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Abstract. It is expected that hyperresolution land modeling
substantially innovates the simulation of terrestrial water, en-
ergy, and carbon cycles. The major advantage of hyperresolu-
tion land models against conventional 1-D land surface mod-
els is that hyperresolution land models can explicitly simu-
late lateral water flows. Despite many efforts on data assim-
ilation of hydrological observations into those hyperresolu-
tion land models, how surface water flows driven by local to-
pography matter for data assimilation of soil moisture obser-
vations has not been fully clarified. Here I perform two min-
imalist synthetic experiments where soil moisture observa-
tions are assimilated into an integrated surface–groundwater
land model by an ensemble Kalman filter. I discuss how dif-
ferently the ensemble Kalman filter works when surface lat-
eral flows are switched on and off. A horizontal background
error covariance provided by overland flows is important for
adjusting the unobserved state variables (pressure head and
soil moisture) and parameters (saturated hydraulic conduc-
tivity). However, the non-Gaussianity of the background er-
ror provided by the nonlinearity of a topography-driven sur-
face flow harms the performance of data assimilation. It is
difficult to efficiently constrain model states at the edge of
the area where the topography-driven surface flow reaches
by linear-Gaussian filters. It brings the new challenge in land
data assimilation for hyperresolution land models. This study
highlights the importance of surface lateral flows in hydro-
logical data assimilation.

1 Introduction

Hyperresolution land modeling is expected to improve the
simulation of terrestrial water, energy, and carbon cycles,
which is crucially important for meteorological, hydrologi-
cal, and ecological applications (see Wood et al., 2011, for
a comprehensive review). While conventional land surface
models (LSMs) assume that lateral water flows are negligible
at the coarse resolution (> 25 km) and solve the vertical 1-D
Richards equation for the soil moisture simulation (e.g., Sell-
ers et al., 1996; Lawrence et al., 2011), currently proposed
hyperresolution land models, which can be applied at a finer
resolution (< 1 km), explicitly consider surface and subsur-
face lateral water flows (e.g., Maxwell and Miller, 2005; Tian
et al., 2012; Shrestha et al., 2014; Niu et al., 2014). The fine
horizontal resolution can resolve slopes, which are drivers
of a lateral transport of water, and realize the fully inte-
grated surface–groundwater modeling. Previous works indi-
cated that a lateral transport of water strongly controls la-
tent heat flux and the partitioning of evapotranspiration into
base soil evaporation and plant transpiration (e.g., Maxwell
and Condon, 2016; Ji et al., 2017; Fang et al., 2017). This
effect of a lateral transport of water on land–atmosphere in-
teractions has been recognized (e.g., Williams and Maxwell,
2011; Keune et al., 2016).

Data assimilation has contributed to improving the per-
formance of LSMs by fusing simulation and observation.
The grand challenge of land data assimilation is to im-
prove the simulation of unobservable variables using obser-
vations by propagating an observation’s information into a
model’s high-dimensional state and parameter space. In pre-
vious works on the conventional 1-D LSMs, many land data
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assimilation systems (LDASs) have been proposed to ac-
curately estimate a model’s state and parameter variables,
which cannot be directly observed, by assimilating satellite
and in situ observations. For example, the optimization of
an LSM’s unknown parameters (e.g., hydraulic conductiv-
ity) has been implemented by assimilating remotely sensed
microwave observations (e.g., Yang et al., 2007, 2009; Ban-
dara et al., 2014, 2015; Sawada and Koike, 2014; Han et al.,
2014). Kumar et al. (2009) focused on the correlation be-
tween surface and root-zone soil moisture to examine the po-
tential of assimilating surface soil moisture observations to
estimate root-zone soil moisture. Sawada et al. (2015) suc-
cessfully improved the simulation of root-zone soil moisture
by assimilating microwave brightness temperature observa-
tions which include the information of vegetation water con-
tent. Gravity Recovery and Climate Experiment total water
storage observation has been intensively used to improve the
simulation of groundwater and soil moisture (e.g., Li et al.,
2012; Houborg et al., 2012). Improving the simulation of
state variables such as soil moisture and biomass by LDASs
has contributed to accurately estimating fluxes such as evap-
otranspiration (e.g., Martens et al., 2017) and CO2 flux (e.g.,
Verbeeck et al., 2011). However, in most of the studies on the
conventional 1-D LDASs, observations impacted state vari-
ables and parameters only in a single model’s horizontal grid
which is identical to the location of the observation. The as-
sumption that the water flows are restricted to the vertical
direction in LSMs makes it difficult to propagate an observa-
tion’s information horizontally. It limits the potential of land
data assimilation to fully use land hydrological observations.

The hyperresolution land models, which explicitly solve
surface and subsurface lateral flows, provide a unique op-
portunity to examine the potential of land data assimila-
tion to propagate an observation’s information horizontally
in a model space and efficiently use land hydrological ob-
servations. Previous works successfully applied ensemble
Kalman filters (EnKFs) to 3-D Richards’ equation-based in-
tegrated surface–groundwater models. For example, Cam-
porese et al. (2009, 2010) successfully assimilated synthetic
observations of surface pressure head and streamflow into
the Catchment Hydrology (CATHY). Ridler et al. (2014)
successfully assimilated Soil Moisture and Ocean Salin-
ity satellite-observed surface soil moisture into the MIKE
SHE distributed hydrological model (see also Zhang et al.,
2015). Kurtz et al. (2016) coupled the Parallel Data Assim-
ilation Framework (PDAF) (Nerger and Hiller, 2013) with
the Terrestrial System Modelling Framework (TerrSysMP)
(Shrestha et al., 2014) and successfully estimated the spa-
tial distribution of soil moisture and saturated hydraulic con-
ductivity in the synthetic experiment (see also Zhang et
al., 2018). In addition, Kurtz et al. (2016) indicated that
their EnKF approach is computationally efficient in high-
performance computers. Those studies have significantly
contributed to fully assimilating the new high-resolution soil

moisture observations such as Sentinel-1 (e.g., Paroscia et
al., 2013).

Although the data assimilation of hydrological observa-
tions into hyperresolution land models has been successfully
implemented in the synthetic experiments, it is unclear how
topography-driven surface lateral water flows matter for data
assimilation of soil moisture observations. Previous studies
on data assimilation with high-resolution models mainly fo-
cused on assimilating groundwater observations (e.g., Ait-
El-Fquih et al., 2016; Rasmussen et al., 2015; Hendricks-
Franssen et al., 2008). There are some applications which fo-
cused on the observation of soil moisture and pressure head
in shallow unsaturated soil layers. However, in those stud-
ies, topography-driven surface flow was not considered in
the experiment (Kurtz et al., 2016) or the role of them in
assimilating observations into the hyperresolution land mod-
els was not quantitatively discussed (Camporese et al., 2009,
2010). This study aims at clarifying whether surface lateral
flows matter for data assimilation of soil moisture observa-
tions into hyperresolution land models by a minimalist nu-
merical experiment.

2 Methods

2.1 Model

ParFlow is an open-source platform which realizes fully
integrated surface–groundwater flow modeling (Kollet and
Maxwell, 2006; Maxwell et al., 2015). This model can be
efficiently parallelized in high-performance computers and
has been widely used as a core hydrological module in hy-
perresolution land models (e.g., Maxwell and Kollet, 2008;
Maxwell and Condon, 2016; Fang et al., 2017; Kurtz et al.,
2016; Maxwell et al., 2011; Williams and Maxwell, 2011;
Shrestha et al., 2014). Since I used this widely adopted
solver as is and added nothing new to the model physics,
I described the method of ParFlow to simulate integrated
surface–subsurface water flows briefly and omitted the de-
tails of numerical methods. The complete description of
ParFlow can be found in Kollet and Maxwell (2006) and
Maxwell et al. (2015) and references therein.

In the subsurface, ParFlow solves the variably saturated
Richards equation in three dimensions.

SSSW(h)
∂h

∂t
+φSW(h)

∂SW(h)

∂t
=∇ · q + qr (1)

q =−Ks(x)kr(h) [∇(h+ z)cosθx + sinθx] (2)

In Eq. (1), h is the pressure head (L); z is the elevation with
the z axis specified as upward (L); SS is the specific stor-
age (L−1); SW is the relative saturation; φ is the porosity (–
); qr is a source/sink term. Equation (2) describes the flux
q (L T−1) by Darcy’s law, and Ks is the saturated hydraulic
conductivity tensor (L T−1); kr is the relative permeability (–
); θ is the local angle of the topographic slope (see Maxwell
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et al., 2015). In this paper, the saturated hydraulic conductiv-
ity is assumed to be isotropic and a function of z:

Ks =Ks(z)=Ks,surface exp(−f (zsurface− z)) , (3)

where Ks,surface is the saturated hydraulic conductivity at the
surface soil, and zsurface is the elevation of the soil surface.
The saturated hydraulic conductivity decreases exponentially
as the soil depth increases (Beven, 1982). A van Genuchten
relationship (van Genuchten, 1980) is used for the relative
saturation and permeability functions.

SW(h)=
Ssat− Sres

(1+ (αh)n)
(

1− 1
n

) + Sres, (4)

kr(h)=

(
1− (αh)n−1

(1+(αh)n)

(
1− 1

n

)
)2

(1+ (αh)n)

(
1− 1

n

)
2

, (5)

where α (L−1) and n (–) are soil parameters, Ssat is the rel-
ative saturated water content, and Sres is the relative residual
saturation.

Overland flow is solved by the 2-D kinematic wave equa-
tion. The dynamics of the surface ponding depth, h (L), can
be described by

k · [−Ks(z)kr(h) · ∇(h+ z)]=
∂ ‖h,0‖
∂t

−∇ · ‖h,0‖vsw+ qr. (6)

In Eq. (6), k is the unit vector in the vertical and ‖h,0‖ in-
dicates the greater value of the two quantities following the
notation of Maxwell et al. (2015). This formulation results in
the overland flow equation being represented as a boundary
condition to the variably saturated Richards equation (Kol-
let and Maxwell, 2006). If h < 0, Eq. (6) describes verti-
cal fluxes across the land surface as equal to the source/sink
term qr (i.e., rainfall and evapotranspiration). If h > 0, the
terms on the right-hand side of Eq. (6), which indicate water
fluxes routed according to surface topography, are active. vsw
is the 2-D depth-averaged water flow velocity (L T−1) and is
estimated by Manning’s law:

vsw,x =

(√
Sf,x

nM
h

2
3

)
, vsw,y =

(√
Sf,y

nM
h

2
3

)
, (7)

where Sf,x and Sf,y are the friction slopes (–) for the
x and y directions, respectively; nM is the Manning coef-
ficient (T L−1/3). In the kinematic wave approximation, the
friction slopes are set to the bed slopes. The methodology of
discretization and the numerical method to solve Eqs. (1)–(7)
can be found in Kollet and Maxwell (2006).

2.2 Data assimilation

In this paper, the EnKF was applied to assimilate soil mois-
ture observations into ParFlow. The EnKF has widely been

applied to hyperresolution land models (e.g., Camporese et
al., 2009, 2010; Ridler et al., 2014; Zhang et al., 2015, 2018;
Kurtz et al., 2016). I examined whether surface lateral flows
matter for data assimilation of soil moisture observations into
hyperresolution land models using this widely adopted data
assimilation method.

The Parflow model can be formulated as a discrete state–
space dynamic system:

x(t + 1)= f (x(t),θ ,u(t))+ q(t), (8)

where x(t) is the state variable (i.e., pressure head), θ is
the time-invariant model parameter (i.e., saturated hydraulic
conductivity), u(t) is the external forcing (i.e., rainfall and
evapotranspiration), and q(t) is the noise process which rep-
resents the model error. In data assimilation, it is useful to
formulate an observation process as follows:

yf(t)=H(x(t))+ r(t), (9)

where yf(t) is the simulated observation, H is the observa-
tion operator which maps the model’s state variables into the
observable variables, and r(t) is the noise process which rep-
resents the observation error. The purpose of EnKF (and any
other data assimilation methods) is to find the optimal state
variables x(t) based on the simulation yf(t) and observation
(defined as yo) considering their errors (q(t) and r(t)).

The general description of the Kalman filter is the follow-
ing:

xf(t)=M
[
xa(t − 1)

]
, (10)

xa(t)= xf (t)+K
[
yo
−H

(
xf(t)

)]
, (11)

K= PfHT
(

HPfHT
+R

)−1
, (12)

Pa
= (I−KH)Pf. (13)

I follow the notation of Houtekamer and Zhang (2016). Su-
perscripts f and a are forecast and analysis, respectively. In
Eq. (10), a forecast model M (ParFlow in this study) is used
to obtain a prior estimate at time t , xf(t), from the estima-
tion at the previous time xa(t − 1). In Eq. (11), a prior esti-
mate xf(t) is updated to the analysis state, xa(t), using new
observations yo. The Kalman gain matrix K, calculated by
Eq. (12), gives an appropriate weight for the observations
with an error covariance matrix R and the prior with an error
covariance matrix Pf. Pa is an updated analysis error covari-
ance. To calculate K, the observation operator H is needed
to map from model space to observation space. It should be
noted that Eqs. (10)–(13) give an optimal estimation only
when the model and observation errors follow the Gaussian
distribution. When the probabilistic distribution of the error
in either model or observation has a non-Gaussian structure,
results of the Kalman filter are suboptimal. This point is im-
portant for interpreting the results of this study.
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EnKF is the Monte Carlo implementation of Eqs. (10)–
(13). To compute the Kalman gain matrix, K, ensemble ap-
proximations of PfHT and HPfHT can be given by

PfHT
≡

1
k− 1

k∑
i=1

(
xf
i − x

f
)(
Hxf

i −Hx
f
)T
, (14)

HPfHT
≡

1
k− 1

k∑
i=1

(
Hxf

i −Hx
f
)(
Hxf

i −Hx
f
)T
, (15)

where xf
i is the ith member of a k-member ensemble prior

and xf = 1
k

k∑
i=1
xf
i and Hxf = 1

k

k∑
i=1
Hxf

i .

Once xa =
k∑
i=1
xa
i (xa

i is the ith member of a k-member

ensemble analysis) and Pa
=

1
k−1

k∑
i=1
(xa
i −x

a)(xa
i −x

a)T are

computed by Eqs. (10)–(15), there are many choices of an
analysis ensemble. Although Eqs. (10)–(15) can calculate
the mean and variance of the ensemble members, they do
not tell how to adjust the state of the ensemble members in
order to realize the estimated mean and variance. There are
many proposed flavors of EnKF, and one of the differences
among them is the method to choose the analysis xa

i . In this
paper, the ensemble transform Kalman filter (ETKF; Bishop
et al., 2001; Hunt et al., 2007) was used to transport forecast
ensembles to analysis ensembles. The ETKF has been used
for hyperresolution land data assimilation (e.g., Kurtz et al.,
2016). Please refer to Hunt et al. (2007) for the complete de-
scription of the ETKF and its localized version, the local en-
semble transform Kalman filter (LETKF). The open source
available at https://github.com/takemasa-miyoshi/letkf (last
access: 31 July 2020) was used in this study as the ETKF
code library.

In many ensemble Kalman filter systems, the ensemble
spread, Pa, tends to become too underdispersive to stably
perform data assimilation cycles without any ensemble in-
flation methods (Houtekamer and Zhang, 2016). To over-
come this limitation, Pa is arbitrarily inflated after data as-
similation. In this paper, the relaxation to prior perturbation
method (RTPP) of Zhang et al. (2004) was used to maintain
an appropriate ensemble spread. In the RTPP, the computed
analysis perturbations are relaxed back to the forecast pertur-
bations:

xa
i,new− x

a = (1−α)
(
xa
i − x

a
)
+α

(
xf
i − x

f
)
, 0≤ α ≤ 1,

(16)

where α was set to 0.975 in this study. If α = 1, the analy-
sis spread is identical to the background spread. Many stud-
ies show that the ensemble inflation works well when α re-
mains fairly close to 1 (see also the comprehensive review by
Houtekamer and Zhang, 2016).

In the data assimilation experiments, I adjusted pressure
head by data assimilation so that xf is pressure head. Since

the surface-saturated hydraulic conductivity was also ad-
justed, xf includes log-transformed Ks,surface. I assimilated
volumetric soil moisture observations so that yf and yo are
simulated and observed volumetric soil moisture, respec-
tively. The van Genuchten relationship converts the adjusted
state variables xf to the observable variables yf and can be
recognized as an observation operator H . However, since
volumetric soil moisture yf has already been calculated by
Parflow, I did not need the van Genuchten relationship in data
assimilation.

2.3 Kullback–Leibler divergence

To evaluate the non-Gaussianity of the background error
sampled by an ensemble, I used the Kullback–Leibler diver-
gence (KLD) (Kullback and Leibler 1951):

DKL(p,q)=
∑
i

p(i) log
p(i)

q(i)
, (17)

where DKL(p, q) is the KLD between two probabilistic dis-
tribution functions (PDFs), p and q. If two PDFs are equal
for all i, DKL(p, q)= 0. A large value for DKL(p, q) indi-
cates that the two PDFs, p and q, substantially differ from
each other. Therefore, the KLD can be used as an index to
evaluate the closeness of two PDFs. In this study, I compared
the PDF of the ensemble simulation (p in Eq. 17) with the
Gaussian PDF which has the mean and variance of the en-
sembles (q in Eq. 17). A large value for DKL(p, q) indicates
the state variables simulated by ensembles do not follow the
Gaussian PDF. It should be noted that the KLD is not sym-
metric (DKL(p, q) 6=DKL(q, p)). The KLD has been used to
quantitatively evaluate the Gaussianity of the sampled back-
ground error in the studies on data assimilation (e.g., Kondo
and Miyoshi, 2019; Duc and Saito, 2018).

3 Synthetic experiments

In this study, I performed two synthetic experiments. In the
synthetic experiments, I generated the synthetic truth of the
state variables by driving ParFlow with the specified param-
eters and input data. Then the synthetic observations were
generated by adding the Gaussian white noise to this syn-
thetic truth. The performance of data assimilation was evalu-
ated by comparing the estimated state and parameter values
by the ETKF with the synthetic truth. This synthetic exper-
iment has been recognized as an important research method
to analyze how data assimilation works (e.g., Moradkhani et
al., 2005; Camporese et al., 2009; Vrugt et al., 2013; Kurtz
et al., 2016; Sawada et al., 2018).
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3.1 Simple 2-D slope with homogeneous hydraulic
conductivity

3.1.1 Experiment design

The synthetic experiment was implemented to examine how
topography-driven surface lateral flows contribute to effi-
ciently propagating observation information horizontally in
the data assimilation of soil moisture observation. Two syn-
thetic reference runs were created by Parflow. The 2-D do-
main has a horizontal extension of 4000 m and a vertical ex-
tension of 5 m. The domain of the virtual slope was hori-
zontally discretized into 40 grid cells with a size of 100 m
and vertically discretized into 50 grid cells with a size of
0.10 m. The domain has a 25 % slope. In two synthetic refer-
ence runs, it heavily rains only in the upper half of the slope
(2000 m<x < 4000 m). Although this rainfall distribution is
unrealistic, the effect of surface lateral flows on data assim-
ilation can clearly be discussed in this simplified problem
setting. More realistic rainfall distribution will be used in the
next synthetic experiment (see Sect. 3.2). A constant rain-
fall rate of 50 mm h−1 was applied for 3 h, and then the pe-
riod with no rainfall and evaporation of 0.075 mm h−1 lasted
for 117 h. This 120 h rain–no rain cycle was repeatedly ap-
plied to the domain. There is no rainfall in the lower half of
the slope (0 m<x < 2000 m). The configurations described
above were schematically shown in Fig. 1a. The parame-
ters of the van Genuchten relationship, α and n, were set
to 1.5 (m−1) and 1.75, respectively. Those values are in the
reasonable range estimated by the published literature (e.g.,
Ghanbarian-Alavijeh et al., 2010). The porosity, φ in Eq. (1),
was set to 0.40. The Manning coefficient, nM in Eq. (7), was
set to 5.52×10−6 (m−1/3 h). These clayey soil properties de-
scribed above are applied to the whole domain. The ground-
water table was located at z= 3 m and the hydrostatic pres-
sure gradient was assumed for the initial pressure heads in
the unsaturated soil layers.

The difference between two synthetic reference runs is
the value of saturated hydraulic conductivity. The surface-
saturated hydraulic conductivity, Ks,surface in Eq. (3), was
set to 0.005 (m h−1) in one reference and to 0.02 (m h−1)
in the other. These surface-saturated hydraulic conductivi-
ties described above are applied to the whole domain. Fig-
ure 1 shows the difference of the response to heavy rain-
fall between the two synthetic reference runs. In the case
of the low saturated hydraulic conductivity (hereafter called
the LOW_K reference), larger surface lateral flows are gener-
ated than the case of the high saturated hydraulic conductiv-
ity (hereafter called the HIGH_K reference). In the LOW_K
reference, the topography-driven surface lateral flows reach
the left edge of the domain (Fig. 1b). In the HIGH_K ref-
erence, supplied water moves vertically rather than horizon-
tally and the topography-driven surface flow reaches around
x = 1000–1500 m (Fig. 1d).

For the data assimilation experiment, an ensemble of
50 realizations was generated. Each ensemble member has
a different saturated hydraulic conductivity and rainfall rate.
Lognormal multiplicative noise was added to the surface-
saturated hydraulic conductivity and rainfall rate of the syn-
thetic reference runs. This specification of uncertainty in
rainfall was also adopted in Crow et al. (2011). The two pa-
rameters of the lognormal distribution, commonly called µ
and σ , were set to 0 and 0.15, respectively. These parameters
were chosen to give the sufficiently large error in precipi-
tation and saturated hydraulic conductivity. In addition, this
setting makes the rainfall PDF similar to the Gaussian distri-
bution, which is important for interpreting the results of the
experiments (see the discussion section). The initial ground-
water depth of each ensemble member was drawn from the
uniform distribution from 2.0 to 3.5 m. The hydrostatic pres-
sure gradient was assumed for the initial pressure heads in
the unsaturated soil layers.

The virtual hourly observations were generated by adding
the Gaussian white noise whose mean is zero to the volumet-
ric soil moisture simulated by the synthetic reference runs.
The observation error (the standard deviation of the added
Gaussian white noise) was set to 0.05 m3 m−3. It was as-
sumed that the volumetric soil moisture can be observed in
every model’s soil layer from the surface to the depth of 1 m
at the specific location. These soil moisture observations can
be obtained in the in situ observation sites (e.g., Dorigo et
al., 2017). In Sect. 3.2, I will assume that only surface soil
moisture observation can be accessed, which is more realis-
tic since satellite sensors can observe only surface soil mois-
ture. I assumed that the small part of the domain can be ob-
served. The two scenarios of the observation’s location are
provided. In the first scenario (hereafter called the UP_O sce-
nario), the volumetric soil moisture in the upper part of the
slope (x = 2500 m) was observed. In the UP_O scenario, I
could observe the volumetric soil moisture in the upper part
of the slope where it heavily rains and tried to infer the soil
moisture in the lower part of the slope where it does not
rain by propagating the observation’s information downhill.
In the second scenario (hereafter called the DOWN_O sce-
nario), the volumetric soil moisture in the lower part of the
slope (x = 1500 m) was observed. In the DOWN_O scenario,
I could observe the volumetric soil moisture in the lower part
of the slope where it does not rain and tried to infer the soil
moisture in the upper part of the slope where it heavily rains
by propagating the observation’s information uphill.

Since I had the two synthetic reference runs (the HIGH_K
and LOW_K references) and the two observation scenarios
(the UP_O and DOWN_O scenarios), I implemented a total
of four data assimilation experiments. Table 1 summarizes
the data assimilation experiments implemented in this study.
For instance, in the HIGH_K-UP_O experiment, I chose the
HIGH_K reference and generated an ensemble of 50 real-
izations from the HIGH_K reference. The soil moisture ob-
servations were generated from the HIGH_K reference at

https://doi.org/10.5194/hess-24-3881-2020 Hydrol. Earth Syst. Sci., 24, 3881–3898, 2020
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Figure 1. Distributions of volumetric soil moisture simulated by the synthetic reference runs. (a) The distribution of volumetric soil moisture
(m3 m−3) simulated by the LOW_K synthetic reference run at t = 0 h. The schematic of the configuration of the synthetic reference runs is
also shown (see also Sect. 3). (b) Same as (a) but at t = 130 h. (c, d) Same as (a, b) but for the HIGH_K synthetic reference run.

Table 1. Configuration of the data assimilation experiments in
Sect. 3.1.

Hydraulic Observation’s
conductivity location

(m h−1) (m)

LOW_K-UP_O 0.005 2500
LOW_K-DOWN_O 0.005 1500
HIGH_K-UP_O 0.02 2500
HIGH_K-DOWN_O 0.02 1500

the location of x = 2500 m and assimilated into the model
every hour. The simulated volumetric soil moisture of the
data assimilation experiment was compared with that of the
HIGH_K reference.

In addition to the data assimilation (DA) experiments, I
implemented the NoDA experiment (also called the open-
loop experiment in the literature of the LDAS study) in which
the ensemble was used but no observation data were assimi-
lated. Please note that in the NoDA experiment, the true rain-
fall rate and saturated hydraulic conductivity were unknown,

so that I could not accurately estimate the synthetic true state
variables. I will evaluate how this negative impact of uncer-
tainties in rainfall and saturated hydraulic conductivity can
be mitigated by data assimilation in the DA experiment.

As an evaluation metric, root-mean-square error (RMSE)
was used:

RMSE=

√√√√1
k

k∑
i=1

(Fi − T )
2, (18)

where k is the ensemble number, Fi is the volumetric soil
moisture simulated by the ith member in the DA or NoDA
experiment, and T is the volumetric soil moisture simulated
by the synthetic reference run. I used all ensemble mem-
bers to calculate RMSE because I should evaluate not only
whether the ensemble mean is consistent with the synthetic
truth, but also whether the extremely large ensemble spread
simulated in the NoDA experiment is appropriately reduced.

To evaluate the impact of data assimilation, the improve-
ment rate (IR) was defined and calculated by the following
equation:
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Figure 2. The improvement rates of the (a) LOW_K-UP_O, (b) LOW_K-DOWN_O, (c) HIGH_K_UP_O, and (d) HIGH_K-DOWN_O
experiments (see Table 1 and Sect. 3). Black arrows show the locations of the soil moisture observations in each experiment.

IR=
RMSEDA−RMSENoDA

RMSENoDA
, (19)

where RMSEDA and RMSENoDA are the time-mean RMSEs
of the DA and NoDA experiments, respectively. The neg-
ative IR indicates that data assimilation positively impacts
the simulation of soil moisture. The metrics described above
were calculated in the whole domain. In the DA experiment,
soil moisture values before the update by ETKF (i.e., initial
guess) were used to calculate the metrics.

Four of the 120 h rain–no rain cycles were applied so that
the computation period was 480 h. The spin-up results in the
first 120 h were not used to calculate the evaluation metrics.
Since the steady state of groundwater level is not within the
scope of this paper, the long spin-up is not absolutely neces-
sary.

3.1.2 Results

Figure 2a shows the IR of the LOW_K-UP_O experiment.
The time series of the DA and NoDA experiments and the
synthetic reference run in the LOW_K-UP_O experiment can
be found in Fig. S1 in the Supplement. The data assimilation
efficiently propagates the information of the observations lo-
cated in the upper part of the slope (see the black arrow in
Fig. 2a) both horizontally and vertically. Despite the uncer-
tainty in rainfall and hydraulic conductivity, RMSE is re-
duced by data assimilation not only directly under the obser-
vation, but also the lower part of the slope where it does not

rain. The estimated Ks,surface ≈ 0.00508 (m h−1) by ETKF
is mostly identical to the synthetic truth. However, the in-
crease in RMSE by data assimilation can be found at the left
edge of the domain, which is far from the location of the
observation. The impact of data assimilation on the surface
soil moisture simulation is small because the volumetric soil
moisture’s RMSE of the NoDA experiment in this surface
soil layer is already small (≤ 0.01 m3 m−3) in the case of the
LOW_K reference, so that any improvements do not make
sense.

Figure 2b shows the IR of the LOW_K-DOWN_O exper-
iment (see also Fig. S2 for time series). The IR’s spatial pat-
tern of the LOW_K-DOWN_O experiment is similar to that
of the LOW_K-UP_O experiment except for the left edge of
the domain. It is promising that I can accurately infer soil
moisture in the region where it heavily rains from the shal-
low soil moisture observations in the region where it does not
rain. The estimatedKs,surface ≈ 0.00512 (m h−1) by ETKF is
mostly identical to the synthetic truth.

Figure 3a shows the difference of time-mean RMSEs
(RMSEDA in Eq. 18) between the LOW_K-UP_O and
LOW_K-DOWN_O experiments. Although observing the
lower part of the slope slightly improves the soil moisture
simulation at the left edge of the domain compared with ob-
serving the upper part of the slope (the reason for this will be
explained later), there are few differences between the UP_O
and DOWN_O scenarios in the case of the LOW_K refer-
ence. The soil moisture observations have large representa-
tiveness and I can efficiently infer soil moisture in the soil

https://doi.org/10.5194/hess-24-3881-2020 Hydrol. Earth Syst. Sci., 24, 3881–3898, 2020



3888 Y. Sawada: Hyperresolution land data assimilation

columns which are horizontally and vertically far from the
observations.

Figure 2c shows the IR of the HIGH_K-UP_O experiment
(see also Fig. S3 for time series). The data assimilation sig-
nificantly reduces RMSE of the soil moisture simulation di-
rectly under the observations (see the black arrow in Fig. 2c),
which indicates that the data assimilation efficiently propa-
gates the information of the observations vertically. The sat-
urated hydraulic conductivity estimated by ETKF is mostly
identical to the synthetic truth (Ks,surface ≈ 0.0204 – m h−1).
However, the impact of the data assimilation on the soil
moisture simulation in the lower part of the slope around
x = 1500 m is marginal, although there are large RMSEs in
the NoDA experiment (> 0.05 m3 m−3) at the edge of the
area where topography-driven surface flow reaches in the
HIGH_K reference (see Fig. 1d).

Figure 2d shows the IR of the HIGH_K-DOWN_O exper-
iment (see also Fig. S4 for time series). Although the obser-
vations in the lower part of the slope (see the black arrow in
Fig. 2d) significantly contribute to improving the soil mois-
ture simulation in the downstream area of the observation and
accurately estimatingKs,surface ≈ 0.0208 (m h−1), the impact
of the data assimilation on the shallow soil moisture sim-
ulation around x = 500–1000 m is marginal. As I found in
the LOW_K-DOWN_O experiment, the shallow soil mois-
ture observations in the region where it does not rain can
improve the soil moisture simulation in the region where it
heavily rains. However, the IR of the HIGH_K-DOWN_O
experiment in the upper part of the slope is smaller than that
of the LOW_K-DOWN_O experiment (see Fig. 2b and d).

The high representativeness of the observations which
I found in the case of the LOW_K reference (i.e., the
small difference of RMSEs between two observation sce-
narios) cannot be found in the case of the HIGH_K ref-
erence. Figure 3b shows the difference of time-mean RM-
SEs (RMSEDA in Eq. 18) between the HIGH_K-UP_O
and HIGH_K-DOWN_O experiments. Compared with the
LOW_K reference case (Fig. 3a), there are significant dif-
ferences between the UP_O and DOWN_O scenarios in the
case of higher saturated hydraulic conductivity. In this case,
the vertical propagation of the observations’ information is
more efficient than the horizontal propagation.

The relatively low efficiency of the data assimilation and
the low representativeness of the soil moisture observations
in the case of the HIGH_K reference are caused by the non-
Gaussian background error distribution. I calculated KLD by
comparing the PDF of the NoDA ensemble (p in Eq. 17)
with the Gaussian PDF which has the mean and variance
of the NoDA ensemble (q in Eq. 17). Figure 4 shows that
the NoDA ensemble in the case of the HIGH_K reference
has stronger non-Gaussianity than the case of the LOW_K
reference, especially in the shallow soil layers. The strong
non-Gaussianity of the NoDA ensemble generated from the
HIGH_K reference can be found at the edge of the area
where the topography-driven surface flow reaches (Fig. 1d).

Figure 5 shows that there is bifurcation of the ensemble
in this region when the ensemble is generated from the
HIGH_K reference. The process of topography-driven sur-
face flows is switched on if and only if the surface soil is
saturated (see Eq. 6), so that the ensemble tends to be bi-
furcated into the members with surface flows and without
surface flows. As I mentioned in Sect. 2.2, in the ETKF,
the estimation of the state and parameter variables is opti-
mal if and only if the model’s error has the Gaussian PDF
and the relationship between observed variables and unob-
served variables is linear. Therefore, the non-Gaussianity of
the prior ensemble induced by the strong nonlinear dynamics
of surface lateral flows makes the ETKF inefficient. It is more
difficult to reconstruct 3-D fields of soil moisture in high-
conductivity soils since the 1-D vertical water movement is
more dominant. The absolute RMSE of the NoDA experi-
ment in the HIGH_K reference is larger than the LOW_K
reference in many places (not shown). Please note that the
non-Gaussianity can also be found in the LOW_K reference
at the edge of the domain (x = 500 m) due to the nonlinear
dynamics of surface lateral flows, which causes the degra-
dation of the soil moisture simulation in the LOW_K-UP_O
experiment (see Fig. 2a).

One of the major simplifications in this experiment is spa-
tially homogeneous surface-saturated hydraulic conductiv-
ity. The optimization of it can efficiently improve the soil
moisture simulation in the whole domain. However, the op-
timization of this homogeneous surface-saturated hydraulic
conductivity has a limited impact on the soil moisture simu-
lation. Figure S5 shows the IR of the HIGH_K-DOWN_O
experiment where the parameter optimization by ETKF is
switched off. Even if I do not optimize the surface-saturated
hydraulic conductivity, I could obtain a similar IR to the orig-
inal experiment, and the shallow soil moisture observations
in the region where it does not rain can improve the soil mois-
ture simulation in the region where it heavily rains. The hori-
zontal propagation of the observations’ information shown in
this experiment was brought out not only by the estimation of
spatially homogeneous saturated hydraulic conductivity, but
also by the adjustment of state variables (i.e., pressure head
and volumetric soil moisture).

Please note that the improvement of the soil moisture sim-
ulation cannot be found if the topography-driven surface flow
is neglected. Figure S6 shows the IR of the LOW-K_DOWN-
O experiment where the topography-driven surface flow is
neglected in the ParFlow simulation. Please note that al-
though many conventional land surface models neglected or
parameterized lateral flows, this assumption can be applied
only in the coarse spatial resolution (> 25 km), which is not
the case of this experimental setting. The imperfect model
physics of ParFlow substantially degrades the skill to sim-
ulate soil moisture, and data assimilation cannot compen-
sate for this degradation. This point will also be discussed
in Sect. 3.2 in more depth.
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Figure 3. (a) The difference of time-mean RMSEs between the LOW_K-UP_O and LOW_K-DOWN_O experiments (see Table 1 and
Sect. 3). Red (blue) color indicates that the observations in the upper (lower) part of the slope reduce time-mean RMSE by data assimilation
better than those in the lower (upper) part of the slope (see also arrows, which are the locations of the observations). (b) Same as (a) but for
the difference between the HIGH_K-UP_O and HIGH_K-DOWN_O experiments.

Figure 4. The Kullback–Leibler divergence of the NoDA experiment generated by (a) the LOW_K reference and (b) the HIGH_K reference
at t = 130 h (see also Fig. 1b and d).

3.2 Simple 3-D slope with heterogeneous hydraulic
conductivity

3.2.1 Experiment design

To further demonstrate how land data assimilation works
with topography-driven surface lateral flows, I implemented
another synthetic experiment which is more realistic than that
shown in Sect. 3.1. The 3-D domain has a horizontal exten-
sion of 4000 m× 4000 m and a vertical extension of 3 m. The
domain was horizontally discretized into 40× 40 grid cells
with a size of 100 m× 100 m and vertically discretized into
30 grid cells with a size of 0.1 m. The domain has a 10 %
slope in both the x and y directions (see Fig. 6a). The param-
eters of the van Genuchten relationship, porosity and Man-
ning coefficient were set to the same variables for the syn-
thetic experiment in Sect. 3.1.

The spatially heterogeneous surface-saturated hydraulic
conductivity was generated following Kurtz et al. (2016).
The field of log10(Ks,surface) was generated by 2-D
unconditioned sequential Gaussian simulation. A Gaus-
sian variogram with nugget, sill, and range values of
0.0log10 (m h−1), 0.1log10 (m2 h−2), and 12 model grids
(1200 m), respectively, was used to simulate the spa-
tial distribution of log10(Ks,surface). A constant value of
−2.30log10 (m h−1) (i.e., 0.005 (m h−1)) was added to
the generated field so that the mean of the logarithm of
surface-saturated hydraulic conductivity was set to −2.30
(i.e., 0.005 (m h−1)). This method to generate the field of
the saturated hydraulic conductivity has been used previously
(e.g., Kurtz et al., 2016). Subsurface-saturated hydraulic con-
ductivity was calculated by Eq. (3). An ensemble of 51 real-
izations of log10(Ks,surface)was generated, and 1 of them was
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Figure 5. (a) The histogram (blue bars) of the volumetric soil moisture simulated by the NoDA experiment (see Sect. 3) with the LOW_K
reference at x = 1500 m, z= 0.5 m, and t = 130 h (see also Fig. 4). Red line shows the Gaussian distribution with the mean and variance
sampled by the ensemble. (b) Same as (a) but at x = 2500 m, z= 0.5 m, and t = 130 h. (c) Same as (a) but for the HIGH_K reference.
(d) Same as (c) but at x = 2500 m, z= 0.5 m, and t = 130 h.

Figure 6. (a) Distribution of surface-saturated hydraulic conductivity (m h−1) in the synthetic reference. (b) Distribution of rainfall rate
(mm h−1) in the synthetic reference. (c) Surface volumetric soil moisture (m3 m−3) at t = 5 (h) in the synthetic reference.

chosen as a synthetic reference (Fig. 6a). The remaining 50
members were used for data assimilation experiments.

A rainfall rateR(x, y) (mm h−1) was modeled by a logistic
function:

R(x,y)=
Rmax

1+ 100exp
(
−0.2× x+y

2

) , (20)
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where x and y are horizontal grid numbers (1≤ x ≤ 40,
1≤ y ≤ 40). In the synthetic reference, the maximum rainfall
rate in the domain, Rmax, was set to 50 (mm h−1) (Fig. 6b).
This rainfall rate was applied for 3 h and then the period
with no rainfall and evaporation of 0.075 mm h−1 lasted for
117 h. For the data assimilation experiment, an ensemble of
50 realizations of R(x, y) was generated by adding a lognor-
mal multiplicative noise to Rmax of the synthetic reference.
The two parameters of the lognormal distribution, commonly
called µ and σ , were set to 0 and 0.15, respectively.

Figure 6c shows the distribution of surface soil moisture in
the synthetic reference run. A strong rainfall rate applied in
the upper part of the slope generates the topography-driven
surface lateral flows. The virtual hourly observations were
generated by adding the Gaussian white noise, whose mean
is zero and standard deviation is 0.05 m3 m−3, to the volu-
metric surface soil moisture simulated by the synthetic refer-
ence run. Unlike the experiment in Sect. 3.1, only surface soil
moisture can be observed in this synthetic experiment, which
makes this experiment more realistic since satellite sensors
can observe only surface soil moisture. Three different ob-
serving networks with different observation densities were
used (Fig. 7). The observing networks shown in Fig. 7a–c
have in total 1, 9, and 361 observations and are called obs1,
obs9, and obs361, respectively.

In the DA experiments, those virtual observations of sur-
face soil moisture were assimilated every hour to adjust pres-
sure head and saturated hydraulic conductivity. As I did in
Sect. 3.1, the NoDA experiments were also implemented.
The two different configurations of ParFlow were used for
both DA and NoDA experiments. In the first configuration,
called OF (Overland Flow), Parflow explicitly solves over-
land flows. In the second configuration, called noOF, Parflow
assumes the flat terrain for surface flows so that no over-
land flows are generated. Since the synthetic reference run
explicitly considers the topography-driven surface flow, the
configuration of noOF assumes that the model physics is im-
perfect. I implemented eight numerical experiments which
are summarized in Table 2. For example, the OF_DA_obs9
experiment is the data assimilation experiment with the ob-
serving network shown in Fig. 7b, in which Parflow explicitly
solves the topography-driven surface flow. The noOF_NoDA
is the model run without assimilating observations, in which
Parflow does not consider the topography-driven surface
flow.

3.2.2 Results

Figure 8a shows the RMSE of soil moisture simulation
of a second soil layer (i.e., 10–20 cm soil depth) in all
eight experiments (the same conclusion described below can
be obtained by analyzing all of the shallow soil layers).
When Parflow explicitly solves the topography-driven sur-
face flow, data assimilation substantially reduces the RMSE
of the soil moisture simulation (green bars in Fig. 8a). The

Table 2. Configuration of the data assimilation experiments in
Sect. 3.2.

Overland flows Observing network

noOF_NoDA None No data assimilation
noOF_DA_obs1 None Fig. 7a
noOF_DA_obs9 None Fig. 7b
noOF_DA_obs361 None Fig. 7c
OF_NoDA Simulated No data assimilation
OF_DA_obs1 Simulated Fig. 7a
OF_DA_obs9 Simulated Fig. 7b
OF_DA_obs361 Simulated Fig. 7c

OF_DA_obs361 experiment has the smallest RMSE, so that
a denser observing network is beneficial for estimating soil
moisture, although there is the stalled improvement from
the OF_DA_obs1 experiment to the OF_DA_obs9 experi-
ment (the reason for it will be explained later). Figure 8b
shows the RMSE of the estimation of saturated surface hy-
draulic conductivity in all eight experiments. Data assimila-
tion also reduces the uncertainty in the model’s parameters
(green bars in Fig. 8b). However, the OF_DA_obs361 ex-
periment has a larger RMSE than the other DA experiments.
This is because the adjustment of hydraulic conductivity in
the OF_DA_obs361 experiment greatly mitigates not only
the errors induced by uncertainty in hydraulic conductiv-
ity, but also those induced by uncertainty in rainfall rate. In
the OF configuration, there are two sources of errors, rain-
fall rate and hydraulic conductivity. However, data assimi-
lation can adjust only hydraulic conductivity in this study.
Although it is expected that the adjustment of hydraulic con-
ductivity mainly mitigates the errors of simulated volumetric
soil moisture induced by uncertainty in hydraulic conductiv-
ity, it also greatly mitigates those induced by uncertainty in
rainfall rate by adjusting the parameter in the incorrect di-
rection when the number of observations is large. Therefore,
the assimilation of a large number of observations degrades
the estimation of saturated hydraulic conductivity despite the
improvement of the soil moisture simulation.

The noOF_NoDA experiment has a larger RMSE than
the OF_NoDA experiment due to the negligence of the
topography-driven surface flow. In the noOF configuration,
data assimilation also improves the soil moisture simulation
(red bars in Fig. 8a). The noOF_DA_obs361 experiment out-
performs the OF_NoDA experiment, so that data assimila-
tion with a dense observing network can compensate for the
negative impact of neglecting the topography-driven surface
flow. Although data assimilation positively impacts the pa-
rameter estimation, the denser observing network cannot re-
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Figure 7. Observing networks. Black boxes are observed grids. (a) obs1, (b) obs9, and (c) obs361. See also Sect. 3.2.1.

Figure 8. Time-mean RMSEs of the estimation of (a) soil moisture
and (b) hydraulic conductivity. Red and green bars are results of
the noOF and OF configurations, respectively (see Sect. 3.2.1 and
Table 2).

duce the RMSE of hydraulic conductivity estimation (red
bars in Fig. 8b). The negative impact of the dense observa-
tions in the noOF_DA_obs361 experiment on the parame-
ter estimation is larger than in the OF_DA_obs361 exper-
iment. In addition to rainfall rate and hydraulic conductiv-
ity, the imperfect model physics (i.e., no topography-driven
surface flow) is the source of error in the noOF configura-
tion. The assimilation of a large number of observations de-
grades the estimation of saturated hydraulic conductivity be-

cause it greatly mitigates the impact of all systematic errors
which comes from three different sources only by adjusting
hydraulic conductivity.

Figure 9 shows the difference of RMSE of the soil
moisture simulation between the DA experiments and the
OF_NoDA experiment. In the DA configuration, the im-
provement of the soil moisture estimation can be found in
a large area even if there is a single observation in the cen-
ter of the domain (Fig. 9a). Figure 9b shows that the in-
crease in the number of observations substantially improves
the soil moisture simulation in the region which is affected
by topography-driven surface flow (see also Fig. 6c). How-
ever, the skill to simulate soil moisture is severely degraded
in the lower-left corner of the domain, which causes the
stalled improvement from the OF_DA_obs1 experiment to
the OF_DA_obs9 experiment shown in Fig. 8a. Figure 9c
shows that although the far denser observing network can
slightly mitigate this degradation, increasing the number of
observations cannot efficiently solve this issue. This degra-
dation is caused by the bifurcation of ensemble members at
the edge of the area where topography-driven surface flow
reaches (Fig. S7). Figure 10 shows KLD in the OF_NoDA
and noOF_NoDA experiments. Figure 10a clearly shows that
the ensemble simulation of volumetric soil moisture gener-
ates the strong non-Gaussianity at the edge of the area where
topography-driven surface flow reaches, which harms the ef-
ficiency of the ETKF. This finding is consistent with what I
found in the previous experiment in Sect. 3.1.

In the noOF configuration, there are large errors in the area
around 500≤ x, y ≤ 1500 (not shown) since the increase
in soil moisture in this area is caused by the topography-
driven surface flow which is neglected in the noOF configu-
ration. Figure 9d and e show that the sparse observations can-
not completely remove this degradation caused by imperfect
model physics. Figure 9f shows that the noOF_DA_obs361
can outperform the OF_NoDA experiment in exchange for
the degradation of the parameter estimation as I found in
Fig. 8. The unstable behavior of the ETKF found in the
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Figure 9. Differences of time-mean soil moisture RMSEs between the DA experiments and the OF_NoDA experiment. (a) OF_DA_obs1,
(b) OF_DA_obs9, (c) OF_DA_obs361, (d) noOF_DA_obs1, (e) noOF_DA_obs9, and (f) noOF_DA_obs361.

Figure 10. The Kullback–Leibler divergence of ensemble members generated by the (a) OF_NoDA and (b) noOF_NoDA experiments at
t = 4 (h).

OF configuration does not occur when the topography-driven
surface flow is neglected since the ensemble simulation
does not generate the non-Gaussian background distribution
(Fig. 10b). Although ETKF can significantly improve the
simulation skill of the hyperresolution land model in many
cases, I found its limitation when it is applied to the prob-
lems with the topography-driven surface lateral flows. Fig-
ure 10 clearly indicates that this limitation appears only if
lateral water flows are explicitly considered.

4 Discussion

In this study, I revealed that the hyperresolution integrated
surface–subsurface hydrological model gives the unique op-
portunity to effectively use soil moisture observations to im-
prove the soil moisture simulation in terms of a horizontal
propagation of observation information in a model space. I
found that the explicit calculation of the topography-driven
surface flow has an important role in propagating the infor-
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mation of soil moisture observation horizontally by data as-
similation even if there is considerable heterogeneity of me-
teorological forcing. It is possible that the soil moisture ob-
servations in the area where it does not heavily rain can im-
prove the soil moisture simulation in the severe rainfall area.

This potential cannot be brought out in the conventional
1-D LSM, where sub-grid-scale surface runoff is parameter-
ized and the surface flows in one grid do not move to the
adjacent grids. I found that neglecting the topography-driven
surface flow causes significant bias in the soil moisture sim-
ulation, and this bias cannot be completely mitigated by data
assimilation especially in the case of a sparse observing net-
work. However, I found that even if the model uses imperfect
physics which neglects the interaction between topography-
driven surface lateral flows and subsurface soil moisture, as-
similating soil moisture observations into the model’s 3-D
state and parameter space can improve the skill in estimat-
ing soil moisture and hydraulic conductivity. This finding
implies that the conventional 1-D LSM with full 3-D data
assimilation may be a computationally cheap and reasonable
choice in some cases, although many land data assimilation
systems with the conventional 1-D LSM currently update
state variables only in a single model’s horizontal grid which
is identical to the location of the observation.

The conventional ensemble data assimilation (i.e., ETKF)
severely suffers from the non-Gaussian background error
PDFs caused by the strongly nonlinear dynamics of the
topography-driven surface flow, although it has been widely
used by previous studies (e.g., Camporese et al., 2009, 2010;
Ridler et al., 2014; Zhang et al., 2015, 2018; Kurtz et al.,
2016). The efficiency of ETKF in propagating the informa-
tion of observations horizontally in the model space is limited
in the edge of the area where the topography-driven surface
flow reaches. Please note that the low representativeness of
the soil moisture observations in the case of the HIGH_K
reference shown in Sect. 3.1 is due to the limitation of the
Kalman filter in that the error PDFs need to follow the Gaus-
sian distribution to get the optimal estimation, so that the
increase in the ensemble size cannot solve this issue. I im-
plemented the data assimilation experiment in the case of
the HIGH_K reference with an ensemble size of 500, which
is 10 times larger than the original experiments shown in
Sect. 3.1, and found no significant improvement of the soil
moisture simulation (not shown). Some studies revealed that
volumetric soil moisture distributions follow the Gaussian
distribution better than pressure head, so that they recom-
mend updating soil moisture as a state variable (e.g., Zhang
et al., 2018). However, in this study, I found that volumet-
ric soil moisture distributions have a bimodal structure and
do not follow the Gaussian distribution. The limitation of en-
semble Kalman filters found in this study does not depend on
the updated state variables.

In addition, I found ensemble clustering in which the en-
semble members are split into a single outlier and the oth-
ers (see Figs. S1–S4). The previous studies found that this

ensemble clustering is generated by the non-Gaussian PDF
(Anderson, 2010; Amezcua et al., 2012). Ensemble cluster-
ing shown in the analysis time series also implies that the
non-Gaussian PDF plays an important role in the data assim-
ilation of the hyperresolution land model.

The spatially dense soil moisture observations are needed
to efficiently constrain state variables at the edge of surface
flows. High-resolution soil moisture remote sensing based
on satellite active and passive combined microwave obser-
vations at the 1 km spatial resolution (e.g., He et al., 2018)
and the assimilation of those data (Lievens et al., 2017) may
be important in the era of the hyperresolution land model-
ing. High-resolution observations of surface-inundated wa-
ter from satellite imagery with a spatial resolution finer than
100 m (e.g., Sakamoto et al., 2007; Arnesen et al., 2013)
may also be useful. However, the numerical experiment in
Sect. 3.2 implies that the dense observing network of surface
soil moisture cannot completely remove the negative impact
of the non-Gaussian background PDF.

As a possible heuristic approach to avoid the negative
impact of the non-Gaussian background PDF, I can omit
updating the state variables in the edge of the area where
topography-driven surface flow reaches. The numerical ex-
periments clearly indicate that the negative impact of the
nonlinear physics and non-Gaussian PDF is found only in
the edge of flooding areas, so that it is beneficial to simply
omit updating the state variables in this area. It is similar
but not conceptually identical to the localization method, in
which the spurious correlation sampled by an ensemble is
eliminated by spatially restricting the impact of assimilating
observation (e.g., Rasmussen et al., 2015; Anderson, 2007;
Bishop and Hodyss, 2009).

Reducing the uncertainty in rainfall positively impacts the
efficiency of data assimilation since the bifurcation of simu-
lated soil moisture found in Fig. 5c is originally induced by
the uncertainty in rainfall. Although assimilating land hydro-
logical observations to improve the rainfall input has been
intensively investigated (e.g., Sawada et al., 2018; Herrneg-
ger et al., 2015; Crow et al., 2011; Vrugt et al., 2008), it has
yet to be applied to hyperresolution land models. Please note
that the parameters of the lognormal distribution to model
the uncertainty in rainfall were specified to make the rainfall
PDF similar to the Gaussian distribution. I chose the lognor-
mal distribution in order not to generate negative rainfall val-
ues and I intended not to introduce non-Gaussianity into the
external forcing. The rainfall input which follows the Gaus-
sian PDF was transformed into the non-Gaussian PDF of the
background error by the strongly nonlinear dynamics of the
topography-driven surface flow.

To explicitly consider non-Gaussianity and the nonlinear
relationship between observed and unobserved variables in-
duced by the topography-driven surface flow, the particle fil-
ters may be useful. The particle filter can represent a proba-
bility distribution (including non-Gaussian distributions) di-
rectly by an ensemble. Particle filters have been intensively
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applied to conventional 1-D LSMs (e.g., Sawada et al., 2015;
Qin et al., 2009) and lumped hydrological models (e.g., Yan
and Moradkhani, 2016; Vrugt et al., 2013). Although parti-
cle filtering in a high-dimensional system suffers from the
“curse of dimensionality” (e.g., Snyder et al., 2008), some
studies developed the methodology to improve the efficiency
of particle filtering (e.g., van Leeuwen, 2009; Poterjoy et al.,
2019). The applicability of particle filtering to 3-D hyperres-
olution land models should be assessed in the future.

Since the synthetic numerical experiments in this paper
adopted the simple and minimalistic setting, the findings of
this paper may be exaggerated. There are no river channels
in the synthetic experiment, so that the skill in simulating
river water level and discharge cannot be discussed, which
is the major limitation of this study. The simple represen-
tation of soil properties is also a limitation of this study.
Although the prior uncertainty in rainfall and saturated hy-
draulic conductivity was arbitrarily chosen in this study, the
specification of the prior knowledge is not straightforward in
the real-world applications. In future work, the contributions
of the topography-driven surface runoff process to the data
assimilation of hydrological observations should be quanti-
fied in real-world applications. In addition, in the virtual ex-
periment of this paper, I neglected some of the important land
processes, such as transpiration, canopy interception, snow,
and frozen soil. These processes affect the source term of
Eq. (1) in hyperresolution land models (e.g., Shrestha et al.,
2014). Since the inclusion of the neglected processes do not
change the structure of the original ParFlow, the findings of
this study can be robust to the models which include these
processes. Although they are generally not primary factors
in the propagation of overland flows generated by extreme
rainfall, which has a shorter timescale than the neglected pro-
cesses, those processes should be considered in the future.

The other limitation of this study is that I could not thor-
oughly evaluate the skill of the ensemble data assimilation in
quantifying the uncertainty of its prediction. Following Ab-
bazadeh et al. (2019), I calculated the 95 % exceedance ra-
tio and found that the ensemble forecast was systematically
overconfident (not shown). In the synthetic experiments of
this study, the number of rainfall events was small, and the
timing and magnitude of rainfall were not diversified. Due to
this limited amount of data, it is difficult to discuss in depth
the accuracy of the quantified uncertainty by data assimila-
tion. While the skill of lumped hydrological models was of-
ten evaluated by the probabilistic performance measures such
as the 95 % exceedance ratio (e.g., Abbazadeh et al., 2019),
the uncertainty quantification of the simulation of hyperreso-
lution land models is in its infancy. How surface lateral flows
affect the accuracy of the uncertainty quantification by data
assimilation should be investigated using more realistic data.

5 Conclusions

The simplified synthetic experiments of this study indi-
cate that topography-driven lateral surface flows induced by
heavy rainfalls do matter for data assimilation of hydrolog-
ical observations into hyperresolution land models. Even if
there is extreme heterogeneity of rainfall, the information of
soil moisture observations can be propagated horizontally in
the model space and the soil moisture simulation can be im-
proved by the ensemble Kalman filter. However, the nonlin-
ear dynamics of the topography-driven surface flow induces
the non-Gaussianity of the model error, which harms the ef-
ficiency of data assimilation of soil moisture observations. It
is difficult to efficiently constrain model states at the edge of
the area where the topography-driven surface flow reaches
by linear-Gaussian filters, which brings the new challenge in
land data assimilation for hyperresolution land models. Fu-
ture work will focus on the real-world applications using in-
tense in situ soil moisture observation networks and/or high-
resolution satellite soil moisture observations.
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