3982, 2020



3980 M. I. Brunner and E. Gilleland: Wavelet-based stochastic simulation

Code and data availability. The wavelet-based stochastic simula-
tion procedure for multiple sites, PRSim.wave, using the empirical,
kappa, or any other distribution and some of the functions used to
generate the validation plots are provided in the R package PRSim.
The stable version can be found in the CRAN repository (https:
//cran.r-project.org/web/packages/PRSim/index.html, last access:
28 May 2020) (Brunner and Furrer, 2019), and the current develop-
ment version is available at https://git.math.uzh.ch/reinhard.furrer/
PRSim-devel (last access: 28 May 2020). The observational dis-
charge data were provided by the USGS and can be downloaded
via https://waterdata.usgs.gov/nwis (last access: 2 August 2019)
(USGS, 2019).
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