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Abstract. Remote sensing imagery can provide snapshots of
rapidly changing land surface variables, e.g. evapotranspira-
tion (ET), land surface temperature (Ts), net radiation (Rn),
soil moisture (θ ), and gross primary productivity (GPP), for
the time of sensor overpass. However, discontinuous data ac-
quisitions limit the applicability of remote sensing for water
resources and ecosystem management. Methods to interpo-
late between remote sensing snapshot data and to upscale
them from an instantaneous to a daily timescale are needed.
We developed a dynamic soil–vegetation–atmosphere trans-
fer model to interpolate land surface state variables that
change rapidly between remote sensing observations. The
“Soil–Vegetation, Energy, water, and CO2 traNsfer” (SVEN)
model, which combines the snapshot version of the re-
mote sensing Priestley–Taylor Jet Propulsion Laboratory
ET model and light use efficiency GPP models, now incor-
porates a dynamic component for the ground heat flux based
on the “force-restore” method and a water balance “bucket”
model to estimate θ and canopy wetness at a half-hourly
time step. A case study was conducted to demonstrate the
method using optical and thermal data from an unmanned
aerial system at a willow plantation flux site (Risoe, Den-
mark). Based on model parameter calibration with the snap-
shots of land surface variables at the time of flight, SVEN in-
terpolated UAS-based snapshots to continuous records of Ts,
Rn, θ , ET, and GPP for the 2016 growing season with forc-
ing from continuous climatic data and the normalized dif-
ference vegetation index (NDVI). Validation with eddy co-
variance and other in situ observations indicates that SVEN
can estimate daily land surface fluxes between remote sens-
ing acquisitions with normalized root mean square deviations
of the simulated daily Ts, Rn, θ , LE, and GPP of 11.77 %,
6.65 %, 19.53 %, 14.77 %, and 12.97 % respectively. In this

deciduous tree plantation, this study demonstrates that tem-
porally sparse optical and thermal remote sensing observa-
tions can be used to calibrate soil and vegetation parameters
of a simple land surface modelling scheme to estimate “low-
persistence” or rapidly changing land surface variables with
the use of few forcing variables. This approach can also be
applied with remotely-sensed data from other platforms to
fill temporal gaps, e.g. cloud-induced data gaps in satellite
observations.

1 Introduction

Continuous estimates of the coupled exchanges of energy,
water, and CO2 between the land surface and the atmo-
sphere are essential to understand ecohydrological processes
(Jung et al., 2011), to improve agricultural water manage-
ment (Fisher et al., 2017), and to inform policy decisions
for societal applications (Denis et al., 2017). Earth observa-
tion (EO) data have been increasingly used to estimate the
land surface–atmosphere flux exchanges at the time of sen-
sor overpass, particularly for regions with scarce ground ob-
servations. Optical and thermal remote sensing can provide
snapshots of these fluxes, such as soil moisture (θ ; Carlson
et al., 1995; Sandholt et al., 2002), evapotranspiration (ET;
Fisher et al., 2008; Mu et al., 2011), or gross primary pro-
ductivity (GPP; Running et al., 2004), using land surface re-
flectance or temperature. However, both optical and thermal
satellite observations present gaps during cloudy periods, and
these gaps may coincide with a time when such information
is needed (Westermann et al., 2011), for instance, the preva-
lence of cloudy weather during the crop growing season in
monsoonal regimes (García et al., 2013) and high-latitude re-
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gions (Wang et al., 2018a). Methods are needed to temporally
interpolate and upscale the instantaneous records into contin-
uous daily, monthly, or annual estimates (Alfieri et al., 2017;
Huang et al., 2016).

As one of the most exciting recent advances in near-
Earth observation, unmanned aerial systems (UASs) can
favourably fly at a low altitude (< 100–200 m) with flexi-
ble revisit times and low cost (Berni et al., 2009; McCabe
et al., 2017). Compared with satellites, UASs provide op-
portunities to acquire high temporal and spatial resolution
data under cloudy weather conditions to monitor and under-
stand the surface–atmosphere energy, water, and CO2 fluxes
(Vivoni et al., 2014). For instance, two-source energy bal-
ance models have been extensively applied with UAS ther-
mal imagery for mapping the spatial variability of ET in bar-
ley fields and vineyards (Hoffmann et al., 2016; Kustas et al.,
2018). Zarco-Tejada et al. (2013) applied UAS-based hyper-
spectral and solar-induced fluorescence techniques to infer
crop physiological and photosynthesis status in a vineyard.
Wang et al. (2018b) utilized the vegetation temperature tri-
angle approach with UAS thermal imagery, multispectral im-
agery, and a digital surface model to derive high spatial res-
olution information of root-zone soil moisture for a willow
bioenergy site. Wang et al. (2019a) demonstrated the abil-
ity of UAS multispectral and thermal imagery to map high
spatial resolution ecosystem water use efficiency for a wil-
low plantation. However, UAS observations still only pro-
vide snapshots of the land surface status at the time of the
flight, while conditions such as land surface temperature (Ts),
net radiation (Rn), θ , ET, and GPP remain unknown between
image acquisitions.

To continuously estimate land surface–atmosphere energy,
water, and CO2 fluxes, remote-sensing-based observations or
simulations require either statistical or process model-based
approaches to be interpolated into continuous records. A sta-
tistical approach is often used to interpolate these land sur-
face variables with high persistence, e.g. variables that do
not change rapidly and can be assumed to be static for sev-
eral days. For instance, to exclude cloud influence for proxies
of vegetation structure, e.g. vegetation indices (VIs), satellite
products use pixel composites to take the maximum VI val-
ues from a given period between 8 and 16 d. To fill the gaps
for this period, these 8 or 16 d maximum VI values can be
statistically interpolated into daily or sub-daily time series
data, as vegetation growth does not change significantly over
such a short period. However, the statistical method to in-
terpolate variables that change substantially at sub-daily or
daily timescales in response to the surface energy dynam-
ics, e.g. Ts, Rn, θ , ET, and GPP, could be challenging with
a low revisit frequency. For instance, Alfieri et al. (2017)
found that a return interval of EO observations of no less
than 5 d was necessary to statistically interpolate daily ET
with relative errors smaller than 20 %. To interpolate low-
persistence variables between remote sensing acquisitions, a
dynamic model-based interpolation approach considering the

dynamics of the land surface energy balance has great poten-
tial.

Ecosystem and land surface models, which can be used
to diagnose and predict ecosystem functioning in variable
climatic conditions, such as BIOME-BGC (Running and
Coughlan, 1988) and the Simple Biosphere Model 2 (SiB2;
Sellers et al., 1996), can be used to temporally interpolate
the land surface fluxes between EO snapshots with available
model drivers and parameter values. Djamai et al. (2016)
combined Soil Moisture Ocean Salinity (SMOS) disaggre-
gation, which is based on the Physical and Theoretical Scale
Change (DisPATCh) downscaling algorithm, with the Cana-
dian Land Surface Scheme (CLASS) to temporally interpo-
late θ at very high spatial and temporal resolutions. Mal-
béteau et al. (2018) used the ensemble Kalman filter ap-
proach to assimilate DisPATCh into a simple dynamic model
to temporally interpolate θ . Jin et al. (2018) temporally in-
terpolated Advanced Microwave Scanning Radiometer for
EOS (AMSR-E)-based θ estimates with the China Soil Mois-
ture Dataset (SCMD) from the microwave data assimilation
system. However, temporal interpolation using complex land
surface models requires large data inputs and complicated
parameterization schemes. In view of these challenges, sim-
ple model-based interpolation can be utilized to interpolate
snapshot remote sensing estimates of land surface variables.
For instance, using a one-dimensional heat transfer equa-
tion, Zhang et al. (2015) interpolated daily Ts on cloudy
days. Based on the surface energy balance (SEB), Huang
et al. (2014) proposed a generic framework with 2 to 12
parameters to temporally interpolate satellite-based instan-
taneous Ts to diurnal temperatures for clear-sky conditions
with mean absolute errors from 1.71 to 0.33 ◦C respectively.
However, model-based approaches to temporally interpolate
various land surface fluxes such as ET and GPP are rare.

This study aims at developing a simple but operational
land surface modelling scheme that simulates the land sur-
face energy balance and water and CO2 fluxes between the
land surface and the atmosphere. We aimed at using pre-
scribed vegetation dynamics from EO-based vegetation in-
dices, limited meteorological inputs, and parameters opti-
mized from remote-sensing-derived fluxes to estimate the
temporally continuous land surface variables. This scheme
can be used for various conditions, even in data-scarce re-
gions, by performing parameter calibration with snapshot
remote sensing estimates of Ts, θ , ET, or GPP at the time
of overpass. The Soil–Vegetation, Energy, water, and CO2
traNsfer (SVEN) model was developed to continuously es-
timate Ts, θ , GPP, and ET. The SVEN model is based on a
joint ET and GPP model, which combines a light use effi-
ciency GPP model and the Priestley–Taylor Jet Propulsion
Laboratory ET model (Wang et al., 2018a). This joint ET
and GPP diagnostic model can simulate canopy photosynthe-
sis, the evaporation of intercepted water, transpiration, and
soil evaporation with EO data as inputs. The model serves
as a part of the transient surface energy balance scheme
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(SVEN) which incorporates additional processes and interac-
tions between soil, vegetation, and the atmosphere, e.g. sur-
face energy balance, sensible heat flux, and θ dynamics, to
be able to simulate the land surface fluxes when EO data
are not available. Compared with most traditional land sur-
face models, which couple the processes of transpiration and
CO2 exchange through stomata behaviour and use a “bottom-
up” approach to upscale processes from the leaf scale to the
canopy scale (Choudhury and Monteith, 1988; Shuttleworth
and Wallace, 1985), SVEN uses a “top-down” approach to
directly simulate water and CO2 fluxes at the canopy scale.
SVEN estimates GPP and ET under potential or optimum
conditions; the potential values are then down-regulated by
the same biophysical constraints, reflecting multiple limita-
tions or stresses. These constraints can be derived from re-
mote sensing and atmospheric data (García et al., 2013; Mc-
Callum et al., 2009). In this way, SVEN avoids detailed de-
scriptions and parameterization of complex radiation trans-
fer processes at the leaf level and the scaling process to the
canopy level. It maintains a level of complexity comparable
to that of operational remote-sensing-based GPP and ET in-
stantaneous models while being able to predict the fluxes dur-
ing periods without EO data.

The main objective of this study was to demonstrate a
methodology to temporally interpolate sparse snapshot esti-
mates of land surface variables into daily time steps by rely-
ing on UAS observations. The specific objectives were (1) to
develop an operational “top-down” model to simulate rapidly
changing variables, e.g. Ts, Rn, θ , ET, and GPP, to interpo-
late between remote sensing snapshot estimates and (2) to
demonstrate the application of this model with UAS obser-
vations, calibrating the model with UAS snapshot estimates
and forcing it with meteorological data and statistically inter-
polated VI values.

2 Study site and data

2.1 Study site

This study was conducted at an eddy covariance flux site,
Risoe (DK-RCW), which is an 11 ha willow bioenergy plan-
tation adjacent to the DTU Risoe campus, Zealand, Denmark
(55.68◦ N, 12.11◦ E), as shown in Fig. 1. This site has a tem-
perate maritime climate with a mean annual temperature of
about 8.5 ◦C and precipitation of around 600 mm yr−1. The
soil texture of this site is loam. The stand consists of two
clones “Inger” and “Tordis”: Salix viminalis× Salix triandra
and Salix viminalis× Salix schwerinii respectively. In Febru-
ary of 2016, the aboveground parts were harvested following
the regular management cycle. Then willow trees grew to a
height of approximately 3.5 m during the 2016 growing sea-
son (May to October). Rapeseed (Brassica napus) was grown
in the nearby field. A grass bypass was located between the
willow plantation and the rapeseed field. An eddy covariance

observation system (DK-RCW) has been operated on this site
since 2012. Regular UAS flight campaigns with an onboard
multispectral camera (MCA, Multispectral Camera Array,
Tetracam, Chatsworth, CA, USA) and an onboard thermal in-
frared camera (FLIR Tau2 324, Wilsonville, OR, USA) were
conducted at this site during the 2016 growing season. For
more details, please refer to Wang et al. (2018b).

2.2 Data

In situ data used in this study include standard eddy co-
variance and micrometeorological observations, such as
GPP, ET, Rn, incoming longwave radiation (LWin), out-
going longwave radiation (LWout), incoming shortwave
radiation (SWin), air temperature (Ta), vapour pressure
deficit (VPD), and θ . These meteorological variables were
measured at the height of 10 m above the ground. Meanwhile,
the CO2 and water vapour eddy covariance system was ad-
justed to around 2 m above the maximum canopy height. The
eddy covariance data processing followed the same proce-
dures as in Pilegaard et al. (2011), Ibrom et al. (2007), and
Fratini et al. (2012), i.e. the standard ICOS (Integrated Car-
bon Observation System) processing method. The raw data
were aggregated into half-hourly records. The flux partition-
ing to separate GPP and respiration was done using the look-
up table approach (Reichstein et al., 2005) based on the REd-
dyProc R package (Wutzler et al., 2018) with the half-hourly
net ecosystem exchange, Ta, and SWin as inputs.

A UAS equipped with MCA and FLIR cameras was used
to collect the normalized difference vegetation index, NDVI,
and land surface temperature, Ts (Wang et al., 2019b). For
each flight campaign, a digital surface model (DSM), mul-
tispectral reflectance, and thermal infrared orthophotos were
generated. For details on the UAS, sensors, and image pro-
cessing, refer to Wang et al. (2018b). To continuously es-
timate the land surface fluxes from UAS, the collected
mean NDVI for the willow patch was temporally statisti-
cally interpolated into half-hourly continuous records using
the Catmull–Rom spline method (Catmull and Rom, 1974).
The interpolated NDVI was converted into the fraction of in-
tercepted photosynthetically active radiation (fIPAR), which
can also be assumed to be equal to the fraction of vegeta-
tion cover based on Fisher et al. (2008) (Fig. 2). The canopy
height hc was obtained from the DSM generated from RGB
images and was then statistically interpolated into the con-
tinuous half-hourly record based on in situ fIPAR. The UAS-
derived Ts and NDVI were used to estimate θ based on
the modified temperature–vegetation triangle approach, as
shown in Wang et al. (2018b). Values of the observed NDVI,
Ts, and the estimated θ from each UAS flight campaign are
shown in Table 1. The statistically interpolated NDVI and
hc were used as model inputs/forcing.

Due to technical issues, some UAS data from 24 June and
1 August were missing (Table 1), and in situ measurements
were used to represent these missing values. For instance, to
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Figure 1. Overview of the Risoe willow plantation eddy covariance flux site. The flux tower is the red triangle in the middle of the willow
plantation; the green dashed line shows the typical flight path of the UAS; green diamonds indicate the location of the understory photosyn-
thetically active radiation (PAR) sensors; the yellow star refers to the soil moisture sensor; the blue circle indicates the net radiometer field
of view. The wind rose refers to the wind direction and frequency in 2016. The base map is a multispectral pseudo-colour image collected on
1 August 2016 with 800, 670, and 530 nm as the red, green, and blue channels respectively.

Table 1. NDVI, surface temperature, and soil moisture information from the UAS and in situ data. ∗ indicates that no data were available
from the UAS due to technical issues; thus, in situ data were used to represent UAS snapshots. fIPAR is the fraction of intercepted PAR,
Ts is the land surface temperature (◦C), and θ is the volumetric soil moisture (m3 m−3). For the methods used for θ estimation and detailed
weather conditions, please refer to Wang et al. (2019b).

Date Acquisition Weather fIPAR fIPAR Ts Ts θ θ Growth stage
time (UTC+1) UAS obs UAS obs UAS obs

11 Apr 2016 11:13–11:26 Cloudy 0.22 0.03 14.98 15.95 0.27 0.28 Early growth
2 May 2016 14:40–14:55 Cloudy 0.22 0.03 18.29 19.13 0.27 0.30 Early growth
12 May 2016 10:44–11:55 Sunny 0.3 0.04 24.84 23.57 0.25 0.27 Early growth
25 May 2016 10:11–10:23 Sunny 0.43 0.20 28.08 28.31 0.26 0.26 Early growth
24 Jun 2016 12:00–12:30 Sunny 0.84∗ 0.84 26.60∗ 26.60 0.21∗ 0.21 Dense vegetation
1 Aug 2016 10:06–10:14 Cloudy 0.95 0.95 18.33∗ 18.33 0.20∗ 0.20 Dense vegetation
7 Oct 2016 11:41–11:55 Sunny 0.94 0.91 11.10 10.41 0.16 0.19 Dense vegetation

fill a prolonged gap in UAS observations in June of 2016 and
to simulate the growth process of willow trees, in situ ob-
servations were added to 24 June. For model calibration, the
instantaneous values of the Ts and θ estimated from the seven
UAS flights were used as reference. The seven UAS flights
resulted in an average flight frequency of 25 d for this grow-
ing season. The minimum revisit time was 10 d in the willow
early growth period between 2 and 12 May. The maximum
revisit time was 67 d between 1 August to 7 October when
the willow canopy was dense and stable.

3 Method

The SVEN model is an operational and parsimonious
remote-sensing-based land surface modelling scheme that
expands the capabilities of the remote sensing GPP and
Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) ET
model (Wang et al., 2018a) to be dynamic. It runs at half-
hourly time steps and can temporally interpolate the instan-
taneous land surface variables, such as Ts, Rn, θ , ET, and
GPP, into continuous records.
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Figure 2. (a) Daily precipitation (P , mm d−1), (b) daily air temperature (Ta, ◦), and (c) daily fraction of the intercepted PAR (fIPAR)
interpolated from UAS-based NDVI during the 2016 growing season.

3.1 Model description

SVEN consists of a surface energy balance module, a water
balance module, and a CO2 flux module. In the energy bal-
ance module, SVEN estimates the surface temperature and
ground heat flux, relying on the land surface energy bal-
ance equations and the “force-restore” method (Noilhan and
Mahfouf, 1996; Noilhan and Planton, 1989) to consider the
energy exchange between the ground and soil/vegetation on
the surface. The water balance module includes the PT-JPL
model for ET estimation and a simple “bucket” model repre-
senting the upper soil column to simulate soil water dynam-
ics and runoff generation. The CO2 flux module uses a light
use efficiency (LUE) model for GPP estimation, which is
connected to ET via the same canopy biophysical constraints.
Figure 3 shows the major processes simulated in SVEN. De-
tailed information on these three modules is outlined below.

3.1.1 Surface energy balance module

The instantaneous net radiation is estimated based on the
surface energy balance, as shown in Eq. (1). The surface
emissivity is approximated according to an empirical relation
with the NDVI, as seen in Eq. (2) (Van de Griend and Owe,
1993). The surface albedo (A) is estimated from the simple
ratio vegetation index (SR), and it shows that albedo gener-
ally decreases as vegetation greenness increases, as shown in

Eqs. (3) and (4) (Gao, 1995).

Rn = (1−A)SWin+ (1− ε)LWin− εσT
4

s (1)

ε =

{
0.986 (NDVI> 0.608)
1.0094+ 0.047 · ln(NDVI) (0.131< NDVI< 0.608)
0.914 (NDVI< 0.131)

(2)

A= 0.28− 0.14e(−6.08/SR2) (3)
SR= (1+NDVI)/(1−NDVI) (4)

Here, Rn is the instantaneous net radiation (W m−2),
SWin is the instantaneous incoming shortwave radia-
tion (W m−2), LWin is the instantaneous incoming longwave
radiation (W m−2), and σ is the Stefan–Boltzmann constant
(5.670367× 10−8 W m−2 K−4).

At the surface, Rn is dissipated as latent, sensible, and
ground heat fluxes, as shown in Eq. (5). The latent heat flux
is estimated from the PT-JPL ET model, and the sensible heat
flux (H ) is calculated based on the temperature gradient be-
tween the surface and air and a bulk aerodynamic resistance.
The instantaneous ground heat flux (G) is estimated from the
“force-restore” method (Noilhan and Planton, 1989).

dS
dt
= SWin−SWout+LWin−LWout−H − λE−G, (5)

where dS
dt is the heat storage change over time (W m−2),

SW is shortwave radiation (W m−2), LW is longwave ra-
diation (W m−2), the subscripts in and out refer to incom-
ing and outgoing respectively, λE represents the latent heat
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Figure 3. Major land surface processes simulated in SVEN. These processes include the land surface energy balance, water fluxes, and
CO2 assimilation. The abbreviations used in the figure are as follows: SWin – incoming shortwave radiation; SWout – outgoing shortwave
radiation; LWin – incoming longwave radiation; LWout – outgoing longwave radiation; Rn – net radiation; G – ground heat flux; Ts – the
surface temperature; Td – the deep soil temperature; H – sensible heat flux; P – precipitation; λE – latent heat flux; λEi – latent heat flux of
the intercepted water; λEc – latent heat flux of transpiration; λEs – latent heat flux of soil evaporation; CWS – canopy water storage; SWS
– soil water storage; Qinf – infiltration; Qd – drainage; Qs – surface runoff; GPP – gross primary productivity.

flux (W m−2), H refers to the sensible heat flux (W m−2),
and G is the ground heat flux (W m−2).

The surface temperature was estimated using the “force-
restore” method, which considers two opposite effects on
surface temperature variabilities, as shown in Eq. (6). The
first term (Rn− λE−H ) represents the forcing from the
surface–atmosphere interface. The second term (Ts− Td) is
the gradient between the surface temperature and the deep
soil temperature; it indicates the tendency of the deep soil
to restore Ts (responding to surface energy forcing) to the
Td value, which is more stable over time.

dTs

dt
= CT (Rn− λE−H)−Cd (Ts− Td) (6)

dTd

dt
= ω(Ts− Td) (7)

1
CT
=

1− fc

Csat

(
SWSmax

SWS

) b
2ln(10)

+
fc

Cveg
(8)

Cd = 2πω (9)

Here, Ts is the land surface temperature (◦C), Td refers to
the deep soil temperature (◦C) calculated by applying a low-
pass filter to Ts with a cut-off frequency of 24 h, ω is the fre-
quency of oscillation 1/24 (h−1), CT is a force-restore ther-

mal coefficient for the surface heat transfer (K m2 J−1) and is
influenced by the effective relative θ , Csat is the force-restore
thermal coefficient for saturated soil (K m2 J−1), the param-
eter b is the slope of the retention curve for the force-restore
thermal coefficient, Cveg is the force-restore thermal coeffi-
cient for vegetation (K m2 J−1), fc is the fractional cover of
vegetation and is assumed to be equal to fIPAR (as shown in
Table S1 in the Supplement; Fisher et al., 2008), SWSmax
is the maximum soil water storage (m), SWS is the actual
soil water storage (m), and Cd is diurnal periodicity based
on ω (h−1).

The sensible heat flux (H ) is estimated based on the tem-
perature gradient between the surface and air:

H = ρcp (Ts− Ta)/ra, (10)

where ρ is the air density (kg m−3), cp is the specific heat
capacity of air (J kg−1 K−1), Ts is the land surface tempera-
ture (◦C), Ta is the air temperature (◦C), and ra is the aerody-
namic resistance for heat transfer (s m−1).

Aerodynamic resistance to turbulent transport under neu-
tral conditions (raN) can be expressed as follows (Brutsaert,
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1982):

raN =
ln
(
z−d
zom

)
ln
(
z−d
zoh

)
k2u

(11)

d = 0.67hc (12)
zom = 0.1hc (13)

zoh =
zom

ekB
−1 , (14)

where hc is the canopy height (m), the parameter d is the
zero displacement height (m), z is the velocity reference
height (m), zom is the aerodynamic roughness length for mo-
mentum (m), zoh is the aerodynamic roughness length for the
heat transfer (m), u is the horizontal wind velocity at a refer-
ence height (m s−1), kB−1 is a parameter to account for the
difference between the aerodynamic and radiometric temper-
atures – a constant value of 2.3 is adopted in this study (Gar-
ratt and Hicks, 1973), and k is the von Karman constant (0.4).

The aerodynamic resistance is corrected for the atmo-
spheric stability as shown in Eq. (15) (Huning and Margulis,
2015), where9m is the stability correction factor for momen-
tum, and9h is the stability correction factor for sensible heat
flux. For unstable conditions (negative temperature gradient),
the stability correction factors are less than 1.0, and the cor-
rection reduces the resistance and enhances turbulence; for
stable conditions, they are greater than 1.0, and the correc-
tion increases the resistance and suppresses turbulence.

ra = raN9m9h (15)

When the atmospheric condition is unstable (RiB ≤ 0),
9m and 9h are estimated as follows:

9h =9
2
m = (1− 15RiB)

−1/2 (16)

When the atmospheric condition is stable (0≤ RiB < 0.2),
9m and 9h are estimated as follows:

9h =9m = (1− 5RiB)
−1 (17)

RiB =

(
g
Ts

)
∂Ts/∂z(
∂u
∂z

)2 (18)

Here, RiB is the bulk Richardson number, and g is the gravi-
tational acceleration.

3.1.2 Water balance module

The water balance module simulates the evaporation of inter-
cepted water, plant transpiration, soil evaporation, soil wa-
ter infiltration, and drainage. The evapotranspiration is es-
timated based on a modified PT-JPL ET model (Wang et
al., 2018a). The PT-JPL ET model has been demonstrated
to be one of best performing global remote sensing ET algo-
rithms (Chen et al., 2014; Ershadi et al., 2014; Miralles et al.,

2016; Vinukollu et al., 2011). Thus, it was selected for ET es-
timation. The PT-JPL model (Fisher et al., 2008) uses the
Priestley–Taylor (Priestley and Taylor, 1972) equation to cal-
culate the potential evapotranspiration and then incorporates
ecophysiological variables to down-regulate potential evapo-
transpiration to actual evapotranspiration. PT-JPL is a three-
source evapotranspiration model to simulate the respective
evaporation of intercepted water (Ei), transpiration (Ec), and
soil evaporation (Es) as follows:

λET= λE− i+ λEc+ λEs (19)
λEi = fwet ·α1/(1+ γ ) ·Rnc (20)
λEc = (1− fwet) · fg · fM · fTa ·αc1/(1+ γ ) ·Rnc (21)
λEs = fθ ·α1/(1+ γ ) · (Rns−G) (22)

Here, λET is the latent heat flux for total evapotranspira-
tion (W m−2), λEi is the latent heat flux due to the evapo-
ration of intercepted water (W m−2), λEc is the latent heat
flux due to transpiration (W m−2), and λEs is the latent heat
flux due to evaporation of soil water (W m−2). The quantity
fwet is the relative surface wetness to partition the evapotran-
spiration from the intercepted water and canopy transpira-
tion, fg is the green canopy fraction indicating the propor-
tion of active canopy, fM is the plant moisture constraint,
fTa is the plant temperature constraint reflecting the temper-
ature limitation of photosynthesis, and fθ is the θ constraint.
These constraints vary from zero to one to account for the rel-
ative reduction of potential λET under limiting environmen-
tal conditions. Rnc and Rns are the net radiation for canopy
and soil respectively. The partitioning of PAR and net radia-
tion between the canopy and soil is calculated following the
Beer–Lambert law (Table S1).G is the ground heat flux.1 is
the slope of the saturation vapour pressure versus the temper-
ature curve. γ is the psychrometric constant. α is an empiri-
cal ratio of potential evapotranspiration to equilibrium poten-
tial evapotranspiration (the Priestley–Taylor coefficient); the
suggested value for α is 1.26 in the PT-JPL model (Fisher et
al., 2008).

In the original model, fwet was estimated from air rel-
ative humidity (Fisher et al., 2008). In this study, fwet is
modified to be defined as a ratio between the actual canopy
water storage (CWS) and the maximum canopy water stor-
age (CWSmax), as shown in Eq. (23) (Noilhan and Plan-
ton, 1989). CWS is the amount of intercepted water, and
CWSmax is the maximum possible amount of intercepted
water (mm), which is taken as 0.2 LAI kg m−2 (Dickinson,
1984). fwet depends on both the precipitation rate and LAI,
which is more reasonable than only depending on air relative
humidity in the original model.

fwet =
CWS

CWSmax
(23)

In this study, we determined CWS using a prognostic equa-
tion (Eq. 24) with the constraint that CWS is smaller than
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CWSmax.

dCWS
dt
= fc ·P −Ei, (24)

where fc is the fraction of vegetation cover, which is as-
sumed to be equal to fIPAR in this study (Fisher et al., 2008).
P and Ei are the rainfall rates and the evaporation from the
intercepted water respectively (m s−1).

The effective precipitation rate is estimated as the residual
of the rainfall rate and the change in CWS:

Pe = P − dCWS (25)

To simulate the dynamics of water storage in the soil, SVEN
uses a simple bucket model. Here, the infiltration rate (Qinf)
is equal to the effective rainfall rate (Pe), when the soil water
is not saturated. Thus, SWS is calculated based on a prog-
nostic equation with the constraint that SWS is smaller than
SWSmax.

Qinf = Pe (26)
dSWS

dt
=Qinf−Ec−Es−Qd (27)

When the soil water is saturated, SWS is equal to SWSmax,
and surface runoff (Qs) occurs, as shown in Eq. (29).

Qinf = Ec+Es+Qd (28)
Qs = Pe−Qinf (29)

Here, SWS is soil water storage (m), and Pe, Ec, Es,Qd, and
Qs are the effective rainfall rates, transpiration rates, evap-
otranspiration rates from soil, drainage rates, and surface
runoff (m s−1) respectively.

Soil water drainage, which is leakage out of the lower
boundary of the flow domain (Romano et al., 2011), is com-
puted by assuming the condition of a unit gradient of the to-
tal hydraulic potential at the lowest boundary and using the
van Genuchten (1980) soil–water retention relationship:

Qd =Ks
√
θe

(
1−

(
1− θ1/(1−1/n)

e

)1−1/n
)2

(30)

θe =
θ − θr

θs− θr
, (31)

whereKs is the saturated hydraulic conductivity (m s−1), n is
the shape parameter of the van Genuchen (1980) soil–water
retention relationship and depends on the pore-size distribu-
tion, θ is the volumetric soil moisture (m3 m−3), θe is the ef-
fective soil moisture (m3 m−3), θs is the saturated soil mois-
ture (m3 m−3), and θr is the residual soil moisture (m3 m−3).

3.1.3 CO2 flux module

The photosynthesis in the CO2 flux module is calculated
from a modified light use efficiency (LUE) model (Wang et

al., 2018a) linked to the biophysical constraints for canopy
transpiration of the PT-JPL model. The LUE GPP model is
a robust and widely used method to estimate GPP across
various ecosystems and climate regimes (McCallum et al.,
2009). The LUE models, e.g. the Carnegie Ames Stanford
Approach model (CASA; Potter et al., 1993) or the MODIS
algorithm (Running et al., 2004), are based on the assump-
tion that plants optimize canopy LUE or whole canopy car-
bon gain per total PAR absorbed as originally suggested by
Monteith (1972) for net primary productivity. The formula of
the LUE GPP model used in this study is shown in Eq. (32),
and it is partly based on the CASA model (Potter et al., 1993)
with a modification to include an additional constraint ac-
counting for the fraction of the canopy that is photosynthet-
ically active (Fisher et al., 2008). Other constraints such as
thermal regulation (Wang et al., 2018a) reflect changes in the
LUE due to environmental factors and are the same for regu-
lating ETc (Eq. 21).

GPP= LUEmax ·PARc · fg · fM · fTa · fVPD, (32)

where LUEmax is the maximum LUE (g C MJ−1); PARc is
the daily photosynthetically active radiation (PAR)
(MJ m−2 d−1) intercepted by the canopy, and it is cal-
culated based on the extinction of PAR within the canopy
using the Beer–Lambert law (Table S1); fg is the green
canopy fraction indicating the proportion of active canopy;
fM is the plant moisture constraint; fTa is the air temper-
ature constraint reflecting the temperature limitation of
photosynthesis; and fVPD is the VPD constraint reflecting
the stomatal response to the atmospheric water saturation
deficit. All of these constraints range from zero and one and
represent the reduction in the maximum GPP under limiting
environmental conditions. For more details, please refer to
the Table S1.

3.2 Model implementation

The SVEN model requires shortwave incoming (SWin) ra-
diation, longwave incoming (LWin) radiation, air tempera-
ture (Ta), air pressure (Ps), relative humidity (RH), wind
speed (u), precipitation (P ), canopy height (z), and vegeta-
tion information (NDVI) as inputs (Table S2). The model in-
puts of this study were obtained from meteorological data,
UAS-derived observations, or estimates. The simulation out-
puts of this model are shown in Table S4. The initial con-
ditions for the model include an initial canopy water stor-
age (CWSin), an initial soil water storage (SWSin), ini-
tial surface temperature (Ts0 ), and initial deep soil temper-
ature (Td0 ), as shown in Table S3. The initial conditions
to run the model (11 April to 7 October 2016) were ob-
tained by performing spin-up simulations from 11 March
to 11 April 2016. The details of model implementation are
shown in Fig. 4.

The SVEN model has six parameters that are mostly re-
lated to physical soil properties for heat transfer and infiltra-
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Figure 4. Model implementation in this study. UAS and meteorological data were used as inputs for the SVEN model. Values of the SVEN
parameters were obtained from other studies, look-up tables (LUT based), or model calibration with UAS-derived variables (Cal. based).
In the model outputs, variables written in red (Ts and θ ) refer to the variables calibrated with UAS-derived observations or estimates. The
red shaded box represents the multi-objective calibration process with UAS-derived Ts and θ . The variables written in orange are retrievable
using remote sensing techniques.

tion (Table 2). The parameter values can be obtained using
multiple approaches, including look-up tables based on soil
texture, parameter values from similar biome or soil types
from other studies, field measurements, or model parame-
ter optimization with in situ measurements or remote sens-
ing data. This study used a combination of these approaches
to obtain model parameter values (Fig. 4). The parame-
ters, such as the maximum light use efficiency (LUEmax),
that were used to drive the snapshot version of SVEN were
obtained from a nearby similar deciduous temperate forest
ecosystem (Wang et al., 2018a). The shape parameter of the
van Genuchen (1980) soil–water retention relationship (n)
and the saturated hydraulic conductivity (Ks) were obtained
from a look-up table (Carsel and Parrish, 1988). The val-
ues for loamy soil shown in the Table S5 were used, and
they were based on the soil texture of this site. The rest
of the parameters related to the soil and vegetation physi-
cal properties (Csat, b, Cveg and SWSmax) were obtained by
calibrating models using instantaneous Ts and θ from seven
UAS flight campaigns (Table 1) rather than via calibration
with in situ measurements of ET or GPP (e.g. eddy covari-
ance data) as in other studies. Calibrating the model with the
remotely-sensed instantaneous estimates instead of ground
measurements facilitates the application of this approach in

data-scarce regions. The calibration of Csat, b, Cveg, and
SWSmax was conducted using the Monte Carlo optimization.
The parameter values were sampled 20 000 times with a uni-
form distribution and the corresponding parameter ranges (as
shown in Table 2). The objective function for optimization
is the root mean square deviation (RMSD) between the ob-
served and simulated values. With two objective functions
for Ts and θ respectively, the multiple objective optimization
method (Pareto front; as show in Yapo et al., 1998) was used
to identify the optimized parameter values.

3.3 Model assessment

We used independent eddy covariance data to validate model
outputs. However, due to the energy balance closure issue
(Wilson et al., 2002), the sum of sensible heat (H ) and la-
tent heat (LE) as measured by the eddy covariance method is
generally not equal to the available energy (net radiation mi-
nus ground heat flux, Rn−G). This study used the Bowen ra-
tio approach to correct energy balance closure errors of eddy
covariance data. Using the ratio of 30 min sensible heat to ET
(Bowen ratio),LE measurements can be corrected as follows
(Twine et al., 2000). LE data with a 30 min energy balance
closure error larger than 20 % were excluded from the vali-
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Table 2. Information on the model parameters of SVEN and their ranges for all soil or biome types.

Parameters Description Unit Range Reference Source for this
study

LUEmax Maximum light use efficiency (g C m−2 MJ−1) [0, 5] Wang et al. (2018a) Other studies

α Priestley–Taylor coefficient (–) [1, 3] Fisher et al. (2008) Other studies

Csat The force-restore thermal coefficient (10−6 K m2 J−1) [3, 15] Noilhan and Planton Model calibration
for saturated soil (1989)

b The slope of the retention curve for (–) [4.05, 11.4] Noilhan and Planton Model calibration
the force-restore thermal coefficient (1989)

Cveg The force-restore thermal coefficient (10−6 K m2 J−1) [1, 10] Calvet et al. (1998) Model calibration
for vegetated surface

SWSmax Maximum soil water storage (m) [0, 1] Boegh et al. (2009) Model calibration

Ks The saturated hydraulic conductivity (mm h−1) [0.05, 50.0× 103
] Dettmann et al. Look-up table

(2014)

n The shape parameter of the van (–) [1.01, 2.5] Dettmann et al. Look-up table
Genuchen (1980) soil–water retention (2014)
relationship

θs Saturated soil moisture (m3 m−3) [0.36, 0.46] Carsel and Parrish Look-up table
(1988)

θr Residual soil moisture (m3 m−3) [0.034, 0.100] Carsel and Parrish Look-up table
(1988)

dation.

LE =
Rn−G

H_EC_raw+LE_EC_raw
LE_EC_raw, (33)

where LE is corrected latent heat by assuming the constant
Bowen ratio (W m−2), Rn is net radiation (W m−2), G is
ground heat flux (W m−2), H_EC_raw is uncorrected sen-
sible heat (W m−2), and LE_EC_raw is uncorrected latent
heat (W m−2).

The SVEN model was developed to interpolate between
remote sensing data acquisitions and to produce continuous
daily records. Thus, the observed Ts, Rn, LE, and GPP are
from the eddy covariance system, and the in situ θ measure-
ments at a depth of 15 cm (sensor location in Fig. 1) were
used to validate the simulated variables at a daily timescale.
Statistics including the RMSD, the coefficient of determina-
tion (R2), relative errors (RE), the and normalized RMSD
(NRMSD – the ratio between RMSD and the range of obser-
vations) were used in validation.

We also analysed how the model skill changed depending
on vegetation cover and overcast (diffuse radiation) condi-
tions by looking at model residuals; this is due to the fact
that remote sensing models are typically biased to sunny con-
ditions. Scatterplots between model residuals and the NDVI
and the diffuse radiation fraction were examined. As the ra-
tio between the actual (SWin) and potential (SWin,pot) solar
radiation can be an indicator of the diffuse radiation frac-
tion (Wang et al., 2018a), we used this ratio to indicate the

diffuse radiation fraction. This analysis can help to under-
stand possible methods to improve the SVEN model. To
check the capability of the SVEN model to interpolate half-
hourly and monthly time series fluxes, the simulated land sur-
face variables were also validated at half-hourly and monthly
timescales, in addition to the daily timescale.

4 Results and discussion

4.1 Model parameter estimation

Figure 5 illustrates the results of model parameter calibra-
tion with UAS-derived snapshot θ and Ts (Table 1). With
RMSD values of θ and Ts as objective functions, a signifi-
cant trade-off between the performance of θ and Ts simula-
tions is observed as a Pareto front (the red curve) in Fig. 4.
The x axis shows the performance of simulating θ . The
smaller the RMSD values are, the better the model perfor-
mance with respect to this variable. The minimum, however,
lies in a range where the model performance of the other
variable, Ts, is highest (y axis). From the viewpoint of multi-
objective optimization, the solutions at the Pareto front are
equally good. By considering RMSD values of Ts that are
less than 2 ◦C and RMSD values of θ that are as small as pos-
sible, we selected the point close to the red arrow in Fig. 4,
which corresponds to the RMSD values of θ and Ts that are
equal to 2.99 % m3 m−3 and 1.92 ◦C respectively. The values
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Figure 5. Objective function values of the evaluated parameter
sets and the corresponding Pareto front. The x axis is the objec-
tive function for simulating θ ; the y axis is the objective function
for simulating Ts. Each dot corresponds to one simulation perfor-
mance. Each of the simulations represents a different combina-
tion of candidate parameter sets. The dot closest to the red arrow
was chosen to be the optimal parameter set for the SVEN con-
tinuous simulation. Csat, b, Cveg, and SWSmax at the Pareto-front
point are 6.94× 10−6 K m2 J−1, 5.20, 2.18× 10−6 K m2 J−1, and
5.54× 10−1 m respectively.

of Csat, b, Cveg, and SWSmax at this Pareto-front point are
equal to 6.94× 10−6 K m2 J−1, 5.20, 2.18× 10−6 K m2 J−1,
and 5.54× 10−1 m respectively. Furthermore, we also anal-
ysed the variability of optimized parameter values, as shown
in Fig. S1 in the Supplement.Cveg and SWSmax show low co-
efficients of variation (CVs), and this indicates the parsimony
of the SVEN model. Meanwhile, Csat and b show relatively
higher CVs. This may be due to equifinality between Csat
and b, which relate to soil thermal properties (Eq. 8) and
could compensate for each other. Notably, these calibrated
values, e.g. SWSmax, represents the equivalent calibrated pa-
rameter value and might be different from the actual physical
conditions.

4.2 Validation at the daily timescale

Figure 6 shows the time series data of the interpolated daily
Ts, Rn, θ , LE, and GPP as well as their validation. The sim-
ulated daily Ts, Rn, θ , LE, and GPP capture the observed
temporal dynamics of land surface variables at this site well.
R2 for daily Ts, Rn, θ , LE, and GPP are 0.90, 0.92, 0.50,
0.70, and 0.79 respectively. RMSD values for the simulated
daily Ts, Rn, θ , LE, and GPP are 2.35 ◦C, 14.49 W m−2,
1.98 % m3 m−3, 16.62 W m−2, and 3.01 g C m−2 d−1 respec-
tively. Such simulation accuracy demonstrates that SVEN is
capable of temporally interpolating the snapshot estimates
or observations between remote sensing acquisitions to form
continuous daily records.

For the simulated Ts, during the early growth stage (be-
fore June), the SVEN model quite accurately simulated the

temporal dynamics. However, during the dense vegetation
stage (high NDVI), the model generally tended to overes-
timate Ts. Similarly, SVEN underestimated Rn during the
early growth stage, but overestimated Rn for the dense veg-
etation stage. These biases can also be identified from the
boxplots of model residuals and NDVI (Fig. 7b), which show
that the model underestimates Rn under low NDVI condi-
tions and vice versa. One of the reasons for this error could be
the uncertainty in the estimated surface albedo. The albedo
in the SVEN model was determined by the simple empiri-
cal formula shown in Eq. (3), with a high value in the early
growth stage and a low value for dense vegetation. Another
possible source of errors is uncertainties in Cveg, which re-
flects the thermal storage property of vegetated surface in the
force-restore method. Cveg was obtained via model calibra-
tion with UAS-observed Ts. As shown in Fig. 2, only three
UAS data sets were available for the vegetated period. There-
fore, the insufficient model calibration may lead to uncertain-
ties in Cveg.

The estimated θ from SVEN achieved moderate perfor-
mance in terms of errors and correlation. The model underes-
timates θ when the NDVI is low, but it overestimates θ when
the NDVI is high, as shown in Fig. 7c. Such errors may be
due to the uncertainty in the model parameters related to θ .
As shown in Table S5, the effective parameter values of Ks
and n were taken as the mean values from the look-up table
without considering the ranges of variability (standard de-
viations in the table). In fact, only one parameter, SWSmax,
among the three parameters related to θ dynamics was cal-
ibrated with UAS estimates of θ in the root zone. To keep
the model simple and parsimonious, the SVEN model only
used one soil layer to simulate the dynamics of soil water
storage (Fig. 3). Similarly, the model also assumed that the
residual soil moisture is equal to the soil wilting points. In
the simulation of runoff generation, this simple model only
considered the dominant runoff process, the “Dunne” mech-
anism (runoff occurs after soil water saturation; Dunne and
Black, 1970) instead of the “Hortonian” mechanism (runoff
occurs when rainfall intensity exceeds the infiltration capac-
ity; Horton, 1933), for this humid and flat site. Such model
simplification could contribute to the relatively moderate per-
formance of simulating θ . Additionally, UAS-derived θ esti-
mates used for calibration have errors of around 13 % com-
pared with the direct measurements (Wang et al., 2018a),
which can induce uncertainties in the simulated time series
due to error propagation in the parameter calibration. Fur-
thermore, only seven snapshot estimates from the UAS were
used to calibrate the model with an average frequency of 25 d
during the period of fast growth. It can be expected that im-
proving the UAS-based estimates of θ , increasing the num-
ber of observations for model calibration, and adding more
complexity to the model structure will improve simulation
performance. For instance, when applying SVEN to other re-
gions, the “Dunne” or “Hortonian” mechanism needs to be
selected to simulate the surface water processes, according
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Figure 6. Simulated continuous daily land surface variables from 11 April to 7 October 2016 at the willow plantation: (a) land surface
temperature (Ts), (b) net radiation (Rn), (c) soil moisture(θ ), (d) latent heat flux (LE), and (e) gross primary productivity (GPP). The grey
shaded area indicates the time of acquired data for model calibration, and the blue and red curves represent simulations and observations
respectively.

to the soil, vegetation, and topographic conditions (Tauro et
al., 2016).

The results of the simulated LE and GPP are shown in
Fig. 6d and e respectively. In most cases, the simulation
shows the overestimation of LE, which closely relates to
the estimates of Rn and θ . The simulation underestimated
GPP, as the LUEmax parameter was assumed to be the same
as that from a nearby beech forest (Wang et al., 2018a).
Even though both sites are temperate deciduous forests, dif-
ferences still exist between the natural beech forest and the
willow forest bioenergy plantation. Notably, there is a sig-
nificant underestimation of the simulated GPP in June 2016,
as shown in Fig. 6e. Besides the possible uncertainties from
the LUEmax described above, the underestimation may also
result from the observation uncertainties in the partition-
ing of the GPP and respiration in the eddy covariance data
processing. In data processing, the night-time net ecosys-

tem exchanges were used to calculate the ecosystem respi-
ration. During the night-time, the eddy covariance footprint
extended well beyond the edges of the willow forest of inter-
est due to the stable atmospheric conditions. The tillage prac-
tices in the nearby rapeseed fields (Fig. 1) could contribute to
the overestimation of daytime ecosystem respiration which,
in turn, leads to the overestimation of the GPP in the eddy
covariance data processing.

To check the model simulation performance under cloudy
conditions, we analysed the relationship between the model
residuals and the ratio representing the diffuse radiation frac-
tion (Fig. 7f–j). There were no significant differences for the
residuals of the simulated Ts, Rn, θ , LE, and GPP under
low and high diffuse radiation fraction conditions. Due to the
ability of the UAS to acquire data under both cloud cover and
clear-sky conditions, the SVEN model was capable of inter-
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Figure 7. Boxplots of the residuals for the daily simulation. Panels (a–e) show the simulation residuals and NDVI. Panels (f–j) show simu-
lation residuals and the ratio of the actual (SWin) and potential (SWin,pot) solar radiation, which is an indicator of the cloudiness condition.
Panels (a) and (f) show the surface temperature (Ts); (b) and (g) show the net radiation (Rn); (c) and (h) show the soil moisture (θ ); (d)
and (i) show the latent heat flux (LE); and (e) and (j) show the gross primary productivity (GPP). The blue dashed lines refer to the zero
residuals.

Figure 8. Validation of the interpolated land surface variables at daily, half-hourly, and monthly timescales at the willow plantation: panels
(a–e) show the daily scale, (f–j) show the half-hourly scale, and (k–o) show the monthly scale. Panels (a), (f), and (k) show the surface
temperature (Ts); (b), (g), and (l) show the net radiation (Rn); (c), (h), and (m) show the soil moisture (θ ); (d), (i), and (m) show the latent
heat flux (LE); and (e), (j), and (o) show the gross primary productivity (GPP). The RE metrics for the half-hourly and monthly scales are
not shown, as they are the same as the RE at the daily scale.

polating land surface variables under cloud cover conditions
with a similar skill as under clear-sky conditions.

4.3 Validation at half-hourly and monthly timescales

Validation of the half-hourly and monthly Ts, Rn, θ , LE, and
GPP by the SVEN model is shown in Fig. 8. The sim-

ulated half-hourly Ts, Rn, θ , LE, and GPP captured the
temporal dynamics of land surface fluxes at this site.
RMSD values for half-hourly Ts, Rn, θ , LE, and GPP are
3.04 ◦C, 63.82 W m−2, 1.99 % m3 m−3, 56.37 W m−2, and
6.14 µmol C m−2 s−1 respectively. Compared with the simu-
lation performance at the daily timescale (as shown in Ta-
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ble 3), the half-hourly simulation has higher RMSDs and
lower R2 values. Such performance may be due to the fact
that parts of the SVEN modules are more suitable for daily-
scale simulation instead of half-hourly-scale simulation. For
instance, the simulation of LE in SVEN is based on the
Priestley–Taylor equation that was originally applied to es-
timate monthly LE (Fisher et al., 2008) and was extended
to be applied at daily steps (García et al., 2013); however,
it is not appropriate to represent LE processes at sub-daily
timescales.

Regarding the monthly timescale, RMSDs for Ts, Rn, θ ,
LE, and GPP are 2.10 ◦C, 10.96 W m−2, 1.86 % m3 m−3,
9.09 W m−2, and 1.82 g C m−2 d−1 respectively. The
monthly simulation has lower RMSDs and slightly
higher R2 values compared with the daily simulation. The
improvement of model performance from the half-hourly to
the daily and monthly timescales indicates that the model
errors can be reduced by aggregating the simulation outputs
to longer timescales. Such accuracy also implies that the
SVEN model has greater potential to temporally interpolate
remote sensing observations at daily and monthly timescales,
which are more relevant for applications in agriculture and
ecosystem management.

4.4 Potential applications and improvement of SVEN

This study showed SVEN as a tool to temporally interpo-
late land surface variables between remote sensing acquisi-
tions with few meteorological data. With respect to statis-
tical approaches, Alfieri et al. (2017) identified that a re-
turn interval of remote sensing observations should be no
less than 5 d to accurately interpolate daily ET with rela-
tive errors of less than 20 %. The results shown from our
model-based interpolation approach in the willow forest sug-
gest that the revisit time for remote sensing observations can
potentially be extended. For instance, seven instantaneous
observations/simulations of this study with an averaged re-
visit time of 25 d can accurately interpolate the daily ET
for 180 d. This comparison shows the benefits of using the
model-based approach to continuously estimate land surface
fluxes from remote-sensing-based snapshot observations or
estimates. The model-based approach can be used to estimate
ecosystem states and flux exchange with the atmosphere for
a landscape (e.g. crop fields) with temporally sparse UAS
flight campaigns. This approach has great potential for agri-
cultural ecosystem monitoring and management. The inter-
polated continuous record of land surface variables can also
further facilitate our understanding of the temporal dynamics
of land surface–atmosphere flux exchanges.

On the other hand, this study also provides ideas to uti-
lize remote sensing estimates or observations to improve land
surface modelling. Traditionally, the applicability of land
surface models is limited due to complex model parameteri-
zation and the limited availability of “ground truth” or in situ
data for parameter calibration. As shown in this study, one

solution for this limitation is using remote-sensing-based ob-
servations or estimates as “ground truth” for model calibra-
tion (Stisen et al., 2011; Zhang et al., 2009). This study cali-
brated the model parameters through remote sensing snap-
shot (UAS) estimates of land surface variables such as Ts
and θ and provided an example of integrating remote sensing
data and process-based models. Other variables such as Rn,
ET, and GPP, as shown in Fig. 4, could also be incorporated
for model calibration. Compared with complex land surface
models, this approach is simple and efficient and is espe-
cially suitable for operational applications to interpolate the
remote-sensing-based snapshot estimates into the temporally
continuous values.

Both the look-up table and parameter optimization ap-
proaches were used in this study to obtain the parameter val-
ues. For instance, we used a look-up table (Carsel and Par-
rish, 1988) to get values of n andKs. The advantage of using
the look-up table approach is that it can be easily applied
according to the site conditions, such as vegetation types,
soil texture and soil depth. However, this approach requires
prior knowledge of the site. Insufficient knowledge of the
site conditions may lead to the selection of unsuitable pa-
rameter values from the look-up tables. For instance,Ks may
vary in different soil layers, and it could be difficult to se-
lect an effective Ks value to represent the condition of all
of the soil layers. Regarding the optimization approach, this
method has the advantage of achieving good fitting perfor-
mance with UAS-derived observations or estimates. How-
ever, this approach needs to consider the number of observa-
tions and calibration parameters, parameter equifinality, and
multi-objective optimization (Her and Chaubey, 2015). For
instance, due to the limited number (14) of UAS-derived Ts
or θ values available for calibration, we only selected four
parameters (Csat, b, Cveg, and SWSmax), which are hard to
obtain from the look-up table approach with insufficient prior
knowledge of the site, for optimization. To deal with param-
eter equifinality and multi-objective optimization, the Monte
Carlo optimization was combined with the Pareto-front anal-
ysis in this study. Other approaches, e.g. Bayesian analysis,
could also be utilized to calibrate the model parameter with
multiple objectives and separate the uncertainty sources, in-
cluding input, parameters, and model structure, to quantify
the simulated uncertainties (Vrugt et al., 2009). Besides the
look-up table and optimization approaches, another promis-
ing approach is the estimation of soil or plant hydraulic prop-
erties from imaging spectroscopy (Goldshleger et al., 2012;
Nocita et al., 2015) or thermal imaging data (Jones, 2004).

This model-based interpolation approach can potentially
also be applied with spaceborne remote sensing measure-
ments to facilitate the temporally continuous estimation of
large-scale land surface fluxes. The combination of process-
based models and satellite observations (e.g. Sentinel or
MODIS land surface temperature and GPP products) can
reduce the need for in situ data for parameterizations. The
temporally continuous estimates of land surface fluxes from
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Table 3. Comparison of model simulation performance at half-hourly, daily, and monthly timescales.

Timescale Statistics Ts Rn θ LE GPP

Half-hourly
R2 0.83 0.89 0.49 0.78 0.77
RMSD 3.04 ◦C 63.82 W m−2 1.99 % m3 m−3 56.37 W m−2 6.14 µmol C m−2 s−1

NRMSD 9.63 % 8.41 % 19.15 % 10.49 % 7.57 %

Daily
R2 0.9 0.92 0.5 0.7 0.79
RMSD 2.35 ◦C 14.49 W m−2 1.98 % m3 m−3 16.62 W m−2 3.01 g C m−2 d−1

NRMSD 11.77 % 6.65 % 19.53 % 14.77 % 12.97 %

Monthly
R2 0.96 0.94 0.61 0.97 0.97
RMSD 2.1 ◦C 10.96 W m−2 1.86 % m3 m−3 9.09 W m−2 1.82 g C m−2 d−1

NRMSD 18.49 % 9.29 % 25.91 % 17.88 % 12.42 %

satellite data facilitate our understanding of the temporal up-
scaling from instantaneous estimates to the daily or longer
timescales to improve our knowledge of the coupled energy,
water, and carbon cycles at various temporal scales, partic-
ularly for data-scarce regions. However, there are also chal-
lenges and limitations regarding the widespread application
of the proposed model to other regions or with satellite EO
data. SVEN also requires further improvement in order to
enhance its ability regarding large-scale applications. For in-
stance, the current soil moisture module in the SVEN model
is a simple water balance model that considers one soil layer
and, therefore, has a limited capacity to simulate soil water
dynamics, particularly in regions with complex landforms.
In addition, the soil layer depth refers to the maximum root
water uptake depth, which can vary with time (Guderle and
Hildebrandt, 2015), but SVEN has simplified this soil depth
parameter to keep it consistent. Thus, in our study, SVEN
only achieved moderate performance regarding the simula-
tion of soil water dynamics, and it can be expected that soil
moisture simulation has a larger impact on the ET in water-
limited drylands than at our site. Nonetheless, SVEN soil
moisture estimates, relying on precipitation and water bal-
ance, should, in principle, be more accurate than those us-
ing thermal inertia (García et al., 2013), the original com-
plementary approach relying on VPD (Fisher et al., 2008) or
soil moisture proxies utilizing antecedent precipitation prox-
ies (Morillas et al., 2013; Zhang et al., 2010). Compared
with the Penman–Monteith approach, the Priestley–Taylor
approach may require adjustment of the aerodynamic term
when extending the study from radiation-controlled sites to
arid climates (Tadesse et al., 2018; Xiaoying and Erda, 2005).
When applying SVEN on the large scale, the model needs
to consider the sub-grid heterogeneity and identify the ef-
fective values of model parameters, e.g. soil saturated hy-
draulic conductance. A plant functional type and soil type pa-
rameterization scheme for different ecosystems and environ-
mental conditions would be needed. Furthermore, challenges
remain with respect to establishing the reliability of atmo-
spheric forcing such as radiation, precipitation, and wind

speed. Accurate gridded meteorological data from reanaly-
sis, remote sensing, or weather forecasting models will be
needed as forcing. Moreover, satellite-based observations or
estimates may have larger uncertainties due to their coarser
spatial resolution compared with UAS estimates. When ap-
plying SVEN with satellite data on the large scale, we also
need to evaluate the accuracy of satellite products and con-
sider the error propagation from remote sensing estimates to
the simulation outputs. In addition, satellite data in the opti-
cal and thermal ranges can only provide observations during
cloudless conditions. Satellite data-based model calibration
may lead to estimates that are biased toward sunny weather
conditions.

5 Conclusion

Continuous estimation of land surface variables, such as sur-
face temperature, net radiation, soil moisture, evapotranspi-
ration, and gross primary productivity at daily or monthly
timescales is important for hydrological and ecological ap-
plications. However, remotely-sensed observations are lim-
ited to direct estimates of the instantaneous status of land
surface variables at the time of data acquisitions. There-
fore, in order to continuously estimate land surface vari-
ables from remote sensing, this study developed a tool to
fill the temporal gaps in land surface fluxes between data
acquisitions and to interpolate instantaneous estimates into
continuous records. The tool is a dynamic soil–vegetation–
atmosphere transfer model, the Soil–Vegetation, Energy, wa-
ter, and CO2 traNsfer model (SVEN), which is a parsimo-
nious model to continuously simulate land surface variables
with meteorological forcing and vegetation indices as model
forcing. To interpolate the snapshot estimates from the UAS,
this study conducted a model parameter calibration to inte-
grate the SVEN model and the snapshot estimates of sur-
face temperature and soil moisture at the time of flight. Such
model–data integration provides an effective way to continu-
ously estimate land surface fluxes from remotely-sensed ob-
servations. A case study was conducted with seven tempo-
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rally sparse observations from UAS multispectral and ther-
mal sensors at a Danish willow bioenergy plantation (DK-
RCW) during the 2016 growing season (180 d). Satisfactory
results were achieved, with root mean square deviations for
the simulated daily land surface temperature, net radiation,
soil moisture, latent heat flux, and gross primary productivity
of 2.35 ◦C, 14.49 W m−2, 1.98 % m3 m−3, 16.62 W m−2, and
3.01 g C m−2 d−1 respectively. This model-based interpola-
tion method has potential not just with UAS but also with
remotely-sensed data from other platforms, e.g. satellite and
manned airborne systems, at a range of spatial and temporal
scales.
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