
Hydrol. Earth Syst. Sci., 24, 3311–3330, 2020
https://doi.org/10.5194/hess-24-3311-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Simulations of future changes in thermal structure of Lake Erken:
proof of concept for ISIMIP2b lake sector local simulation strategy
Ana I. Ayala1,2, Simone Moras1, and Donald C. Pierson1

1Limnology, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
2Nonlinearity and Climate Group, Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

Correspondence: Ana I. Ayala (isabel.ayala.zamora@ebc.uu.se)

Received: 28 June 2019 – Discussion started: 8 July 2019
Revised: 22 April 2020 – Accepted: 22 May 2020 – Published: 29 June 2020

Abstract. This paper, as a part of the Inter-Sectoral Im-
pact Model Intercomparison Project (ISIMIP2b), assesses
the impacts of different levels of global warming on the ther-
mal structure of Lake Erken (Sweden). The General Ocean
Turbulence Model (GOTM) one-dimensional hydrodynamic
model was used to simulate water temperature when using
ISIMIP2b bias-corrected climate model projections as input.
These projections have a daily time step, while lake model
simulations are often forced at hourly or shorter time steps.
Therefore, it was necessary to first test the ability of GOTM
to simulate Lake Erken water temperature using daily vs
hourly meteorological forcing data. In order to do this, three
data sets were used to force the model as follows: (1) hourly
measured data, (2) daily average data derived from the first
data set, and (3) synthetic hourly data created from the daily
data set using generalised regression artificial neural network
methods. This last data set is developed using a method that
could also be applied to the daily time step ISIMIP scenarios
to obtain hourly model input if needed. The lake model was
shown to accurately simulate Lake Erken water temperature
when forced with either daily or synthetic hourly data. Long-
term simulations forced with daily or synthetic hourly mete-
orological data suggest that by the late 21st century the lake
will undergo clear changes in thermal structure. For the rep-
resentative concentration pathway (RCP) scenario, namely
RCP2.6, surface water temperature was projected to increase
by 1.79 and 1.36 ◦C when the lake model was forced at daily
and hourly resolutions respectively, and for RCP6.0 these in-
creases were projected to be 3.08 and 2.31 ◦C. Changes in
lake stability were projected to increase, and the stratifica-
tion duration was projected to be longer by 13 and 11 d un-
der RCP2.6 scenario and 22 and 18 d under RCP6.0 scenario

for daily and hourly resolutions. Model changes in thermal
indices were very similar when using either the daily or syn-
thetic hourly forcing, suggesting that the original ISIMIP cli-
mate model projections at a daily time step can be sufficient
for the purpose of simulating lake water temperature.

1 Introduction

The thermal structure of lakes is controlled by heat and
energy exchange across the air–water interface, which is
in turn determined by meteorological forcing (Woolway et
al., 2017). Climate change will affect air–water energy ex-
changes and alter the temperature regime and mixing of lakes
(Woolway and Merchant, 2019). For example, increases in
air temperature result in a consequent warming of lake water
temperature (Sahoo et al., 2015) causing shorter ice-cover
periods (Kainz et al., 2017; Butcher et al., 2015), longer
stratified periods (Ficker et al., 2017; Woolway et al., 2017;
Magee and Wu, 2017), and increased lake stability (Rempfer
et al., 2010; Hadley et al., 2014). Decreasing wind speed
can induce more stable and long-lasting stratification and
increased epilimnetic temperature (Woolway et al., 2017,
2019).

The most direct effect of climate change on lakes is a
warming of the lake surface temperature. For example, global
average warming rates of 0.34 ◦C per decade have been ob-
served between 1985 and 2009 by O’Reilly et al. (2015).
Hypolimnetic temperature responds less clearly to warming
and has been observed to be warming, cooling or not chang-
ing significantly with increasing air temperature (Shimoda et
al., 2011; Butcher et al., 2015; Winslow et al., 2017). And,
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these changing water temperatures have also led to an in-
creased stability and duration of stratification (Butcher et al.,
2015; Kraemer et al., 2015). A final consequence of warm-
ing lake temperature is projected to be the shift in the mixing
regime (Kirillin, 2010; Shimoda et al., 2011; Shatwell et al.,
2019; Woolway and Merchant, 2019). For example, loss of
ice cover in deep lakes is likely to turn amictic lakes into
cold monomictic lakes and cold monomictic lakes into dim-
ictic lakes (Nõges et al., 2009). These changes in lake water
temperature and thermal stratification influence lake ecosys-
tem dynamics (MacKay et al., 2009).

Numerical modelling plays a key role in estimating the
sensitivity of the lakes to changes in the climate. One-
dimensional lake models are widely used due to their com-
putational efficiency and the realistic temperature profiles
they produce. Several studies have investigated the impacts
of climate change on lake water temperature under the re-
gional climatic model or global climatic model (RCM or
GCM) projections (Persson et al., 2005; Kirillin, 2010; Per-
roud and Goyette, 2010; Samal et al., 2012; Ladwig et al.,
2018; Shatwell et al., 2019; Woolway and Merchant, 2019).
Commonly, when undertaking climate change impact stud-
ies, hydrodynamic lake models are driven by daily resolu-
tion RCM or GCM outputs. Bruce et al. (2018) undertook
a comparative analysis of model performance, using daily
and hourly resolution meteorological forcing data, and found
a better agreement between observations and predictions of
full-profile temperature when the lakes were modelled using
hourly meteorological input. This reinforces the importance
of diurnal forcing on one-dimensional model predictive ca-
pability.

The purpose of this study is therefore (1) to test the ability
of a one-dimensional hydrodynamic model (General Ocean
Turbulence Model – GOTM) to simulate the water tempera-
ture of Lake Erken (Sweden) using daily vs hourly meteoro-
logical forcing data for the period 2006–2016; (2) to develop
a reliable method to disaggregate daily meteorological data
to an hourly synthetic product that can be used to force the
GOTM model and convert the daily GCM outputs available
from the ISIMIP into hourly meteorological data sets; and
(3) to assess the impacts on the thermal structure of Lake
Erken at different levels of global warming when GOTM is
driven by hourly and daily model projections. In fulfilling
these objectives, this study provides the first evaluation of
modelling methods that will be used by the lake sector within
the ISIMIP.

2 Material and Methods

2.1 Study site

Lake Erken (59◦51′ N, 18◦36′ E) is a mesotrophic lake lo-
cated in eastern central Sweden, with a maximum depth of
21 m, a mean depth of 9 m and a surface area of 23.7 km2.

The lake is dimictic with summer stratification usually begin-
ning in May–June and ending in August–September, while
the onset of ice cover occurs between December and Febru-
ary and ice loss is in April–May (Persson and Jones, 2008).
It is the lake’s relatively shallow depth and large surface area
which leads to large interannual variability in the timing and
patterns of thermal stratification since heat can be readily
transferred through the shallow water column by wind mix-
ing (Magee and Wu, 2017), and since the lake has a rela-
tively low heat storage and, therefore, responds more directly
to short-term variations in weather. The lake has a retention
time of approximately 7 years and shows annual variations in
water level that are less the 1 m (Pierson et al., 1992; Moras
et al., 2019).

2.2 Lake model

General Ocean Turbulence Model (GOTM) is a one-
dimensional water column model that simulates the most
important hydrodynamic and thermodynamics processes re-
lated to vertical mixing in natural waters (Umlauf and
Burchard, 2005). GOTM was developed by Burchard et
al. (1999) for modelling turbulence in the oceans, but it has
been recently adapted for use in hydrodynamic modelling of
lakes (Sachse et al., 2014). The strength of GOTM is the vast
number of well-tested turbulence models that have been im-
plemented, spanning from simple prescribed expressions for
the turbulent diffusivities to complex Reynolds stress mod-
els with several differential transport equations. Typically
GOTM is used as a stand-alone model for investigating the
dynamics of boundary layers in natural waters, but it can
also be coupled to a biogeochemical model using the Frame-
work for Aquatic Biogeochemical Models (FABM; Brugge-
man and Bolding, 2014).

2.3 Data sets

Local meteorological variables were collected either from a
small island 500 m offshore from the Erken Laboratory or
the Swedish Meteorological Hydrological Institute (SMHI)
Svanberga station just behind the laboratory. The Malma
Island meteorological station (59.83909◦ N, 18.629558◦ E)
measured air temperature at 2 m above water surface, wind
speed at 10 m above the water surface and short-wave radia-
tion. These data were measured at 1 min intervals and saved
as 60 min mean values. Mean sea level, pressure, relative hu-
midity and precipitation were measured at the Svanberga me-
teorological station at 800 m from the Malma Island meteoro-
logical station (59.8321◦ N, 18.6348◦ E) with a frequency of
60 min. Hourly cloud cover was recorded from Svenska Hö-
garna station (59.4445◦ N, 19.5059◦ E) at 69 km south-east
of Lake Erken.

The measured hourly meteorological data were used to
construct two additional data sets that would replicate the
data resolution that could potentially be used to force the
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GOTM model with ISIMIP scenarios. First, to test running
the model at a daily resolution, a daily data set was created
by averaging the hourly one (except for precipitation which
was summed). Second, this mean daily data set was disaggre-
gated to form a synthetic hourly data set. Hourly estimations
of air temperature, wind speed, relative humidity and short-
wave radiation were estimated using the generalised regres-
sion artificial neural network (GRNN) methods described be-
low. For atmospheric pressure and cloud cover, mean daily
values were assumed to be constant over the day. Precipita-
tion was disaggregated, assuming a uniform distribution of
the daily total (Waichler and Wigmosta, 2003).

Since both of these data sets are based on the same mea-
sured hourly data, a comparison of model simulations of lake
water temperature allows the importance of hourly vs daily
temporal resolution in the forcing data to be evaluated, and
also the improvements in model performance that can be ob-
tained from daily data (as in the ISIMIP scenarios) when im-
posing a diurnal cycle on the mean daily data.

Water temperature data needed to calibrate the model was
monitored from an automated floating station (59.84297◦ N,
18.635433◦ E). During ice-free conditions, measurements
were made every 0.5 m from 0.5 m to a depth of 15 m. Mea-
surements were made every minute, and a mean of these
measurements was stored every 30 min.

2.4 Climate scenarios

The ISIMIP climate scenarios are bias-corrected global cli-
mate model (GCM; Hempel et al., 2013) data made available
at daily temporal and 0.5◦ horizontal resolutions for the vari-
ables listed in Table 1. All data needed as input to the GOTM
model are available in these climate scenarios with the excep-
tion of cloud cover, which was estimated from short-wave ra-
diation (Martin and McCutcheon, 1999). Data from the grid
box overlying Lake Erken were available from the GFDL–
ESM2M, HadGEM2–ES, IPSL–CM5A–LR and MIROC5
GCM models that were each run under three emission sce-
narios. These included a scenario with historical levels of
atmospheric CO2 between 1861 and 2005 and two future
scenarios (RCP2.6 and RCP6.0) from 2006 to 2100. RCP2.6
is the strongest mitigation pathway that is expected to limit
mean global warming to between 1.5 and 2 ◦C. RCP6.0 is
an intermediate mitigation pathway where global warming is
projected to rise to between 2.5 and 4 ◦C by the end of the
century compared to the pre-industrial period (Frieler et al.,
2017).

2.5 Temporal disaggregation of daily meteorological
forcing data

Kathib and Elmernreich (2015) proposed a generalised re-
gression artificial neural network (GRNN) model for pre-
dicting hourly variations in short-wave radiation from daily
average measurements. Using the GRNN model to predict

Table 1. Bias-corrected variables in the ISIMIP data set.

Variable name Abbreviation Units

Precipitation pr kg m−2 s−1

Surface pressure ps Pa
Surface downwelling short-wave radiation rsds W m−2

Near-surface wind speed sfcWind m s−1

Near-surface air temperature tas K
Daily maximum near-surface air temperature tasmax K
Daily minimum near-surface air temperature tasmin K
Relative humidity hurs %

hourly solar radiation required 10 geographical and climatic
variables as input including hour, day, month, latitude, lon-
gitude, daily average short-wave radiation, daily precipita-
tion, the solar elevation associated with the hour, and time
of sunrise and sunset. Precipitation was used to define wet
and dry status that affected atmospheric attenuation (Waich-
ler and Wigmosta, 2003).

There are also empirical models developed for calculat-
ing hourly air temperature, wind speed and relative humid-
ity. Parton and Logan (1981) proposed a model for predict-
ing diurnal variations in air temperature. Daylight air tem-
perature was modelled using a sine wave with the minimum
value at sunrise, maximum value at solar noon and mean
value at sunset. Night-time air temperature was modelled as
a linear interpolation between air temperature of the previous
day and sunrise air temperature of the following day. Guo et
al. (2016) generated hourly values of wind speed by com-
puting a cosine function dependent on the mean daily wind
speed, the maximum daily wind speed and the hour of the
day when the wind speed is maximum. Waichler and Wig-
mosta (2003) estimated hourly values of relative humidity
from daily maximum and minimum air temperature and daily
maximum and minimum relative humidity. Using these stud-
ies as a guide, we developed GRNN models to predict hourly
air temperature, wind speed and relative humidity. The input
parameters for GRNN models were geographical variables
and meteorological variables. The geographical variables in-
clude longitude, latitude, solar elevation associated with the
hour, time of sunrise and sunset, hour, day and month, while
the meteorological variables include average, maximum and
minimum daily air temperature, daily wind speed, daily rel-
ative humidity, and daily precipitation.

The GRNN models were constructed using 8 years of data.
From this whole set of data, the first 5 years, from 2008 to
2012, were used for training, and the final 3 years of data,
from 2013 to 2015, were used for validating the results. The
accuracy of the trained network was assessed by comparing
the simulated output with actual observed hourly data. The
performance index for training and validating sets of GRNN
models is given in terms of mean bias error (MBE), root
mean squared error (RMSE) and Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970). More detailed descriptions
of the GRNN methods and models are given in Sect. S1 of
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the Supplement. The GRNN models were used to disaggre-
gate the mean daily measured data, used to evaluate the ne-
cessity of disaggregation (Sect. 3.2), and also for all GCM
scenarios (Sect. 3.3) to further evaluate the effects of disag-
gregation on the results of simulations of future changes in
lake thermal structure.

2.6 Model set-up, calibration and validation

The GOTM model version 5.1 was used in this study. The
meteorological parameters for running the model were air
temperature (◦C), wind speed (m s−1), short-wave radia-
tion (W m−2), cloud cover (dimensionless, 0–1), relative hu-
midity (%), atmospheric pressure (hPa), and precipitation
(mm d−1 or mm h−1). Inflows and outflows were not in-
cluded in this study, and water level was considered fixed
in the simulations. This version of GOTM did not have the
ability to simulate lake ice, so for this study the inverse strat-
ification period was not analysed. Moras et al. (2019) have
shown that, despite this limitation, the model is able to ac-
curately simulate water temperature and the phenology of
thermal stratification during the remainder of the year. The
initial conditions for water temperature were derived from a
measured vertical profile. GOTM was run at an hourly model
computational time step, and simulated water temperature
was saved as daily mean values each 0.5 m (42 layers).

Calibration of the GOTM model was conducted to adjust
the model parameters within their feasible range in order to
minimise the error between measured and modelled temper-
ature (Huang and Liu, 2010). A period of 9 years was se-
lected for the calibration of GOTM, namely 2006–2014 (in-
cluding 1 year spin-up time followed by 8 years for calibra-
tion). The model parameters that were calibrated were sur-
face heat flux factor (shf_factor), short-wave radiation factor
(swr_factor), wind factor (wind_factor), minimum turbulent
kinetic energy (k_min), and e-folding depth for visible frac-
tion of light (g2). The programme used to calibrate the model
was Auto-Calibration Python (ACPy), developed by Bolding
and Bruggeman (https://bolding-bruggeman.com/portfolio/
acpy/, last access: 12 June 2018); it uses a differential evo-
lution algorithm which calculates a log likelihood function
based on comparing the modelled and measured water tem-
perature (Storn and Price, 1997). The validation period was
2 years (2015–2016).

For both calibration and validation, daily average water
temperatures were simulated when GOTM was forced using
the three meteorological data sets described above, namely
measured average daily, measured average hourly and syn-
thetic hourly data. Model simulated profiles of mean daily
water temperature were then compared to mean daily mea-
sured water temperature. Three separate model calibrations
were made based on simulations forced with the different
meteorological data sets. During calibration the model was
run approximately 10 000 times to obtain a stable solution
specifying the optimal parameter set. The details of the feasi-

ble range of model parameters and the parameters associated
with each calibration are given in Table 2.

Model performance was evaluated by comparing aver-
age daily modelled and measured temperature profiles and
other metrics describing the lake thermal structure (sur-
face and bottom temperature, volumetrically weighted aver-
aged whole-lake temperature, Schmidt stability, thermocline
depth, duration, and onset and loss of thermal stratification).
The coefficients used to quantify the strength of model fit
were MBE, RMSE and NSE.

2.7 Thermal indices

A range of thermal metrics, namely surface temperature
(shallowest observation), bottom temperature (deepest obser-
vation) and thermocline depth (depth of the maximum den-
sity gradient), were derived on a daily basis from the daily
simulated lake temperature profiles (temperature data with
a vertical resolution of 0.5 m from 0.5 to 15 m depth). Also,
Schmidt stability (resistance to mechanical mixing due to the
potential energy inherent in the density stratification of the
water column; Schmidt, 1928; Idso, 1973) and whole-lake
temperature (volumetric weighted mean whole-lake temper-
ature) were estimated from these profiles using Lake Ana-
lyzer (Read et al., 2011). The duration of thermal stratifica-
tion was calculated as the longest continuous period when
the water column density difference from the bottom to the
surface of the lake was greater than 0.1 kg m−3 (according
to ISIMIP2b lake sector protocol). The date of the onset and
loss of the thermal stratification was defined as the first time
that this density difference persisted for more than 5 d or was
absent for at least 5 d (Kraemer et al., 2015).

2.8 Statistical analysis

Anomalies were calculated to further evaluate the impacts
on lake water temperature and thermal stratification. The
anomalies were computed for each GCM by taking the differ-
ence between the annual average of each year (2011–2100)
from RCP2.6 and 6.0 scenarios and the average for the en-
tire period 1981–2010 from the historical scenario. These
average values were calculated using the months between
April and September. The slope of the significant trends was
evaluated by least squares linear regression, except when
the residuals did not follow a normal distribution. Then the
non-parametric Mann–Kendall test for the significance of
trends and the Theil–Sen method (Theil, 1950; Sen, 1968)
to estimate the slope of the significant trends were used in-
stead. The Student t mean difference test was used to com-
pare average values of each of the thermal indices. Distribu-
tion normality and variance homoscedasticity were assessed
by the Shapiro–Wilk test and Fisher’s F test respectively.
When thermal indices time series did not follow a normal
distribution the non-parametric Mann–Whitney U test (equal
variances) or Kolmogorov–Smirnov test (different variances)
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Table 2. GOTM lake model parameters and calibrated values.

Model Feasible range Calibrated values

Parameter 24 h met 1 h met Synthetic 1 h met

Surface heat flux factor (shf_factor) 0.5–1.5 0.69 0.81 0.77
Short-wave radiation factor (swr_factor) 0.8–1.2 1.15 0.90 0.91
Wind factor (wind_factor) 0.5–2.0 1.55 1.37 1.51
Minimum turbulent kinetic energy (k_min) 1.4× 10−7–1.0× 10−5 1.47× 10−6 1.40× 10−6 1.29× 10−6

E-folding depth for visible fraction of light (g2) 0.5–3.5 1.99 2.30 1.62

were used instead. The statistical analysis was carried out
using R version 3.4.4. The progress of climate-related im-
pacts on the thermal stratification of the lake over the 21st
century was assessed as the difference in mean conditions
between the reference period (1981–2010) and both the mid-
century (2041–2070) and the late century (2071–2100). Cli-
mate model data followed the same statistical analysis.

3 Results

3.1 Hourly meteorological modelling

There was a close agreement between GRNN model predic-
tions and measured meteorological data as shown in Fig. 1,
for 1 year, and in Sect. S1. For air temperature, short-wave
radiation and humidity, the statistics of model performance
always suggested a strong model fit in the training data sets
and also remained strong, but somewhat lower, in the vali-
dation data sets (Table 3). NSEs were 1.00 for the training
data sets and ranged from 0.69 to 0.94 for the validation
data sets. Estimates of bias were very small. Wind speed was
the variable showing the poorest performance with a NSE
of 0.78 and 0.58 and RMSE values of 1.06 and 1.37 m s−1

for the training and validate data sets. In general, the GRNN
model tended to overestimate wind speed (MBE of 0.63±
0.92 m s−1) when the observed wind speed was lower than
or equal to 3.84 m s−1, whereas projected wind speed tended
to be underestimated (MBE of−0.78±1.17 m s−1) when the
observations were greater than 3.84 m s−1.

3.2 Lake model performance

Temperature observations and simulations for the three con-
figurations of meteorological forcing data for both calibra-
tion and validation periods are shown in Fig. 2 and Sect. S2.
Model performance metrics associated with these simula-
tions are provided in Table 4. These data demonstrate that
GOTM was able to accurately reproduce the measured tem-
perature profiles. For an average of all three calibration data
sets, a RMSE of 0.95 ◦C and NSE of 0.94 were obtained.
Temperature simulations in the shorter and less variable val-
idation period (RMSE of 0.66 ◦C and NSE of 0.97) were
more accurate than for the calibration period, but in both

Figure 1. GRNN temporal disaggregation of meteorological forcing
data. Observations vs simulations of (a) air temperature, (b) short-
wave radiation, (c) relative humidity, and (d) wind speed for 2015
(validation data set).

periods the model performance was considered strong. For
a full-profile temperature, the maximum RMSE value was
1.04 ◦C and the minimum NSE was 0.93. Bottom temper-
ature was least accurately simulated, with RMSE and NSE
values reaching 1.33 ◦C and 0.83 respectively.

When comparing the metrics of model fit associated with
simulations forced with the three different input data sets the
simulations forced with mean daily input were slightly less
accurate than those forced with either the measured or syn-
thetic hourly input. As an example, full-profile RMSE val-
ues for the calibration period ranged from 0.88 to 1.04 ◦C,
with the lower error levels associated with simulations driven
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Table 3. GRNN models’ performance evaluation.

MBE RMSE NSE

Training Validation Training Validation Training Validation

Air temperature (◦C) −1.70× 10−4
−0.06 0.26 0.32 1.00 0.94

Short-wave radiation (W m−2) 5.76× 10−4
−0.04 6.35 8.20 1.00 0.87

Relative humidity (%) −7.94× 10−4 0.34 0.79 1.02 1.00 0.69
Wind speed (m s−1) −5.67× 10−3

−0.01 1.06 1.37 0.78 0.58

Figure 2. GOTM water temperature simulations. Daily averaged water temperature in Lake Erken for the following calibration (1a–1d)
and validation (2a–2d) periods: observations (1a, 2a), simulations driven by daily meteorological data (1b, 2b), hourly meteorological
data (1c, 2c), and synthetic hourly meteorological data (1d, 2d).

by hourly meteorological data sets, whereas for the valida-
tion period the RMSEs were comparable for all data sets.
The MBE values of the full-profile temperatures indicated
a slight cold temperature bias (average MBE of −0.05 ◦C).
The model performance predicting just surface temperatures
was similar for all of the three calibrations (average RMSE of
0.67 ◦C and NSE of 0.97) and was more accurate than the es-
timations of the full-profile temperatures. The MBE showed
that for surface temperature GOTM also tended to produce
a small cold temperature bias (average MBE of −0.10 ◦C).
The simulations of bottom temperature were slightly less ac-
curate, having average RMSE of 0.96 ◦C and NSE of 0.90,
and also showed a tendency have a slightly higher RMSE val-
ues for calibrations forced with daily input. Also, the bottom

temperature showed lower RMSE values for the validation
period (average RMSE of 0.67 ◦C) than the calibration period
(average RMSE of 1.25 ◦C), but, in contrast to the surface
temperature, there was a slight warm temperature bias (av-
erage MBE of 0.06 ◦C). When evaluating the simulations of
volumetrically weighted averaged whole-lake temperatures,
we found that model errors were of a similar magnitude for
all simulations in both the calibration and validation periods
with an average RMSE of 0.53 ◦C and NSE of 0.98, tending
to a slight cold temperature bias (average MBE of−0.08 ◦C).

The calculation of Schmidt stability was also well simu-
lated using all three data sets (average RMSE of 17.24 J m−2

and NSE of 0.88). The lowest RMSE values were for the
validation period (average RMSE of 13.34 J m−2), whereas
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Table 4. GOTM lake model performance evaluation of MBE, RMSE, and NSE for full-profile temperature, surface temperature, bottom
temperature, volumetrically weighted averaged whole-lake temperatures, Schmidt stability, thermocline depth, duration, and onset and loss
of thermal stratification using simulated results from running GOTM driven by daily (24 h met), hourly (1 h met), and synthetic hourly
(synthetic 1 h met) meteorological data sets.

Calibration

MBE RMSE NSE

24 h met 1 h met Synthetic 24 h met 1 h met Synthetic 24 h met 1 h met Synthetic
1 h met 1 h met 1 h met

Full-profile temperature (◦C) −0.08 −0.02 −0.02 1.04 0.94 0.88 0.93 0.94 0.95
Surface temperature (◦C) −0.04 0.04 −0.01 0.69 0.72 0.61 0.97 0.97 0.98
Bottom temperature (◦C) −0.06 0.07 −0.11 1.33 1.24 1.16 0.83 0.85 0.87
Whole-lake temperature (◦C) −0.07 −0.03 −0.01 0.57 0.52 0.49 0.98 0.98 0.98
Schmidt stability (J m−2) 0.53 0.59 0.76 22.09 21.69 19.64 0.85 0.85 0.88
Thermocline depth (m) 0.58 0.84 0.43 2.77 3.07 2.84 0.32 0.22 0.32
Duration (d) 0.25 3.75 6.63 9.25 14.25 14.94 – – –
Onset (d) −0.63 −0.50 −0.13 1.54 1.12 1.17 – – –
Loss (d) −0.63 −2.00 −2.88 1.54 5.87 9.13 – – –

Validation

MBE RMSE NSE

24 h met 1 h met Synthetic 24 h met 1 h met Synthetic 24 h met 1 h met Synthetic
1 h met 1 h met 1 h met

Full-profile temperature (◦C) −0.07 −0.12 0.00 0.63 0.69 0.68 0.98 0.97 0.97
Surface temperature (◦C) −0.24 −0.19 −0.15 0.54 0.64 0.54 0.99 0.98 0.99
Bottom temperature (◦C) 0.16 0.09 0.23 0.68 0.59 0.74 0.96 0.97 0.95
Whole-lake temperature (◦C) −0.13 −0.17 −0.06 0.48 0.59 0.51 0.99 0.98 0.98
Schmidt stability (J m−2) −5.26 −3.26 −4.47 13.27 13.50 13.26 0.90 0.90 0.90
Thermocline depth (m) 0.89 1.07 0.98 2.86 3.27 3.18 0.07 −0.07 −0.14
Duration (d) −4.50 −3.50 −4.50 8.75 8.28 7.11 – – –
Onset (d) 0.50 −7.50 0.50 0.71 10.61 0.71 – – –
Loss (d) −4.00 13.00 −4.00 8.94 15.26 7.21 – – –

during the calibration period the values were slightly greater
(average RMSE of 21.14 J m−2). Thermocline depth was the
parameter with the poorest performance (average RMSE of
3 m). The MBE values (average MBE of 0.80 m) indicate a
bias towards an underprediction of thermocline depth (shal-
lower thermocline depths). The RMSE associated with the
prediction of the duration of stratification was, on average,
10.43 d, with lower RMSE values for the validation period
(average RMSE of 8.04 d) than the calibration period (av-
erage RMSE 12.81 d). The simulations of the onset of the
stratification were more accurate, having average RMSE of
2.64 d, but, in contrast, predictions of the loss of stratification
were less accurate (average RMSE of 7.99 d).

3.3 Climate data projections

The lake model simulations undertaken here were forced
by four climate model projections (GFDL–ESM2M,
HadGEM2–ES, IPSL–CM5A–LR and MIROC5) that were
in turn forced with three emissions scenarios (historical,
RCP2.6 and RCP6.0). Average annual air temperature of

the climate model ensemble for the reference period (1981–
2010) was 11.88 ◦C. Disaggregation of the climate input to
an hourly time step resulted in a slightly warmer tempera-
ture (12.05 ◦C)1. Under future-scenario RCP2.6, the average
increase was projected to be 2.22 ◦C (1.71 ◦C) by the mid-
century (2041–2070), with a negligible change after the mid-
century, as would be expected from this scenario with the
strongest mitigation. During the period 2011–2100, air tem-
perature increased at a rate from 0.08 to 0.17 ◦C per decade
(0.06 to 0.14 ◦C per decade). In contrast, under RCP6.0, the
average air temperature increased by 2.61 ◦C (2.01 ◦C) by
the mid-century and continued rising to 3.61 ◦C (2.76 ◦C)
by the late century. For RCP6.0 the trend in air temperature
increased over the entire 2011–2100 period, on average, by
0.34 ◦C per decade (0.26 ◦C per decade) over all GCMs, with
the individual trends ranging from 0.18 to 0.43 ◦C per decade
(0.14 to 0.33 ◦C per decade). For the remaining meteoro-
logical variables there were fewer distinct changes between

1Results based on the hourly disaggregated data are always
shown in parenthesis.
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the historical and future periods. Under the RCP2.6 scenario
the overall annual mean change in wind speed was negligi-
ble, while under RCP6.0 two options were projected, namely
an increase (GFDL–ESM2M and MIROC5) and a decrease
(HadGEM2–ES and IPSL–CM5A–LR). Relative humidity
was projected to decrease for future-scenario RCP2.6 and
6.0. For RCP6.0, significant trends ranged from 0.29 % to
0.36 % per decade in the interval 2011–2100. An increase in
short-wave radiation was projected for all RCP scenarios by
the late century, with a negligible mean change after the mid-
century under RCP6.0. The increase in short-wave radiation
is coupled with a decrease in cloud cover. By the late cen-
tury, the mean decrease in cloud cover was projected to be
0.06 for RCP2.6 and 0.07 for RCP6.0. More detailed evalua-
tions of the differences in the climate projection based on the
original ISIMIP daily time step and the hourly disaggregated
data are given in Sect. S3.

3.4 Long-term modelled changes in thermal
stratification

Lake model simulations were made using both the original
daily resolution of the ISIMIP–GCM scenarios and also at
hourly resolution using disaggregated data developed using
the GRNN models. Simulated water temperatures for the his-
torical, RCP2.6 and 6.0 scenarios under daily IPSL–CM5A–
LR projections are presented as temperature isopleths in
Fig. 3 and Sect. S4. These were created by averaging the
daily temperature profiles for all years associated with each
of the emission scenarios. These mean scenario tempera-
ture isopleths provide a clear visualisation of how, for future
scenarios, surface and bottom water temperatures are pro-
jected to increase with stronger and shallower stratification,
an earlier stratification onset, a later fall overturn and, conse-
quently, a longer stratification period.

In Figs. 4–5 we show the long-term trends in the anoma-
lies in lake thermal metrics simulated to occur over the
RCP2.6 and 6.0 emission scenarios. Trends in whole-lake
temperature calculated for over a period of 90 years (2011–
2100) were projected to increase except in the case of
GFDL–ESM2M, which showed weaker or non-significant
changes for all measures of thermal stratification (Table 5
and Sect. S4). Under RCP2.6, significant trends ranged from
0.07 to 0.10 ◦C per decade (0.05 to 0.08 ◦C per decade), but
most of the change occurred in the first half of the century.
For RCP6.0, the projected rate of change ranged from 0.14 to
0.26 ◦C per decade (0.10 to 0.19 ◦C per decade). By the late
century, the mean projected increase in whole-lake tempera-
ture was 1.34 ◦C (1.00 ◦C) for RCP2.6 and 2.39 ◦C (1.75 ◦C)
for RCP6.0, with a negligible change after the mid-century
under RCP2.6 (Fig. 6, Table 6 and Sect. S4).

Changes in lake surface temperature were, as expected,
greater than for whole-lake temperature. For the reference
period, the mean April–September surface temperature was
on average 13.61 ◦C (13.84 ◦C) warming up significantly

over the 21st century, so that by the late century the aver-
age projected increase was 1.79 ◦C (1.35 ◦C) for RCP2.6 and
3.08 ◦C (2.31 ◦C) for RCP6.0. From 2011 to 2100 there was a
significant long-term trend for RCP2.6 surface temperature,
which increased at a rate from 0.07 to 0.15 ◦C per decade
(0.06 to 0.13 ◦C per decade). Under RCP6.0 the mean surface
temperature increase of the ensemble was 0.30 ◦C per decade
(0.23 ◦C per decade) ranging between 0.16 and 0.38 ◦C per
decade (0.12 to 0.29 ◦C per decade). The projected increase
in bottom temperature was not as marked as it was for the
other metrics of lake temperature. On average, the bottom
temperature increased from 9.20 ◦C (9.67 ◦C) in the refer-
ence period to 9.77 ◦C (9.99 ◦C) and 10.32 ◦C (10.34 ◦C) by
the late century for RCP2.6 and 6.0 respectively. Significant
rates of change in bottom temperature were not predicted
during the RCP2.6 scenario, but for the RCP6.0 scenario bot-
tom temperature did undergo significant warming rates for
HadGEM2–ES and MIROC5 projections were 0.06 ◦C per
decade and 0.11 ◦C per decade (0.09 ◦C per decade) respec-
tively.

There were also projected changes in the resistance to
mechanical mixing. For the reference period, an average of
68.65 J m−2 (65.56 J m−2) was required to completely mix
the water column, while by the late century it increased
by 29.08 J m−2 (22.74 J m−2) for RCP2.6 and 49.22 J m−2

(38.07 J m−2) for RCP6.0 (Fig. 4, Table 6 and Sect. S4). This
greater stability also corresponds to a longer duration of strat-
ification. From 2011 to 2100, a significant increase in the
duration stratification was projected for both future scenar-
ios RCP2.6 and 6.0, ranging from 1.13 to 1.70 d per decade
(0.87 to 1.30 d per decade) for RCP2.6 and 2.45 to 3.56 d
per decade (2.00 to 3.08 d per decade) for RCP6.0 (Fig. 5,
Table 5 and Sect. S4), which led to a mean change of 13 d
(11 d) and 22 d (18 d) for RCP2.6 and 6.0 respectively (Fig. 7,
Table 6 and Sect. S4). The longer period of stratification re-
sulted from both an earlier onset of thermal stratification and
a later loss of thermal stratification (Figs. 5 and 7, Tables 5–
6 and Sect. S4). Mean annual thermocline depth was simu-
lated to be shallower under future conditions. By the late cen-
tury, the reduction in thermocline depth was projected to be
0.38 m (0.41 m) for RCP2.6 and 0.49 m (0.57 m) for RCP6.0,
although a significant trend in the decline was only found for
the later scenario.

The trends in Figs. 4–5 are quite variable from year to year,
and as would be expected, there is no direct correspondence
in the temporal variations of one GCM relative to another.
To provide an alternative method of comparing the changes
simulated by the future climate scenarios shown in Figs. 4–
5, the daily anomalies for each trend line are also presented
as frequency distributions in the Figs. 6–7 for the simula-
tions made under the RPC6.0 scenario. These show that for
all metrics there is a clear shift in the lake thermal conditions
that are consistent with a warmer climate, but also that there
are extremes in the distributions that can lead to unrepresen-
tative results when, for example, future conditions briefly re-
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Figure 3. Temperature isopleth diagrams for the (a) historical, (b) RCP2.6, and (c) RCP6.0 scenarios and showing results from the lake model
forced with daily IPSL–CM5A–LR projections. The temperature matrix used to make these plots was created by averaging the simulated
daily temperature profiles for every year in each scenario.

turn to historical levels, or when the effects of warming are
much greater that would be expected on average. This later
case can cause important changes in lake ecology if the ex-
treme conditions result in a change in lake state by the pass-
ing of a tipping point. Figures 6–7 also clearly show the dif-
ferences in simulations forced by different GCMs. Most ob-
vious is the difference in the results from GFDL–ESM2M,
which consistently simulated smaller changes in lake ther-
mal structure during the mid- and late-century periods de-
spite having a data distribution that was similar to the other
models during the historical period.

3.5 Comparison between long-term thermal metrics
derived from daily and hourly climate data

Future changes in thermal metrics based on both RCP2.6 and
RCP6.0 were slightly greater when the GOTM model was
forced at daily resolutions (Tables 5–6 and Sect. S4) than at
an hourly resolution. This included changes in mean surface
temperatures and also in the annual average whole-lake tem-
perature (Sect. S5). However, under RCP2.6 non-significant

differences were found for bottom temperature, Schmidt sta-
bility, thermocline depth, the duration, and onset and loss of
stratification. In all cases where differences were found be-
tween the simulations forced with daily vs hourly data there
were no changes in direction and only minor changes in
the magnitude of the change suggested by the simulations
(Sects. S4–S5).

4 Discussion

The simulated water temperature and related metrics of ther-
mal stratification were in excellent agreement with the ex-
tensive set of measured water temperature data that were
available for model calibration at Lake Erken (Moras et al.,
2019; Fig. 3; Table 3). Water temperature simulations were
apparently more accurate for the validation period (2015–
2016) than for the calibration period (2006–2014), which
may appear unusual, but this is due to the higher variabil-
ity in observed water temperature during the longer cali-
bration period. Years with a longer duration of stratification
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Figure 4. Evolution of annual average projected anomalies (from April to September) for (1a, 2a) whole-lake temperature, (1b, 2b) surface
temperature, (1c, 2c) bottom temperature, (1d, 2d) Schmidt stability, and (1e, 2e) thermocline depth and showing results from when the
lake model was forced with daily GFDL–ESM2M, HadGEM2–ES, IPSL–CM5A–LR, and MIROC5 projections from 2011 to 2100 under
RCP2.6 and 6.0. Anomalies are relative to the reference period (1981–2010).

and stronger stability, generally had higher simulation errors.
Half of the 8-year calibration period exhibited these condi-
tions, while the 2 years used for validation both exhibited
shorter duration of stratification and weaker stability. The
thermocline depth was the thermal metric that was predicted
with the greatest uncertainty. This is in part caused by the
presence of internal seiches in Lake Erken, which result in
the measured temperatures in the region of the thermocline
having a level of variability that cannot be reproduced by
one-dimensional models such as GOTM. Bruce et al. (2018)
detected a strong correlation between the accuracy of the ex-
tinction coefficient and model simulations of full-profile tem-
perature and thermocline depth, which shows the importance
of light extinction in the prediction of thermocline depth.
Since a single fixed value of e-folding depth (Table 2) for
the visible fraction of the light (the inverse of the extinction
coefficient) was used in the GOTM simulations, the effects of
seasonal variations in light extinction (Perroud et al., 2009)
on thermocline depth were not evaluated.

The model parameters adjusted during the calibration
processes were non-dimensional scaling factors (shf_factor,
swr_factor and wind_factor) and physical parameters which
strongly influence the vertical distribution of light and tem-
perature (k_min and g2). Wind is the dominant driver of
mixing in lakes, and increases or decreases in wind speed
(wind_factor) change the amount of turbulent kinetic energy
available for mixing. The wind-scaling factor is often im-
portant when wind measurements occur some distance from
the lake and/or accounts for wind-sheltering effects (Mark-
fort et al., 2010). One would not expect the wind factor
to deviate greatly from 1.0 at Lake Erken where wind is
measured on an island in the lake. However, the dominant
wind direction is along the lake’s longest east–west fetch
(Yang et al., 2016), which could explain the need to scale
up the unidirectional wind speed measurements that were
used as an input to GOTM. Furthermore, since it is the
cube of wind speed that affects lake mixing, using longer
averaging periods will underestimate the effects of gust-
ing and variable winds. This could explain why we obtain
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Figure 5. Evolution of annual average projected anomalies (from April to September) for (1a, 2a) duration and (1b, 2b) onset and (1c, 2c) loss
of stratification and showing results from when the lake model was forced with daily GFDL–ESM2M, HadGEM2–ES, IPSL–CM5A–LR,
and MIROC5 projections from 2011 to 2100 under RCP2.6 and 6.0. Anomalies are relative to the reference period (1981–2010).

higher calibrated values of the wind_factor when forcing
the model with measured daily, rather than hourly, data (Ta-
ble 2). Higher values of the wind_factor were also obtained
when GOTM was forcing with synthetic hourly meteorolog-
ical drivers. This is due to an underestimation of the faster
wind speed predictions from the GRNN model (Fig. 1 and
Sect. S1.). During the ACPy calibration, each of these pa-
rameters were calibrated while simultaneously influencing
each other; shf_factor, swr_factor, wind_factor and g2 have
a strong influence on heat and energy exchange across the
air–water interface. There is to some extent an unavoidable
tendency for the error in one parameter to be cancelled out
by opposite errors in another parameter. This also illustrates
how, to some extent, the calibration process can compensate
for some of the limitations related to the temporal resolution
of the model forcing data.

The performance of the GOTM model obtained in this
study is comparable with results reported by others. Moras
et al. (2019), who ran GOTM using hourly measured me-
teorology for a 57-year period, obtained a RMSE for daily
full-profile water temperature of 1.09 ◦C. Using the DY-
namic REservoir Simulation Model (DYRESM), Magee and
Wu (2017) reported RMSE values of 0.30 and 0.53 ◦C for
Lake Mendota and 1.45 and 1.94 ◦C for Fish Lake for tem-
perature estimates of the epilimnion and hypolimnion re-
spectively. Perroud et al. (2009) simulated water temperature
profiles of Lake Geneva over a 10-year period and obtained

RMSE values of < 2 ◦C for the DYRESM model and < 3 ◦C
for the Simstrat model.

The projected changes in lake thermal metrics depend on
the selected GCM model and the future scenario or repre-
sentative concentration pathway (RCP) that was simulated.
The range of greenhouse gas (GHG) emissions included in
this study was a stringent mitigation scenario (RCP2.6) and
an intermediate scenario (RCP6.0). This is consistent with
the ISIMIP2b simulation strategy that is intended to eval-
uate RCP2.6 as a scenario that aims to keep global warm-
ing below 2 ◦C above pre-industrial temperatures by 2100.
In contrast, for RCP6.0 increased levels of GHG emissions
suggest that the global mean temperature will continually in-
crease by 2.5 and 4 ◦C by the end of the century. The effects
of the mitigation measures that were adopted in RCP2.6 on
lake thermal structure become most apparent in the late cen-
tury. For example, for MIROC5 (when the lake model was
forced at daily resolutions) the projected surface temperature
change for the mid-century was similar for the two RCPs
(2.10 ◦C for RCP2.6 and 1.98 ◦C for RCP6.0), but for the
late-century period the projected change in surface tempera-
ture diverges among RCPs. Under RCP2.6 the surface tem-
perature change declines from 2.10 to 1.80 ◦C, while under
RCP6.0 the change in surface temperature was projected to
further increase from 1.98 to 2.97 ◦C. Similar changes were
projected for all thermal metrics. Under RCP6.0 there was
also an increase in bottom temperature but at rates that were
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Table 5. Trend analysis from 2011–2100 for surface temperature, bottom temperature, whole-lake temperature, Schmidt stability, thermocline
depth, duration, and onset an d loss of stratification (ns: not significant) for RCP6.0. Italics denote trends with p-value > 0.05.

RCP6.0

24 h met Synthetic 1 h met

Rate (per p-value Rate (per p-value
decade) decade)

Surface temperature (◦C) GFDL–ESM2M 0.16 < 0.001 0.12 < 0.001
HadGEM2–ES 0.38 < 0.001 0.27 < 0.001
IPSL–CM5A–LR 0.38 < 0.001 0.29 < 0.001
MIROC5 0.29 < 0.001 0.22 < 0.001

Bottom temperature (◦C) GFDL–ESM2M ns ns
HadGEM2–ES 0.06 < 0.05 ns
IPSL–CM5A–LR ns ns
MIROC5 0.11 < 0.001 0.09 < 0.01

Whole-lake temperature (◦C) GFDL–ESM2M 0.14 < 0.001 0.10 < 0.001
HadGEM2–ES 0.25 < 0.001 0.16 < 0.001
IPSL–CM5A–LR 0.26 < 0.001 0.19 < 0.001
MIROC5 0.23 < 0.001 0.18 < 0.001

Schmidt stability (J m−2) GFDL–ESM2M 2.69 < 0.01 1.92 < 0.01
HadGEM2–ES 7.97 < 0.001 6.50 < 0.001
IPSL–CM5A–LR 8.15 < 0.001 6.36 < 0.001
MIROC5 4.23 < 0.01 2.93 < 0.01

Thermocline depth (m) GFDL–ESM2M 0.07 < 0.05 ns
HadGEM2–ES 0.13 < 0.001 0.13 < 0.001
IPSL–CM5A–LR 0.05 0.06 0.09 < 0.01
MIROC5 ns ns

Duration (d) GFDL–ESM2M ns ns
HadGEM2–ES 3.56 < 0.001 3.08 < 0.001
IPSL–CM5A–LR 3.16 < 0.001 2.50 < 0.001
MIROC5 2.45 < 0.001 2.00 < 0.001

Onset (d) GFDL–ESM2M ns ns
HadGEM2–ES −1.95 < 0.001 −1.43 < 0.001
IPSL–CM5A–LR −1.98 < 0.001 −1.48 < 0.001
MIROC5 −1.80 < 0.001 −1.45 < 0.001

Loss (d) GFDL–ESM2M ns ns
HadGEM2–ES 1.83 < 0.001 1.42 < 0.001
IPSL–CM5A–LR 1.31 < 0.001 1.06 < 0.001
MIROC5 0.83 < 0.001 0.52 < 0.01

slower than surface temperature. Changes in lake stability in-
creased from 38.67 J m−2 by the mid-century to 64.62 J m−2

by the late century, which increased the duration of stratifica-
tion (from 16 to 22 d). While there was a general agreement
among the models in the direction and relative magnitude
of change in many of the metrics of lake thermal structure,
there were also some differences among GCMs (Figs. 4–7
and Sect. S4), especially in relation to the GFDL–ESM2M
model which consistently estimated lower levels of change.
For example, by the late century the largest changes in sur-
face temperature were projected for HadGEM2–ES (4.04 ◦C)

and the lowest were for GFDL–ESM2M (1.67 ◦C) under
future-scenario RCP6.0 when the lake model was forced at
daily resolutions. However, the increase in the projected bot-
tom temperature for GFDL–ESM2M (1.24 ◦C) was greater
than for HadGEM2–ES (0.91 ◦C). This could be in part due
to the projected changes in wind speed. The wind speed
was projected to increase by 0.18 m s−1 for GFDL–ESM2M,
transferring heat to the lake bottom, but for HadGEM2–ES
the wind speed decreased by 0.15 m s−1 (atmospheric still-
ing; Woolway et al., 2017, 2019), reducing the magnitude
of vertical mixing. This resulted in a greater gradient be-
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Table 6. Average thermal metrics for the reference period (1981–2010), and average projected change in thermal metrics for the mid-century
and the late century for RCP6.0.

RCP6.0

24 h met 1 h met

Reference Mid- Late Reference Mid- Late
period century century period century century

Surface temperature GFDL-ESM2M 13.71 1.03 1.67 13.89 0.81 1.28
(◦C) HadGEM2-ES 13.56 3.04 4.04 13.84 2.29 2.98

IPSL-CM5A-LR 13.64 2.60 3.62 13.86 1.92 2.69
MIROC5 13.41 1.98 2.97 13.69 1.52 2.28
Ensemble 13.58 2.16 3.08 13.82 1.64 2.31

Bottom temperature GFDL-ESM2M 9.23 0.94 1.24 9.66 0.68 0.90
(◦C) HadGEM2-ES 9.32 0.42 0.91 9.75 0.15 0.42

IPSL-CM5A-LR 9.29 1.18 1.19 9.61 0.88 0.79
MIROC5 8.94 0.98 1.18 9.34 0.77 0.90
Ensemble 9.19 0.88 1.13 9.59 0.62 0.75

Whole-lake GFDL-ESM2M 12.44 1.06 1.61 12.83 0.79 1.20
temperature (◦C) HadGEM2-ES 12.44 1.96 2.81 12.89 1.45 1.98

IPSL-CM5A-LR 12.36 2.12 2.75 12.72 1.57 1.99
MIROC5 12.11 1.69 2.41 12.59 1.27 1.84
Ensemble 12.34 1.71 2.39 12.76 1.27 1.75

Schmidt stability GFDL-ESM2M 69.90 4.94 12.26 65.42 4.50 9.79
(J m−2) HadGEM2-ES 66.43 59.78 77.57 63.18 48.50 61.43

IPSL-CM5A-LR 67.52 38.67 64.62 65.73 28.06 49.23
MIROC5 68.96 23.08 42.42 66.39 17.49 31.83
Ensemble 68.20 31.62 49.22 65.18 24.64 38.07

Thermocline depth GFDL-ESM2M −7.82 −0.39 −0.22 −8.50 −0.17 −0.08
(m) HadGEM2-ES −8.23 1.02 1.26 −8.77 0.98 1.23

IPSL-CM5A-LR −7.83 0.28 0.59 −8.26 0.24 0.64
MIROC5 −7.83 0.09 0.34 −8.51 0.28 0.49
Ensemble −7.93 0.25 0.49 −8.51 0.33 0.57

Duration GFDL-ESM2M 126 2 6 129 2 7
(d) HadGEM2-ES 123 26 34 127 22 27

IPSL-CM5A-LR 123 16 27 127 13 21
MIROC5 124 16 22 128 12 17
Ensemble 124 15 22 128 12 18

Onset (d) GFDL-ESM2M 131 −4 −5 131 −3 −6
HadGEM2-ES 133 −15 −19 133 −12 −15
IPSL-CM5A-LR 133 −10 −16 133 −8 −12
MIROC5 134 −14 −16 133 −11 −14
Ensemble 133 −11 −14 132 −9 −11

Loss (d) GFDL-ESM2M 257 −1 0 260 −4 −2
HadGEM2-ES 255 11 16 259 10 13
IPSL-CM5A-LR 260 3 8 263 2 5
MIROC5 257 3 7 260 2 5
Ensemble 257 4 8 261 3 5
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Figure 6. Changes in annually averaged thermal metrics (from April to September) for (2a, 3a) whole-lake temperature, (2b, 3b) surface
temperature, (2c, 3c) bottom temperature, (2d, 3d) Schmidt stability, and (2e, 3e) thermocline depth under RCP6.0 and showing results from
when the lake model was forced with daily GFDL–ESM2M, HadGEM2–ES, IPSL–CM5A–LR, and MIROC5 projections. All changes for
the mid-century (2041–2070) and the late century (2071–2100) are relative to the reference period (1981–2011). The mean (vertical line) is
also shown. Changes in thermal metrics greater than 0 show an increase and lower than 0 show a decrease.

tween surface and bottom temperatures and higher increases
in the Schmidt stability (77.57 J m−2). This increased ther-
mal gradient for HadGEM2–ES promoted shallower ther-
mocline depth (1.26 m), but for GFDL–ESM2M a lower
change in lake stability was projected (12.26 J m−2) leading
to a deeper thermocline depth (0.22 m). Higher surface wa-
ter temperature and stronger Schmidt stability can explain
why the increased duration of stratification was projected to
be longer for HadGEM2–ES (34 d) than for GFDL–ESM2M
(6 d). The small change in thermal stability also explains why
no change in loss of stratification was projected for GFDL–
ESM2M. This illustrates the complexity of climate model–
lake model interactions and clearly shows the importance of
ensemble model simulations, as adopted by ISIMIP, for eval-
uating the effects of climate change on lakes.

When calibrating the GOTM model we found that model
errors between simulated and measured water temperature

were similar when GOTM was forced with either measured
hourly or synthetic hourly meteorological data, and that the
results obtained from the calibrations forced with mean daily
metrological input were also similar to those obtained from
the calibrations based on hourly input. This suggests that
the daily time step of the ISIMIP climate scenarios is suffi-
cient for forcing the GOTM model, and that for most studies
within the ISIMIP lake sector disaggregation to hourly time
steps will not be necessary. For example, changes in surface
water temperature was to the order of 0.29 ◦C per decade,
with simulations forced with daily inputs, and 0.22 ◦C per
decade with hourly input data for MIROC5 under RCP6.0.
These differences are of the same magnitude as the differ-
ences simulated using different GCM models. Similar lev-
els of model performance using daily or hourly forcing data
were obtained in part because of separate calibrations when
the GOTM model was forced with the different data sets.
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Figure 7. Changes in annually averaged thermal metrics (from April to September) for (2a, 3a) duration and (2b, 3b) onset and (2c, 3c) loss
of stratification under RCP6.0 and showing results from when the lake model was forced with daily GFDL–ESM2M, HadGEM2–ES, IPSL–
CM5A–LR, and MIROC5 projections. All changes for the mid-century (2041–2070) and the late century (2071–2100) are relative to the
reference period (1981–2011). The mean (vertical line) is also shown. Changes in thermal metrics greater than 0 show an increase and lower
than 0 show a decrease.

Changes in the calibrated parameters used to characterise the
lake thermal structure (Table 2) can apparently compensate
for the lack of diurnal variability in the daily forcing data.
GRNNs proved to be an effective method to disaggregate
daily GCM forcing to an hourly temporal resolution for dif-
ferent weather variables such as air temperature, short-wave
radiation, etc. However, GRNNs require a training phase in
which the diurnal patterns to be learnt are presented to the
network from historical meteorological measurements, and
therefore if there are future changes in diurnal patterns, these
cannot be reproduced. In addition, there is a high computa-
tional cost of disaggregating and storing the long-term daily
climate data into an hourly data set.

The projected changes in thermal metrics were strongly
influenced by the GMCs used to drive the water temper-
ature simulations. Due to the high interannual variability,
long periods of simulation were needed to ensure that the
uncertainty is fully represented (Figs. 4–7; Sects. S3–S4).
Under RCP6.0, trends in surface temperature calculated for
the period 2011–2100 were projected to increase 0.38 ◦C per
decade for both HadGEM2–ES and IPSL–CM5A–LR when
the lake model was forced at daily resolutions. However, 5th,
50th and 95th percentiles for surface temperature anoma-
lies differ between models and are 0.84, 2.93, and 4.86 ◦C

for HadGEM2–ES and 0.33, 2.56, and 4.37 ◦C for IPSL–
CM5A–LR. Placing the probability density function (pdf)
for HadGEM2–ES to the right of the pdf for IPSL–CM5A–
LR illustrated that more extreme increases in surface tem-
perature were projected by HadGEM2–ES. Projected bottom
temperatures differed between HadGEM2–ES and IPSL–
CM5A–LR. HadGEM2–ES was left-skewed and the median
was 0.58 ◦C, while IPSL–CM5A–LR pdf was right-skewed
and the median was 1.16 ◦C. As a consequence, lake stabil-
ity was stronger for HadGEM2–ES (5th and 95th percentiles
were 5.22 and 110.55 J m−2) than for IPSL–CM5A–LR (5th
and 95th percentiles were −18.77 and 90.64 J m−2), even
though the Schmidt stability medians were similar for both
GCMs. A similar result occurred when projecting a longer
duration of stratification for HadGEM2–ES (5th, 50th, and
95 percentiles were −0.63, 26.37, and 49.42 d) than IPSL–
CM5A–LR (5th, 50th, and 95th percentiles were −10.33,
17.67, and 40.92 d). GCMs are useful for assessing climate
change impacts on lakes, but GCM configurations vary from
one to another. Therefore, it is crucial to assess different
GCMs in a probabilistic manor (Figs. 4–7) to encapsulate
the uncertainty in the lake thermal metrics without compro-
mising the variability.
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The study carried out by Moras et al. (2019) found changes
in the phenology of Lake Erken’s thermal stratification from
1961 to 2017. A significant increase in summer epilimnetic
and whole-lake temperature of 0.35 and 0.24 ◦C per decade
occurred over the entire study period, while in spring and au-
tumn larger significant positive trends were detected over the
subinterval (1989–2017). In the present work future changes
under the RCP6.0 emissions scenario found trends that were
of a similar magnitude. The summer trends for the period
2011–2100 projected a significant increase in epilimnetic and
whole-lake temperature ranging from 0.19 to 0.45 and 0.15
to 0.26 ◦C per decade, respectively, when the lake model
was forced at daily resolutions, while changes in summer
hypolimnetic temperature were non-significant. During the
spring and autumn significant increases in epilimnetic whole-
lake temperature were also projected under RCP6.0 when
the lake model was forced at daily resolutions, but they
were somewhat lower than the ones detected by Moras et
al. (2019). The increase in spring epilimnetic and whole-lake
temperature ranged from 0.15 to 0.38 and 0.15 to 0.30 ◦C
per decade, while those in Moras et al. (2019) showed a
higher rate of warming (0.44 and 0.40 ◦C per decade for epil-
imnetic and whole-lake temperature respectively), and the
GCM simulations promoted shorter durations in stratifica-
tion. The projected increases in spring and autumn hypolim-
netic temperatures were similar in magnitude, and in summer
non-significant trends were detected both in this study and in
Moras et al. (2019). The simulations made here and by Moras
et al. (2019) are for the same lake and use the same lake
model. The fact that the simulations presented here, using the
RCP6.0 emission scenarios, showed similar or slightly lower
rates of change compared to the simulations made by Moras
et al. (2019) when the model was forced with measured his-
torical data are unexpected given that the RCP6.0 scenario
would project an accelerated rate of climate change com-
pared to the historical period. This suggests that, at least for
Lake Erken, future changes in lake thermal structure based
on the ISIMIP2b–GCM projections may to some extent un-
derestimate the actual changes that will occur.

The projected changes in thermal stratification can influ-
ence many aspects of the lake ecosystem. Increases in ther-
mal stability and duration of stratification can intensify hy-
polimnetic oxygen depletion (Foley et al., 2012; Schwefel
et al., 2016) and hence induce enhanced internal phospho-
rous loading (North et al., 2014), increase the release of dis-
solved iron and manganese from sediments (Schultze et al.,
2017), and also increase methane emissions (Grasset et al.,
2018). Warming lake temperature affects biological rates of
metabolism, growth and reproduction (Rall et al., 2012) and
can promote cyanobacterial blooms (Paerl and Paul, 2012).
When coupled to a reduction in oxygen-rich water, warming
water temperature leads to lower fish populations (O’Reilly
et al., 2003; Yankova et al., 2017). Increase in evaporation
associated with warming can lead to a decline in lake wa-

ter levels (Hanrahan et al., 2010) with implications for water
security.

5 Conclusion

In this study, which is the first test simulating lake hydrother-
mal structure following ISIMIP2b protocols, ensemble sim-
ulations show that changes in Lake Erken’s surface temper-
ature are projected to increase on average by 1.79 ◦C for
RCP2.6 and by 3.08 ◦C for RCP6.0, and the length of the
stratification is also projected to be longer by 13 d for RCP2.6
and by 22 d for RCP6.0 by the end of the 21st century. Most
changes in the RCP2.6 scenario occurred during the first
half of the century, suggesting that the aggressive mitigation
methods represented in this scenario would be effective at
reducing future changes in lake thermal structure. We also
extensively document coinciding changes in water column
temperatures, water column stability and thermocline depth
both in this paper and in the Supplement. When combined,
these results suggest important changes in the factors affect-
ing lake biogeochemistry both directly, through changes in
temperature, and indirectly, by influencing the availability of
light and nutrients. By providing an initial test for the sim-
ulations that will be carried out by the ISIMIP lake sector,
this paper sets the stage for more extensive worldwide evalu-
ations of the effects of climate change on lake thermal struc-
ture.

This study showed the ability of the GOTM model to ac-
curately simulate Lake Erken water temperature when the
model was forced using either daily or hourly temporal reso-
lution inputs. Neural networks were shown to be an effective
method to disaggregate different weather variables, such as
air temperature and short-wave radiation, in order to gener-
ate synthetic hourly meteorological data from the daily data
that are typically available from GCM models. Model per-
formance was slightly improved when using the synthetic
hourly data, and climate change effects were somewhat lower
when using such data to drive future climate simulations.
However, it is not clear if data disaggregation is needed given
the computational costs of developing such data sets and run-
ning long-term simulations at an hourly time step. Future cli-
mate simulations showed similar trends in the anomaly distri-
butions when the GOTM model was forced with mean daily
or synthetic hourly meteorological data, and we also found
evidence that the calibration procedure partly compensates
for differences in the temporal resolution of the model input.

Code and data availability. The source code of the model
GOTM is freely available at: https://gotm.net/portfolio/software/
(last access: 14 June 2018) (GOTM, 2020). The in-
put data, model configuration, output and observed
data for calibration are stored in HydroShare at
https://doi.org/10.4211/hs.ace98c3bc72b44f1834a58ec8b3af310
(Ayala et al., 2019a). The ISIMIP climate scenarios are available at:
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https://doi.org/10.4211/hs.e16b8e2a3e7c4e7fb3169d7591be2689
(Ayala et al., 2020). Future projections of simulated water
temperature derived from both the original ISIMIP input data
and synthetic hourly projections are stored in HydroShare at
https://doi.org/10.4211/hs.2b4cfe0f02bf4375bcd0b62e45c61b19
(Ayala et al., 2019b). MATLAB codes, R codes and all the data
sets produced during this study are available upon request from the
corresponding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-3311-2020-supplement.
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