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Abstract. The area to be cropped in irrigation districts needs
to be planned according to the allocated water, which in turn
is a function of the available water resource. Initially conser-
vative estimates of future (in)flows in rivers and reservoirs
may lead to unnecessary reduction of the water allocated.
Though water allocations may be revised as the season pro-
gresses, inconsistency in allocation is undesirable to farm-
ers as they may then not be able to use that water, leading
to an opportunity cost in agricultural production. We assess
the benefit of using reservoir inflow estimates derived from
seasonal forecast datasets to improve water allocation deci-
sions. A decision model is developed to emulate the feedback
loop between simulated reservoir storage and water alloca-
tions to irrigated crops and is evaluated using inflow fore-
casts generated with the Forecast Guided Stochastic Scenar-
ios (FoGSS) model, a 12-month ensemble streamflow fore-
casting system. Two forcings are used to generate the fore-
casts: ensemble streamflow prediction – ESP (historical rain-
fall) – and POAMA (calibrated rainfall forecasts from the
POAMA climate prediction system). We evaluate the ap-
proach in the Murrumbidgee basin in Australia, comparing
water allocations obtained with an expected reservoir inflow
from FoGSS against the allocations obtained with the cur-
rently used conservative estimate based on climatology as
well as against allocations obtained using observed inflows
(perfect information). The inconsistency in allocated water is
evaluated by determining the total changes in allocated water
made every 15 d from the initial allocation at the start of the

water year to the end of the irrigation season, including both
downward and upward revisions of allocations. Results show
that the inconsistency due to upward revisions in allocated
water is lower when using the forecast datasets (POAMA and
ESP) compared to the conservative inflow estimates (refer-
ence), which is beneficial to the planning of cropping areas
by farmers. Overconfidence can, however, lead to an increase
in undesirable downward revisions. This is more evident for
dry years than for wet years. Over the 28 years for which
allocation decisions are evaluated, we find that the accuracy
of the available water estimates using the forecast ensemble
improves progressively during the water year, especially 1.5
months before the start of the cropping season in Novem-
ber. This is significant as it provides farmers with additional
time to make key decisions on planting. Our results show that
seasonal streamflow forecasts can provide benefit in inform-
ing water allocation policies, particularly by earlier establish-
ing final water allocations to farmers in the irrigation season.
This allows them to plan better and use water allocated more
efficiently.

1 Introduction

Allocating water is the process of sharing the available wa-
ter among claimants over a period of time (Hellegers and
Leflaive, 2015; Le Quesne et al., 2007). Basin authorities
are responsible for allocating water among different users,
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including agriculture, cities, industry, and the environment.
The available water in rivers and reservoirs, and the demand
placed on it, may vary over time and space due to climate
variability, climate change, and population growth. Hence,
allocating the available water poses a challenge for decision
makers, especially in increasing drought and water scarcity
conditions. Basin authorities can allocate water following a
demand-based approach. This consists of reviewing the ex-
pected water demand in the basin at the start of each wa-
ter year and allocating the required volume (Linés et al.,
2018). Over the water year the initial allocation may, how-
ever, be revised depending on how the availability of water
in reservoirs and from upstream catchments evolves. In other
basins the water availability is initially reviewed before al-
locating water. Allocation of water to meet the entitlements
of the license holders is based on the estimate of the avail-
able water, which is made using the observed stock in the
reservoirs at the time of making the decision, as well as the
expected inflow. In Australia, the water allocation process is
governed by clear water policy and regulations at basin level,
such as defined in the Murray-Darling Basin Plan (govern-
ment, 2008). The Murray–Darling river system is highly reg-
ulated, especially in the basins in New South Wales (Rib-
bons, 2009). Predicting the inflow into the reservoirs is key
to adequately allocating water, especially for allocation to ir-
rigated agriculture. However, conservatively low estimates
of the expected inflow based on climatology are currently
used at the beginning of the water year to estimate the avail-
able water for the coming season. As the irrigation season
progresses, the estimate of available water may be revised.
Given the conservative initial estimate, the revision is typi-
cally upwards, with consequent upward revisions in the wa-
ter allocated during the year. For most years the allocated
water is set too low at the beginning and is then progres-
sively increased until the “real” estimate of available water is
reached and the “real” allocation can be established. Ideally,
water users would like to know their “real” water allocation
at the beginning of the water year. This is especially so for
irrigators that depend on accurate and timely water alloca-
tion to choose which crop to plant and to decide on the area
to be cropped, allowing them to maximise the benefit of the
water that their license entitles them to. The use of seasonal
forecasts of reservoir inflows may be beneficial to support
water allocation decisions by providing better and earlier es-
timates of the available water. The potential for farmers to
benefit from seasonal forecasts will, however, depend on (i)
how well the climate can be predicted, (ii) how much this in-
formation helps in the actual decision process, and (iii) how
much it contributes to reducing negative impacts (Hansen,
2002). Most studies focus on evaluating the benefit of fore-
casts by determining the skill, often based on forecast results,
observed data, and a benchmark prediction (Pappenberger
et al., 2015). Though this provides insight into the (relative)
quality of forecast, it may say little about the benefit to users
through improved decisions. The use of seasonal forecasts

to support decisions has been addressed in several settings.
Winsemius et al. (2014) assess the predictability of meteoro-
logical indicators in a changing climate and show how skil-
ful forecasts can support rain-fed agriculture. Shukla et al.
(2014) developed and implemented a seasonal agricultural
drought forecast system for eastern Africa which proves to
perform well in drought years. Crochemore et al. (2016) as-
sessed the performance of seasonal streamflow forecasts to
a reservoir with standard indicators of forecast skill such as
reliability, sharpness, and accuracy. Anghileri et al. (2016)
evaluate the performance of ensemble streamflow prediction
(ESP) forecasts based on climatology and perfect forecasts.
Turner et al. (2017), in addition to the usual forecast skill as-
sessment, included the performance gain in reservoir opera-
tion, benchmarking penalty costs when using forecast against
using perfect and actual information. Boucher et al. (2012)
applied an ensemble streamflow forecast for determining its
value in supporting hydropower generation. However, the po-
tential enhancement to water allocation decisions in irrigated
agriculture that are informed by seasonal forecasts has been
little studied. A complete assessment of the added value of
seasonal forecasts can allow basin authorities to explore the
opportunities seasonal forecasts provide to improve their op-
erational decisions and reduce potential losses to agricultural
by improving water allocation estimates. In this study, we
develop and test a water allocation framework to assess the
value of using seasonal forecasts of inflow into reservoirs in
the regulated Murrumbidgee basin in Australia. We hypothe-
sise that water allocation decisions can be improved when in-
formed by skilful and reliable seasonal forecasts of reservoir
inflows. The inconsistency in water allocation decisions dur-
ing the water year is introduced as a measure of the value of
using the forecast in the allocation process under the assump-
tion that if water allocated to farmers changes little during
the season, they can then draw maximum benefit from their
allocation. If the inconsistency in water allocation decisions
using the forecast is lower than when using the currently used
conservative estimate of water availability, then there is value
in using the forecast. In addition to the water allocation esti-
mated at the start of the water year, key decision dates for the
cropping season are evaluated to determine the benefit to the
farmers in supporting the decisions they need to make as the
season progresses.

2 Methods

2.1 Water allocation process in the Murrumbidgee
basin, Australia

The regulated Murrumbidgee River basin (84 000 km2) was
selected to evaluate the benefit of using forecasted reservoir
inflow (Fig. 1). In this basin, two major water storage reser-
voirs, the Burrinjuck and Blowering reservoirs, provide the
required resource for the water allocation process. The New
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South Wales Office of Water announces the water allocation
for different users in the basin starting on 1 July of each year
based on the available water in storage, the expected reser-
voir inflows for the next 12 months, and water requirements
downstream. The inflow to the Blowering reservoir depends
on both the discharge release from an upstream hydropower
system (Snowy Hydro Scheme) and the natural runoff, while
the inflow to the Burrinjuck reservoir depends mainly on nat-
ural runoff. Currently, a conservative estimate of the total in-
flow to the storages of 2.33× 108 m3 yr−1 (based on clima-
tology) is used to determine the expected reservoir inflow for
the next 12 months. In the Murrumbidgee basin, the water
year runs from 1 July through to 30 June of the next cal-
endar year, while the cropping season for annual (irrigated)
crops is between 1 November and the end of February. Each
water user (e.g. irrigation, urban, and environment) holds a
water entitlement (water share), which is a license to extract
water from the basin. Depending on the available water, the
basin authority announces a fraction of the total volume of
that entitlement that will be met in a year, which is defined
as the water allocation (Green, 2011). Water is allocated to
different water users according to established priorities. In
water-abundant conditions each user gets their agreed full
entitlement. When water shortage occurs, the highest priority
is to satisfy human water consumption and the lowest prior-
ity is to satisfy the irrigation demand of annual crops. This
is reflected in the type of license users pay for, with irriga-
tors holding a High Security license having a higher priority
to water than irrigators holding a General Security license.
Normally, irrigators growing annual crops hold a General Se-
curity license, though it is the annual crops that require the
highest volume of water. Once the water has been allocated,
users can decide how they would like to employ the resources
available to them. A maximum of 30 % of the volume enti-
tlement can be carried over from one year to another. This
provides flexibility to the water users as they can hold a cer-
tain volume of their allocation in the storage reservoirs and
make it available for the next year. During the water year
the basin authority may revise the initial water allocation and
announce a new allocation for each user depending on the
then available water storage volume and the estimate of the
remaining inflow to the end of the water year. In the cur-
rently established regulations the water allocation cannot be
decreased but only maintained or increased, unless excep-
tional circumstances dictate. This process generates expec-
tations among the irrigators about the amount of water vol-
ume they are going to get, especially for the General Security
(GS) license holders. To illustrate the process, Fig. 2 shows
the recorded water allocation decisions made in the 2016–
2017 water year. On 1 July 2016, the initial water allocation
for GS license holders was established at 40 %. Two weeks
later, the water allocation was increased from 40 % to 52 %.
Successive revisions over the next 4 months resulted in a fi-
nal water allocation of 100 % at the start of the cropping sea-
son (November), which was subsequently maintained until

the end of the season. Certainly, irrigators are aware that the
allocated water can be higher in the announcements made
closer to the start of the cropping season. This means that
farmers may well act on the expectation that the allocation is
typically revised upwards, taking the risk of a certain water
volume finally being allocated. We argue that this risk affects
decision making among the farmers and their ability to cor-
rectly plan the area to be cropped. Farmers more averse to
risk may tend towards cropping according to the conserva-
tive water allocation, leading to potential losses (opportunity
cost), while less risk-averse farmers may face losses in yield
if the final allocation they expect is not met. Ideally, water
users would like to be informed about the true water alloca-
tion as early as possible to better plan their activities. This
means that the ideal allocation scenario is when the water al-
location is set at the start and then remains constant during
the water year.

2.1.1 Data and information

Data and information from the Murrumbidgee basin were
collected from the online repositories of the New South
Wales Office of Water and the Australian Bureau of Meteo-
rology (BoM). Actual water allocation for the different users
(e.g. General Security) and the observed daily inflow into
the reservoirs were obtained for the period 2011–2016 (https:
//www.industry.nsw.gov.au/water, last access: 25 July 2020).
The current water allocation policy was introduced in 2011,
with allocations prior to that date following a different pol-
icy. For the 1982–2009 period, actual daily inflow into the
two reservoirs was back-calculated using observed daily out-
flows and observed storage. Discharge data from gauging
station 410008 (Murrumbidgee River downstream of Bur-
rinjuck Dam) and gauging station 410073 (Tumut River at
Oddy’s Bridge were used to obtain the daily outflow from
the Burrinjuck and Blowering reservoirs, respectively. Daily
reservoir storage volumes were obtained for each reservoir
from station 410131 (Murrumbidgee River at Burrinjuck
Dam — storage gauge) and station 410102 (Tumut River at
Blowering Dam — storage gauge) (see Fig. 1). The fore-
casted datasets for determining the expected reservoir in-
flow were obtained from an experimental streamflow fore-
casting system called Forecast Guided Stochastic Scenarios
(FoGSS), available for the time period 1982–2009 (Bennett
et al., 2018). Two different datasets from FoGSS were used.
One dataset is generated from precipitation and sea-surface
temperature (SST) predictions from the POAMA M2.4 sea-
sonal climate forecasting system (Hudson et al., 2013; Mar-
shall et al., 2014). The other dataset is generated with his-
torical precipitation, similar to ESP (Day, 1985). A more de-
tailed description of FoGSS is provided in Sect. 2.1.2. To
determine the expected reservoir inflows, FoGSS forecasts
for the 10304 km2 upstream basin of the Burrinjuck reservoir
are considered. Inflows to the Blowering reservoir are domi-
nated by releases from the upstream Snowy Hydro Scheme,
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Figure 1. Map of the Murrumbidgee River basin in Australia. Location of the Murrumbidgee irrigation area, discharge stations (Mur-
rumbidgee River at Burrinjuck Dam, Tumut River at Oddy’s Bridge, and Goobarragandra River at Lacmalac) and storage gauges in the
Burrinjuck and Blowering reservoirs.

Figure 2. Actual water allocation for General Security, GS, in the
Murrumbidgee basin for the water year 2016. Dotted lines in the
water allocation curve are used to show that the water allocation is
an annual water volume, the estimate of which changes during the
water year.

which includes various inter-basin transfers and unknown
operating rules. Inflows into the Blowering reservoir from
the Snowy Hydro Scheme are therefore taken as observed
and are not subject to the forecast, with the observed releases
from Snowy Hydro discharge obtained by back-calculating
from observed outflows gauged at Oddy’s Bridge just down-
stream of the dam and observed storage data of the Blower-

ing reservoir (1982–2009). Forecasts for the Goobarragandra
River at Lacmalac gauge, a main tributary of the Tumut River
between the Blowering reservoir and its confluence with the
main Murrumbidgee, with an influence basin area of 668 km2

(Fig. 1), are considered. This means that the water available
for allocation is determined as the available storage in the
Burrinjuck and Blowering reservoirs; the observed inflows to
the Blowering reservoir from the Snowy Mountain Scheme;
and the FoGSS forecast flows for the Goobarragandra River
and for the Murrumbidgee River upstream of the Burrinjuck
reservoir.

2.1.2 FoGSS

FoGSS is an experimental ensemble streamflow forecasting
system, which has been developed and tested for the Aus-
tralian continent (Bennett et al., 2016, 2017; Turner et al.,
2017). FoGSS produces forecasts in the form of monthly
time series for a 12-month forecast horizon. As forecast skill
declines with lead time, FoGSS is designed to nudge fore-
casts towards climatology. To produce streamflow forecasts,
FoGSS forces a monthly hydrological model with reliable
ensemble rainfall forecasts. Hydrological uncertainty is then
quantified and propagated through the forecast with a staged
error model, ensuring reliable ensembles. FoGSS combines
skill available from rainfall forecasts and initial hydrolog-
ical conditions to produce streamflow forecasts that are at
least as skilful as climatology. In this study we make use of
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two different rainfall forcings to generate FoGSS forecasts,
termed ESP+ and POAMA. ESP+ forecasts are generated
with an ensemble of historical rainfall sequences to force the
hydrological model. This is similar to well-established ESP
methods (e.g. Day, 1985), with the difference that streamflow
forecasts are also processed with the FoGSS error model to
produce reliable ensembles (hence denoted as ESP+). The
FoGSS error model allows the generation of large ensem-
bles, and each “ESP+” forecast is made up of 1000 en-
semble members. The POAMA forecasts are generated with
post-processed SST and rainfall forecasts from the POAMA
M2.4 seasonal climate prediction system. These forecasts
are processed with the method of calibration, bridging, and
merging (Schepen and Wang, 2014) to correct biases, re-
move noise, and ensure reliable rainfall forecast ensembles.
POAMA forecasts combine skill from seasonal climate pre-
diction with skill from initial hydrological conditions, while
ESP+ forecasts rely on skill only from initial hydrological
conditions. As with the ESP+ forecasts, the POAMA-driven
inflow forecasts each have an ensemble of 1000 members.
Various configurations of FoGSS have been tested by Ben-
nett et al. (2017): they found that the GR2M monthly hy-
drological model (Mouelhi et al., 2006) and the use of a
Bayesian prior in the error model generally produced the best
performance, and this is the configuration used in this paper.
Full details of FoGSS can be obtained in Bennett et al. (2016,
2017, 2018).

2.1.3 Developing the water allocation decision model

The water allocation decision making process developed
in the Murrumbidgee basin consists of a feedback loop
between the simulated available water resource and the
emulated water allocation decision for the different users.
Fig. 3 schematically shows the decision model to estab-
lish the resource available to the different users. All time-
dependent variables are from day t to the end of the wa-
ter season. Users include, in order of priority, Environmen-
tal Water (EW= 0.60× 108 m3 yr−1), Towns (TD= 0.85×
108 m3 yr−1), High Security (HS= 3.60× 108 m3 yr−1), Ir-
rigation Conveyance (IC= 3.76×108 m3 yr−1), and General
Security (GS= 18.9× 108 m3 yr−1). The available water is
determined at a daily time step and the water allocation deci-
sion is emulated for selected announcement dates. The avail-
able water is determined considering the storage volume in
the reservoirs; expected reservoir inflow (1982–2009 average
31.5× 108 m3 yr−1); storage reserves; and water losses. The
expected inflow into reservoirs is the input variable, which
feeds into the established water balance to determine the
available water for allocation. Water allocation decisions are
emulated for the different users from which the water alloca-
tion for GS is derived. As water is released from the reser-
voirs due to the water allocation process, a new water avail-
ability estimate is determined for the next time step.

2.1.4 Determining the available water for water
allocation

The available water for allocation on the first day (t = 1) of
the water year is defined as (Eq. 1)

AW(1)= S+ Ia−La−R, (1)

where S is the water storage in the reservoirs using the ob-
served storage for the first day, Ia is the expected annual in-
flow into the reservoirs, La is the expected annual water loss
(7.71× 108 m3 yr−1), and R is the annual reserve of water
storage with a fixed value of R = 1.52×108 m3 yr−1 includ-
ing the storage reserve, dead storage, and unusable inflow.
The expected annual inflow into the reservoirs is based on
the regulated inflow from the Snowy Hydro Scheme and a
natural inflow. In the current operating policy, the natural in-
flow into both reservoirs is established at 2.33×108 m3 yr−1,
which is a conservative inflow estimate, corresponding to the
3 % non-exceedance probability of the annual inflow distri-
bution from climatological data. In our approach we replace
this fixed inflow with the forecasted inflows derived from
the FoGSS ensemble. The actual inflow volume considered
in the allocation decision is established using selected non-
exceedance percentiles of the summed 12-month inflow pre-
diction of FoGSS. The available water for allocation, AW
starting on the second day (t ≥ 2), includes the water used
due to allocation U (Eq. 2):

AW(t)= S(t)+ Ie(t)−Le(t)−R+Uc(t), (2)

where S(t) is the simulated storage obtained with S′ = S(t−

1)+1S and the capacity of the reservoirs C. If S′ < C,
then S(t)= S′, but if S′ ≥ C, then S(t)= C with a spill
sp= S′−C. The storage change is defined as 1S = Io(t −

1)−Ud(t − 1)−Ld(t − 1), where Io is the observed daily
inflow, Ld is the daily expected loss determined from the
expected annual loss distributed equally for each day, and
Ud is the daily expected allocation for the different water
users. The daily expected allocation for General Security, Ir-
rigation Conveyance, and High Security and Towns is deter-
mined with a daily release ratio multiplied by the water al-
location for each user. For General Security, Irrigation Con-
veyance, and High Security the daily release ratio is based
on the monthly irrigation requirements (Table 1), while for
Towns the water allocation is distributed equally for each
day. The water allocation for each user is obtained based on
the daily available water from the water balance and the al-
location rules explained in detail in the next paragraph. Ie(t)

is the expected inflow for the remaining days of the water
year defined as Ie(t)= Ie(t − 1)− Id(t − 1), where Id is the
daily expected inflow determined from an established daily
inflow fraction of the average annual observed inflow on
day t − 1. Le(t) is the expected loss for the remaining days
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Figure 3. Water allocation framework used to simulate the daily water availability for the rest of the water year and emulate the allocated
water for different users based on allocation rules in the Murrumbidgee basin. The input variable is the expected inflow into the reservoirs.

of the water year defined as Le(t)= Le(t − 1)−Ld(t − 1),
where Ld is the daily expected loss to the previous day.
Uc(t) is the cumulative water use due to allocation defined
as Uc(t)= Uc(t − 1)+Ud(t − 1), where Ud is the daily ex-
pected allocation for the different water users obtained with
the daily release ratio and the emulated water allocation deci-
sion. The water allocation decision is emulated each day, but
the final allocated water is presented only for announcement
dates, starting on 1 July and then for each 15 d to the end
of the season. In order to emulate the water allocation deci-
sion, the framework includes the available water, the agreed
entitlement for each water user, and the priority rules. The
volume is established step-wise for each user following the
priority of water use. The allocated water for Towns, stock,
domestic and basic right (TD) was set at 100 % of the en-
titlement. Only if the difference between the available wa-
ter for allocation and the environmental water is lower than
0.85× 108 m3 yr−1 (the entitlement of TD) is the allocated
water for TD then the difference of AW and EW. The proce-
dure for allocating water to High Security (HS) is presented

in Fig. 3. It includes the use of the available water AW and
the allocated water for TD and EW to obtain three possi-
ble outcomes for the allocated water for HS. Depending on
availability, water allocation for HS can be 100 % or 95 %
of the entitlement, or the difference of AW, TD, and EW.
The allocated water for General Security is determined by
using the remaining water volume left after the High Secu-
rity procedure, subtracting the amount lost to Irrigation Con-
veyance (3.76×108 m3 yr−1). If that difference is lower than
the General Security entitlement, then the allocated water for
GS is lower than 100 %. The decision model is tested against
the recorded allocation decisions for the years from 2011 to
2016 as the current water allocation policy was introduced in
Horne (2016).

2.1.5 Evaluating water allocation decisions

To evaluate the water allocation decisions made during the
water year, a metric to quantify the inconsistency in allocated
water is introduced. The inconsistency (I ) can occur due to
either upward or downward revisions of the allocated water
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Table 1. Monthly irrigation requirements in the Murrumbidgee
basin used in the water allocation model. Values are based on es-
timations from Khan et al. (2004, 2006).

Month Volume (106 m3)

July 3
Aug 26
Sep 81
Oct 210
Nov 245
Dec 246
Jan 289
Feb 219
Mar 40
Apr 19
May 9
Jun 10

Annual 1398

volume during the water year. An upward revision is when
the allocated water at time step t (WAt ) is larger than the
allocated water at time step t−1 (WAt−1). Hence, the incon-
sistency in allocated water due to upward revisions I+ is the
sum of the difference between allocated water at time step
t (WAt ) and the allocated water at time step t − 1 (WAt−1)
with that condition:

∀WAt > WAt−1→ I+ =
∑n

t=1
(WAt −WAt−1). (3)

A downward revision occurs when the allocated water at
time step t (WAt ) is lower than the allocated water at time
step t − 1 (WAt−1), and the inconsistency in allocated water
due to downward revisions (I−) is thus the sum of the abso-
lute difference between allocated water at time step t (WAt )
and the allocated water at time step t − 1 (WAt−1) with that
condition:

∀WAt < WAt−1→ I− =
∑n

t=1
|WAt −WAt−1|. (4)

A constant water allocation from the beginning until the
end of the water year results in zero inconsistency. This
would imply that the expected inflow estimates are perfect,
and the total water allocation is correctly determined at the
start of the season. This water allocation WAp was derived
by applying the observed inflows in the decision model. We
separate dry and wet years according to the allocated water
obtained with the observed inflow. Years where the allocated
water is equal to 100 % of the entitlement are considered wet
years, while years where the allocated water is lower than
100 % of the full entitlement are considered dry years. Av-
erage water allocation decisions for dry and wet years were
obtained at each time step. A second metric, the root mean
square difference (RMSD), was used to evaluate the allocated

water obtained with the expected inflows WAi against the al-
located water obtained with the observed inflows (perfect in-
formation) WAp at each time step t for selected years y (dry
or wet years) (Eq. 5).

RMSD=

√∑p

y=1(WAt −WAp)2
y

m
(5)

3 Results

3.1 Emulating historical water allocation decisions

A preliminary calibration of the allocation framework was
developed for the 2011–2016 water years using the conser-
vative inflow estimate (2.33×108 m3 yr−1) and the recorded
allocation decisions. The main calibration parameter is the
allocation use reduction factor, which determines the per-
centage of the water allocated to them that users decide to
use, with the remainder being reserved for carry-over to the
next year. In reality, this factor varies between users as well
as between years and may be influenced by a variety of fac-
tors, including many that do not depend on water availabil-
ity. We simplify this by considering a bulk allocation use
reduction factor across all General Security users and also
consider this to be equal across years. The allocation use re-
duction factor derived for the 2011–2016 period is then as-
sumed to also hold for evaluating the FoGSS datasets for the
1982–2009 water years, for which recorded allocation deci-
sions are not available as a different policy for the alloca-
tion of water to the different users was then in place. The
allocation use reduction factor was established as 78 %, for
which similar simulated and actual carry-over volumes are
obtained, as well as the simulated storage in the reservoirs at
the end of each water year (itself a function of the carry-over
volume which remains in the reservoir). Figure 4 shows the
simulated water storage in the reservoirs, as well as the ob-
served and simulated carry-over volumes. For the years 2011
to 2016, the emulated water allocation decisions for GS are
shown in Fig. 5 and compared to the actual allocation deci-
sions recorded in those years. Two simulations are shown. In
the first, the initial storage condition of the reservoirs (day
1 of the 2011 water year) was set equal to the actual water
storage, followed by an open-loop simulation as in Eq. (2)
for the full 6-year period. In the second, the water level in the
reservoirs is reset to be equal to the observed reservoir level
at the start of each year (simulated nudged). These simula-
tions show that across the 6 years volume differences range
from 1 % to 30 % of the actual water storage at the start of
each of the water years. Derived emulated water allocation
decisions for GS show an underestimation of the allocation
compared to the actual volume for most years, especially
for the 2014 water year. These differences occur because a
constant factor is used (78 %) to simulate the carry-over be-
tween water years. Results from simulated nudged show how
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Figure 4. Actual and simulated reservoir storage and carry-over vol-
umes in Blowering and Burrinjuck reservoirs (2011–2016).

the daily water storage simulations and the water allocation
for GS would behave using the actual water storage infor-
mation (including the actual carry-over volume), by nudging
the simulated storage levels to the observed ones at the start
of each water year (Fig. 5). The daily water storage simu-
lations and water allocation to GS are now closer to the ac-
tual values, especially for the 2014 water year. However, for
both simulations, the emulated decisions show a similar trend
when compared to the actual decisions. Upward revisions as
well as where the water allocation remains constant (no re-
visions) occur at the corresponding announcement dates, and
although results are slightly biased in volume, the emulation
of allocated water decisions does follow the pattern of the
actual decisions. We apply the water allocation framework to
simulate the water storage continuously over the 1982–2009
water years, assuming a constant allocation use reduction
factor of 0.78 for all water years. The framework is applied
to compare water allocation decisions using different esti-
mates of available water for allocation informed by seasonal
forecasts of reservoir inflow, including the seasonal forecast
datasets (FoGSS).

3.2 Performance of seasonal predictions of available
water

Prior to applying the FoGSS forecasts to emulate the wa-
ter allocation decisions, the reliability of the seasonal pre-
dictions of available water is evaluated. In Figs. 6 and 7
rank histograms are shown for both the POAMA and ESP+
datasets for the forecast ensemble of 1000 members (FoGSS)
of the expected inflows into the Burrinjuck reservoir. The
expected inflow shown is the total inflow from the forecast
month through to the end of the water year, which is the in-
formation on the available water that is required to inform
the water allocation decision. Rank histograms for expected
flows for the Goobarragandra River at Lacmalac show a sim-
ilar pattern and are available in the Supplement (Figs. S12

and S13). The rank histogram shows the frequency of the
rank of the observed inflows in the ensemble, with a well-
calibrated ensemble exhibiting a uniform distribution (Wilks,
2011). For easier interpretation, the ensemble is pooled into
five classes. The light grey bar shows the frequency of the ob-
served rank being higher (or lower) than the highest (lowest)
forecast value in the ensemble.

The rank histograms of the expected inflows to end of sea-
son for forecasts made in the months from July until January
show that the ensemble is under-dispersed as the distribution
is increasingly U-shaped, with the POAMA dataset exhibit-
ing better performance than the ESP+ dataset. The first three
of these months (July to September) are the wetter season.
As this recedes, the under-dispersion increases until Decem-
ber, after which the performance again improves, with the
expected inflows in February showing a near-uniform distri-
bution, though reliability of the forecast again decreases as
the accumulation period becomes shorter.

We additionally measure the accuracy of water year fore-
casts at each issue time with the continuous ranked proba-
bility skill score (CRPSS, Hersbach, 2000), with a climatol-
ogy reference forecast generated by drawing random samples
from a log-sinh transformed normal distribution (Wang et al.,
2012) fitted to observations using the Bayesian Joint Proba-
bility model (Wang and Robertson, 2011). Positive CRPSS
values indicate that FoGSS is more accurate, on average,
than the climatology forecasts. Results show that skill is
quite consistent for the forecasts flows of the Goobarragandra
River, while the inflows of the Burrinjuck reservoir are only
skilful for forecasts issued for July–September. In general,
POAMA does have slightly better skill for forecasts issued
earlier in the water year (see Fig. S11). In summary, the reli-
ability of the forecast ensembles is better between February
and June compared to July and January, while forecast skill
is better for the beginning of the water year (considering that
the inflows to Burrinjuck are larger than the Goobarragan-
dra River flows). In our study we are primarily interested in
the predictions of the expected inflows from July to Febru-
ary to support water allocation decisions for the cropping
season, which are made from November to February. For
this period, the forecast ensemble is shown to be somewhat
overconfident, especially for forecasts issued for December.
In addition, the ESP forecasts are slightly negatively biased
for August–October (i.e. they tend to underestimate inflow).
How this affects the water allocation decisions, and if using
the forecast ensemble leads to better estimates of available
water compared to the currently used conservative estimate
based on climatology, is evaluated using both the ESP+ and
the POAMA forecasts to inform the water allocation deci-
sions.
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Figure 5. Actual and emulated water allocation GS for each year (2011–2016) using conservative inflow. Simulated nudged is the simulated
water allocation GS but using the actual storage on 1 July.

3.3 Water allocation using the seasonal forecast
datasets

Water allocation decisions for GS were emulated for the
1982–2009 period using four datasets of expected inflows
to the reservoir to determine water availability: (i) observed
inflow (considered perfect information); (ii) the conserva-
tive inflow (or reference information as currently used by
the decision maker); (iii) the FoGSS seasonal forecast based
on POAMA; and (iv) the FoGSS seasonal forecast based
on ESP+. Water allocations using the perfect information
and the reference information provide the benchmark against
which the decisions informed by the ensemble forecasts are
compared. For each of the two ensemble forecasts, two set-
ups were tested. In the first, the inflow prediction at the begin-
ning of the water year is obtained from the ensemble forecast
made on 1 July, and this is then maintained for the next 12
months (non-updating FoGSS set-up). This means that the
forecast of the available water that is established on 1 July is
not updated by newer forecasts as the water year progresses.
This was done to mimic the current procedure used by the
basin authority when using the conservative inflow estimate
based on climatology, where the expected inflow is estab-
lished at the beginning of the water year and then maintained
to the end of the water year. In the second set-up that was
tested, the full potential of the ensemble forecast is explored.
The water availability estimate to the end of season is now
updated each month using the FoGSS forecasted inflows de-
termined from the seasonal forecast made at the start of that
month. In determining the expected water availability from
the FoGSS forecasted inflows for both set-ups, different non-

exceedance percentiles of the forecast ensemble are selected
to provide the expected availability of water for allocation,
starting with the 1st non-exceedance percentile (commen-
surate with a very conservative estimate of water availabil-
ity) and increasing this to the 50th non-exceedance percentile
(commensurate with the ensemble median).

3.3.1 Using one prediction at the beginning of the
water year

In this first set-up, water allocation decisions were emulated
using the inflow prediction obtained from the seasonal fore-
cast at the beginning of the water year and then not updated
for the next 12 months (non-updating FoGSS set-up). Fig-
ure 8 shows the water allocation decisions to GS for a se-
lected wet year (1998) and a selected dry year (2006) using
the 1st, 5th, 10th, 25th, and 50th non-exceedance percentiles
of the ESP+ and POAMA ensemble forecast datasets. The
blue line shows the allocation decisions made using the ref-
erence conservative inflow estimate, while the red line shows
the allocation established using perfect information.

For the dry year of 2006, the results show that the allo-
cation decisions using the forecast ensemble are similar to
the decisions obtained with the conservative inflow for the
1st percentile. This makes sense as the water allocation us-
ing the lowest percentiles is the water allocation that matches
best with the water allocation based on the conservative in-
flow. It is interesting to note that the water allocation based
on perfect information is even lower than when using either
the conservative inflow or the 1st percentile. This is due to
2006 being the driest year on record (Dreverman, 2013), with
observed inflows below the 1st percentile. For the water al-
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Figure 6. Rank histogram using ESP datasets from FoGSS (1982–2009) for expected inflow in the next n months (starting July) in the
Burrinjuck reservoir.

Figure 7. Rank histogram using POAMA datasets from FoGSS (1982–2009) for expected inflow in the next n months (starting July) in the
Burrinjuck reservoir.
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Figure 8. Water allocation GS for one wet year (1998) and one dry year (2006) using one inflow prediction at the beginning of the water
year for the next 12 months (non-updated forecasts).

locations obtained with the 1st percentile as well as with the
conservative inflow there are no downwards revisions dur-
ing the water year. However, for increasing percentiles, the
number of downward revisions increases as the initial esti-
mate of available water at the start of the year becomes in-
creasingly overconfident. For this dry year, the POAMA and
ESP forecasts exhibit broadly similar behaviour. In the wet
year (1998), the initial allocation based on the 1st percentile
is higher than that using the conservative estimate, partic-
ularly for the POAMA dataset. For increasing percentiles,
the water allocation decisions approach those using perfect
information. For 1998, the observed water availability was
well above the requirement to fulfil 100 % of the allocation
to General Security. No downward revisions are found, even
for the higher percentiles. These results provide an initial
comparison between using the conservative inflow and fore-
cast inflow for determining the available water for allocation.
However, for the full potential of the seasonal forecast to be
evaluated, inflow predictions are updated monthly during the
water year as new FoGSS forecasts become available.

3.3.2 Updating the inflow prediction every month

In Figs. 9 and 10, the water allocation decisions are shown
using the 1st, 5th, 10th, 25th, and 50th non-exceedance per-
centiles of the ESP+ and POAMA forecast datasets. This

uses the second set-up, where the inflow predictions are up-
dated every month with the most recent forecast information.
Results for the dry years are shown in Fig. 9, with those for
wet years shown in Fig. 10. Of the 28 years evaluated, 13 are
considered dry (1982, 1994, 1997, and 1999–2009, the lat-
ter period constituting the millennium drought) and 15 wet
(1983–1996 and 1998). Wet years are taken to be those years
when the final water allocation to the General Security attains
100 % of the concession by the end of the season. For the dry
years we show results for three years (1982, 2003, and 2006),
with the results for the remaining years provided in the Sup-
plement (Figs. S1 to S9). The selected three years have dif-
ferent levels of water allocation based on perfect allocation
(70 %, 55 %, and 10 % of the full concession), reflecting in-
creasingly severe drought conditions. The reference water al-
location based on the conservative climatological estimate is
again shown in red. For the wet years we show results for
three selected years (1988, 1995, and 1998), again for in-
creasingly dry conditions. Results for the remaining years are
again provided in the Supplement.

For both dry and wet years, results found with POAMA
and ESP+ differ only slightly in magnitude and follow a sim-
ilar trend during the water year, though the median POAMA
forecast predicts full allocation months earlier than ESP+.
For most years, results using the forecast ensembles show
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Figure 9. Water allocation GS for selected dry years (1982, 2003, and 2006) using new inflow predictions every month (monthly updated
forecasts).

that the derived water allocation decisions tend towards those
established with the perfect water allocation. For all wet
years and many of the dry years, the water allocations us-
ing the forecast ensemble are generally closer to those made
using the perfect water allocation compared to those made
with the reference water allocation. In the wet years results
closest to the perfect forecast are obtained with the higher
forecast percentile (less conservative estimate), while for the
dry years the lower percentiles provide the best results. For
some of the dry years, particularly for 1982 and 2006 (Fig. 9),
the water allocation using the conservative inflow initially
overestimates the “real” water allocation based on perfect in-

formation and is then revised downwards as the season pro-
gresses. In 2006, the water allocation based on the conserva-
tive inflow is 10 % higher than the perfect water allocation
during the entire year. Observed inflows for the 2006 water
year were the lowest on record (Dreverman, 2013) and thus
lower than the conservative estimate. Similar behaviour is
found in 2007 and 2008, though the initial storage at the start
of these dry years was already so low that allocations never
exceeded 0 %. The overestimation at the start of the season
may well be attributed to a wet bias in the forecast for these
dry years, with the more conservative forecasts (1 %–10 %)
thus providing the best estimate of actual inflows. In the less
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Figure 10. Water allocation GS for selected wet years (1988, 1995, and 1998) using new inflow predictions every month (monthly updated
forecasts).

extreme dry years, the water allocation using the conserva-
tive inflow is lower than the perfect water allocation at the
beginning of the water year and progressively increases (e.g.
1982 and 2003). Using the forecast ensemble shows better
water allocation results compared to when using the conser-
vative inflow. For many of the dry years (see Fig. 9 and the
Supplement), downward revisions of the water allocation do,
however, occur during the water year for all percentiles of the
forecast ensemble. As expected, selecting a higher forecast
percentile to establish the expected inflow leads to a higher
water allocation at the beginning of the water year and conse-
quently to larger downward revisions, though the difference

in water allocations between forecast percentiles converges
as the year progresses. In some years (e.g. 2003 and 2006)
the magnitude of water allocation using the forecast ensem-
ble is similar to that of the perfect water allocation, though
this depends on which date the water allocation is estimated
and which forecast percentile is used. For example, in the
dry year of 2006 the initial water allocation (1 July) using
the forecast ensemble is overestimated (at 15 % for the 1st
percentile of ESP+), but as of 14 September the predicted
water allocation tends towards the perfect water allocation at
9 %. A similar trend happens for the dry year of 2003, but
in this case the initial water allocation using the forecast en-
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semble is low (at 40 % for the 1st percentile of ESP+) and
then trends towards the perfect allocation at 54 %. For the
dry year of 1982 the water allocation using the forecast en-
semble does not tend towards the perfect water allocation,
at least not for the 1st percentile. Using the 50th percentile
the water allocation initially tends towards the perfect water
allocation on 14 September, but the water allocation is sub-
sequently underestimated, leading to continuous downward
revisions. For those wet years (Fig. 10) where the initial wa-
ter estimate is below 100 % (e.g. 1995 and 1998), there are
primarily upward revisions of the allocation (with only spo-
radic downward revisions) for all percentiles of the forecast
ensemble. Water allocation results using the forecast ensem-
ble are generally equal to the perfect water allocation after
the 14 September decision date for all non-exceedance per-
centiles and remain so until the end of the cropping season.
For several wet years, the water allocation decisions based on
the conservative inflow are lower than for the perfect water
allocation at the beginning of the water year and then pro-
gressively increase (e.g. 1982 and 2003). These may be up to
55 % lower than the perfect water allocation of 100 % (e.g.
1998). For all years where this occurs, using the forecast
ensemble shows better water allocation, even for the low-
est forecast percentiles, which are closest to the conservative
forecast. For many of the wet years, the initial allocation us-
ing both the perfect information as well as the conservative
inflow is already at 100 %, as are allocations based on all
forecast percentiles.

Figure 11 shows the inconsistency indices for all 28 years
tested, using the configuration with the POAMA forecast,
where the forecast data are updated each month as a new
forecast becomes available. In Fig. S10 the inconsistency
indices using the ESP+ forecast are shown. The years are
ranked in order of the observed inflow volume, with 2008
having the lowest inflow volume and 1983 the highest. Years
marked in red are considered dry, while those in blue are con-
sidered wet. The annual inconsistency of the allocation due
to upward revisions (positive inconsistency) for the differ-
ent forecast percentiles, as well as for the conservative flow,
is shown in panel (a), with the downward revisions (nega-
tive inconsistency) shown in panel (b). The figure shows that
using a higher non-exceedance percentile to inform the wa-
ter allocation decision leads to less upward revisions (lower
positive inconsistency) for all years and in all cases provides
an improvement over the allocation based on the conserva-
tive inflow estimate. This is seen primarily for the wetter dry
years and the dryer wet years. For wetter wet years there
are no upward revisions as the allocation already starts at
100 % of the entitlement, while for the more extreme dry
years there are also no upward revisions of the water allo-
cation due to the sustained lack of water. The reduction in
upward revisions does, however, come at the cost of more
frequent downward revisions (higher negative inconsistency)
for the drier years, particularly for the more extreme drier
years and for the higher percentiles. Although the annual in-

consistency provides information on revisions of the water
allocation during the water year, it does not allow for easy
comparison against the perfect water allocation. Figure 12
shows the RMSD calculated over the 28 years using the dif-
ference between the water allocation established using the
ensemble and that of the perfect forecast for each decision
date, for both the dry and wet years as well as the forecasts
using the ESP+ and POAMA datasets. The RMSDs calcu-
lated using the conservative inflow estimates are also shown.
An RMSD value of zero would imply perfect allocation. For
dry years, the RMSD using the monthly updated forecast en-
semble shows lower differences than the reference conserva-
tive water allocation for all non-exceedance percentiles until
the end of October for both ESP+ and POAMA, with the
latter marginally outperforming the former. This is also the
case for the wet years, though using lower percentiles for the
forecast leads to higher differences in allocation than when
considering the conservative inflow forecast. It is important
to note that for allocation decisions informed by either of the
forecast datasets, there is a major error reduction between 30
August and 14 September. After 14 September the difference
remains more or less equal until the end of the cropping sea-
son. This is significant, as it means that farmers will have
clearer information on their allocation several weeks earlier
than is the case when using the conservative inflow forecast.

4 Discussion

The water allocation framework developed in this study was
applied to assess the benefit of using a seasonal forecast en-
semble (FoGSS) in estimating the available water for alloca-
tion. The potential for farmers to benefit from this seasonal
forecast is discussed from three perspectives: (i) how well
climate can be predicted, (ii) to what degree this information
helps in the actual decision process, and (iii) to what extent it
contributes in reducing the negative impacts (Hansen, 2002).

4.1 How well can the inflows be predicted?

FoGSS is an experimental seasonal ensemble streamflow
forecast for a 12-month horizon developed for the Australian
continent (Bennett et al., 2016, 2017). FoGSS post-processes
climate forecasts, either derived from ESP+ or POAMA to
force a monthly hydrological model. ESP+ is an ensemble of
seasonal precipitation forecasts based on climatology, while
POAMA is an ensemble coupled ocean–atmosphere general
circulation model (CGCM). A long time series (28 years) of
climate predictions was used assuming a full representation
of climate variability. The time period includes extremely dry
years between 2001 and 2009 referred to as the Millennium
Drought (van Dijk et al., 2013) and very wet years, such as
1988 and 1989 (BoM, 2019).

The derived inflow predictions were transformed into ac-
cumulated inflow volume from each prediction month un-
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Figure 11. Inconsistency for all 28 years using FoGSS/POAMA forecast updated every month to inform the allocation decision. (a) shows the
annual inconsistency due to upward revisions (positive inconsistency) and (b) the annual inconsistency due to downward revisions (negative
inconsistency).

til the end of the water year (June). This set-up was used
to mimic the current water allocation process in which the
basin authority uses a conservative inflow prediction at the
beginning of the water year for the next 12 months. In our
approach a prediction of the inflow to the end of the sea-
son is updated each month using the forecast ensemble as a
new forecast becomes available. Our approach to verifying
the FoGSS seasonal forecasts is a novel extension of the tra-
ditional forecast skill assessment in that inflow predictions
are evaluated for the next n months until the end of the water
year, representing the decision variable used in the water al-
location framework. In addition, key decision dates for water
allocation are evaluated to provide insight into the reliability
of those forecasts that have an impact on farmers’ planning
and operational decisions, especially for months before and
during the cropping season.

As the seasonal forecast is updated each month, with a
progressively shorter lead time to the end of the season, we
would expect progressively more accurate forecasts of the
water year. This is, however, only partly reflected in the in-
flow forecast skill results. Inflow forecasts to Goobarragan-
dra are skilful year-round, with a slight dip for forecasts
issued around December and a rise at the end of the wa-
ter year (May–June) as the accumulation period shortens.
FoGSS forecasts for Burrinjuck tend to be less accurate, and
skill varies greatly through the year: skill is high for forecasts
issued at the beginning of July and August but decreases ev-
ery month from July until December, after which it again im-

proves. The accuracy of Burrinjuck forecasts is thus clearly
a function of season. For predicted forecasts issued in July–
September (towards the end of the wetter winter season) the
accuracy of accumulated volume forecasts is dominated by
initial hydrological conditions and information from recent
(high-flow) months. Flows are much lower by December,
meaning that flow volumes in accumulated inflow forecasts
are dominated by higher flows late in the water year (April–
June). Predicting the rise of the annual hydrograph accurately
relies on rainfall forecasts, which are usually not skilful at
longer lead times. Thus water year forecasts issued for Bur-
rinjuck in the driest months (December–February) tend to
have the poorest skill. Inflow predictions to Burrinjuck af-
ter February do progressively improve due to the shorter lead
time of the prediction, as the updated climate forecasts com-
pensate for the model uncertainty.

In both catchments, the use of calibrated POAMA climate
forecasts to force FoGSS adds skill to inflow forecasts is-
sued in July–September. Schepen and Wang (2014) reported
positive skill for calibrated POAMA forecasts from July to
October, broadly coinciding with this period. While overall
seasonal climate forecasts may not always add skill to inflow
forecasts (Arnal et al., 2018; Bennett et al., 2017), we show
that for these catchments seasonal climate predictions offer
a small but marked improvement in forecast accuracy. The
use of calibration to ensure coherent climate predictions —
i.e. as skill declines with lead time climate forecasts revert to
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Figure 12. RMSD for all dry years (a, b) and wet years (c, d) using new inflow predictions every month from ESP (a, c) and POAMA (b, d).

climatology – ensures these gains in skill are not lost through
poor climate forecasts at longer lead times.

4.2 To what degree does the seasonal forecast help in
the decision process?

Currently, only upward water allocation revisions are made
during the water year in river basins in Australia. This is be-
cause in the current allocation a conservative inflow for the
next 12 months based on climatology is used to determine
the water allocation. Essentially this results in an estimate of
available water that is always on the safe side from the point
of view of the allocation decision. We estimate that the con-
servative estimate used in the current policy equates to the
inflow that is exceeded 97 % of years, which would imply
that in virtually all years the actual inflow is higher than the
initial estimate. Depending on the initially available water in
the storage reservoirs, this results in upward revisions of wa-
ter allocations as the season progresses for most years, with
the exception of the most extreme dry years (such as 2006).
To the farmer, advance knowledge of the ultimate allocation
is beneficial as it allows for better planning. We show that us-
ing information from a seasonal forecast ensemble to predict

the inflows to the reservoirs and inform the water allocation
decision can reduce the upward revisions. Although using the
seasonal forecast ensemble does not reduce the frequency of
upward revisions (or positive inconsistency) in all years, it
does improve the accuracy in estimating water available for
allocation. This implies there is benefit to using the seasonal
forecast ensemble to inform the decision process. However,
this comes at a cost. There is a trade-off between obtaining
better predictions of water available for allocation than the
conservative low estimate as it comes at the cost of more
downward decisions during the water year. This is evident
in dry years, particularly where the positive bias in the fore-
cast at the start of the season results in downward revisions of
the water allocation as the year progresses. In wet years up-
ward revisions are reduced (compared to the reference water
allocation) and only very minor downward revisions occur.
Despite this, for both dry and wet years the accuracy of the
available water for allocation using the forecast ensemble im-
proves during the water year. This is most evident on the de-
cision date around 14 September, where the accuracy of the
water allocation decision informed by the forecast improves
significantly and maintains this accuracy until the end of the
water year. This is evident from the results of the RMSD,
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which shows the magnitude of the difference in the alloca-
tion decision through the season when compared to that made
with the perfect knowledge of the amount of water available.
The root mean square difference with the forecast ensemble
attains a value more or less equal to the root mean square dif-
ference obtained with the conservative inflow, but 2 months
before the original decision date (moving forward from about
13 November to 14 September). This means that for the same
accuracy of predicted water allocation, decision makers can
rely on the forecast ensemble information 2 months earlier
when compared to the conservative inflow information. This
may be of significant benefit to the farmers as they can then
better plan their irrigation season based on the amount of wa-
ter they would expect to be allocated.

Whether the basin authority in charge of water allocation
announcements would choose to adopt a seasonal forecast
system such as FoGSS and change the water allocation policy
will depend very much on how acceptable downward revi-
sions of allocated water are. The current policy has been de-
signed to avoid such downward revisions unless exceptional
circumstances dictate. Using the full potential of the seasonal
forecast (including a monthly update of the expected inflow
as new forecasts become available) provides more accuracy
in water allocation estimates at the cost of downward revi-
sions. Following maximum utility theory, the acceptability
of downward revisions will depend on the impact these have
compared to the benefit of the improved and earlier infor-
mation on the water allocation. The ratio of downward and
upward revisions is also influenced by the selection of the
non-exceedance percentile. For dry years, selecting a lower,
more conservative, percentage would appear to be the best
strategy, while for the wet years a higher percentage should
be selected. A non-exceedance percentile of 10 % appears to
provide the best performance on average for both dry and
wet years evaluated in this study, but a more dynamic ap-
proach could also be taken depending on the forecast as well
as the available storage at the beginning of the water year. It
would appear that the downward revisions (that occur mainly
in the dry years) are primarily due to biases in the inflow
forecast. Comparing the results of allocation decisions in-
formed by the FoGSS forecasts based on the POAMA dataset
to those based on the ESP dataset, the number of revisions
(both upward and downward) in Figs. 11 and S10 indicate
that these are marginally less for the POAMA-based dataset.
This would suggest that further improving the seasonal fore-
cast can contribute to reducing undesirable downward revi-
sions. Additional improvements to the inflow predictions by
reducing the uncertainty in the hydrological model of the
basin will also contribute to reducing the bias of the inflow
predictions and improving allocation results.

Allocation decisions made depend not only on the avail-
able water in reservoirs and the expected inflows, but also
on the actual demand from the crops planted by farmers. In
our study demand is taken as the sum of the entitlements of
farmers, reduced by the use reduction factor we introduce.

Given the water allocated to meet their entitlement, farmers
will make their decisions on the crops they plant for the sea-
son. In the Murrumbidgee basin, farmers may, however, also
trade the water they are entitled to or store part of their allo-
cation for use in the next season by deciding to leave it in the
upstream reservoirs as carry-over (Horne, 2016). As a result,
there are quite complex feedbacks as the decision to carry
water allocated over to the next season will influence the al-
location decisions at the basin level in that next season. De-
cisions made by the farmers on what and how much to crop
are complex and depend on a range of factors that include the
available water through allocation but also economic factors
and personal preferences. The allocation use reduction fac-
tor we introduce to consider these decisions made by farm-
ers, and we find a value of an average use of 78 % of water
entitled to best emulate actual decisions made, on average.
While this factor could be optimised mathematically, a de-
tailed understanding of how farmers make decisions is then
required. Linés et al. (2018) develop a decision model based
on interviews of farmers in the Ebro basin in Spain, show-
ing that decisions on what to crop depend on their perception
of water availability and will differ between seasons consid-
ered wet and seasons considered dry as well as their aversion
to risk and technological capacities. They find that the avail-
ability of information on available water as the season devel-
ops, such as provided through a seasonal forecast, will influ-
ence perceptions of water availability and consequently crop-
ping decisions. Further research into how farmers in the Mur-
rumbidgee basin make decisions using for example agent-
based models (Wens et al., 2019) could shed more light on
the influence on water allocation decisions made at the basin
levels.

4.3 To what extent does the seasonal forecast
contribute to reducing negative impacts?

The impact in irrigated agriculture of uncertainty in the avail-
able water resources has been widely assessed in Australia
considering climate variability and climate change scenarios
(Kirby et al., 2013, 2014a, b, 2015). Adaptation measures,
reallocation strategies, and policy reform are currently in dis-
cussion to prevent future impacts due to extreme events (Bark
et al., 2014; van Dijk et al., 2013). In this study we explore
the possibility of using a seasonal forecast ensemble to se-
cure the right amount of allocated water at the right time
during the water year. In the Murrumbidgee basin, farmers
decide on the area to be cropped for annual crops based on
the water allocation announcement for General Security. The
water year starts on 1 July, but the summer cropping season
starts on 1 November and ends on 1 March. In that sense,
the period to decide on the area to be cropped is between
1 July and 1 November, and the period for operational de-
cisions (e.g. irrigation schedule, weed management) is from
1 November to 1 March. While it would seem logical that
farmers wait until the last allocation announcement before
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1 November to decide on the area to be cropped, due to
pre-cropping planning activities and investments (e.g. buying
seeds, maintenance of irrigation assets, or investing in agri-
cultural equipment and machinery) they prefer to take deci-
sions earlier, therefore relying on water allocation announce-
ments made at an earlier date. By using the seasonal forecast
to inform water allocation decisions we show that farmers
could rely on the water allocation announcement made on
14 September, some 1.5 months earlier. This would allow
them to plan their activities better, thus reducing potential
negative impacts of having to take decisions on the area to be
cropped before the actual water allocation on 1 November is
established.

5 Conclusions

We apply a water allocation framework to assess the bene-
fit of using a seasonal forecast ensemble to inform water al-
location decisions. This water allocation framework uses an
estimate of the available water for the irrigation season that
is based on the balance of the demand to the available water
in the reservoirs in a basin and the expected inflows to those
reservoirs from the decision date until the end of the water
year. The water allocation framework emulates current water
allocation policy, following which the basin authorities make
decisions on the allocation of water to meet claims as defined
in water concessions. Depending on availability, water may
be allocated to fully meet these concessions or only to a set
percentage. We apply the framework in the Murrumbidgee
basin in Australia. In this basin, conservatively low estimates
of the expected inflow based on climatology are currently
used at the beginning of the water year to estimate water
available for allocation. As the water year progresses, water
allocated to each concession may be revised if expected wa-
ter availability changes. As the initial estimates are conser-
vative, water allocations are mostly conservatively low and
consequently for the majority of years are revised upwards
as the season progresses. Although upward revision of the
allocation is beneficial to irrigators, advance and consistent
information on the water allocated is important to them to
help better plan their irrigation season.

Instead of the currently used conservative low estimates
for inflow predictions, we propose using inflow predictions
from an ensemble seasonal streamflow forecast to inform
water allocation decisions. Inflow predictions are obtained
from the “Forecast Guided Stochastic Scenarios” (FoGSS),
an experimental 12-month ensemble streamflow forecasting
system using either historical rainfall sequences (ESP+, an
extension of the ensemble streamflow prediction – ESP –
approach) or the POAMA M2.4 seasonal climate forecast-
ing system as climate forcing. Of the two, predicting the
inflows using the POAMA datasets was found to have bet-
ter skill than using the ESP+ datasets, though both exhibit
seasonal bias. Applying the water allocation framework to

emulate decisions made for 28 years (from 1982 through to
2009) shows that the seasonal forecast ensemble helps im-
prove the decision process as the water expected to be avail-
able for the water year is better predicted when compared
to using the reference conservative forecast. However, over-
confidence in the seasonal forecast may lead to overconfi-
dence in the expected availability of water. This may result
in downward revisions of water allocation as the season pro-
gresses due to too high an allocation decision earlier in the
season. This is more evident for dry years than it is for wet
years, with downward revisions occurring more frequently
than is currently the case. In wet years the number of up-
ward revisions is reduced (compared to the reference water
allocation), with virtually no downward revisions. Using the
FoGSS seasonal forecast that is currently available would im-
ply a trade-off to be established between obtaining a better
estimate of the available water and the cost of an increased
number of downward revisions during the water year. Com-
parison of the FoGSS forecast based on POAMA and that
based on ESP+ shows the former to be marginally superior,
suggesting that further improvement of the seasonal forecast
would further help improve allocation decisions.

For both dry and wet years, the accuracy of the available
water estimates using the forecast ensemble improves pro-
gressively during the water year, with a particular improve-
ment some 1.5 months before the start of the cropping season
in November. This additional time is important to irrigated
farmers, as it allows them to better plan the cropping season
(November to February). Using the forecast ensemble thus
benefits water allocation decisions established by the basin
authority, allowing the final allocation to meet concessions
to be determined more accurately and earlier in the season,
resulting in a reduction of agricultural losses as a result of
climatic variability.
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