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Abstract. This paper introduces an ensemble square root
filter (EnSRF) in the context of jointly assimilating ob-
servations of surface soil moisture (SSM) and the leaf
area index (LAI) in the Land Data Assimilation System
LDAS-Monde. By ingesting those satellite-derived products,
LDAS-Monde constrains the Interaction between Soil, Bio-
sphere and Atmosphere (ISBA) land surface model (LSM),
coupled with the CNRM (Centre National de Recherches
Météorologiques) version of the Total Runoff Integrating
Pathways (CTRIP) model to improve the reanalysis of land
surface variables (LSVs). To evaluate its ability to produce
improved LSVs reanalyses, the EnSRF is compared with the
simplified extended Kalman filter (SEKF), which has been
well studied within the LDAS-Monde framework. The com-
parison is carried out over the Euro-Mediterranean region at
a 0.25◦ spatial resolution between 2008 and 2017. Both data
assimilation approaches provide a positive impact on SSM
and LAI estimates with respect to the model alone, putting
them closer to assimilated observations. The SEKF and the
EnSRF have a similar behaviour for LAI showing perfor-
mance levels that are influenced by the vegetation type. For
SSM, EnSRF estimates tend to be closer to observations than
SEKF values. The comparison between the two data assimi-
lation approaches is also carried out on unobserved soil mois-
ture in the other layers of soil. Unobserved control variables
are updated in the EnSRF through covariances and correla-
tions sampled from the ensemble linking them to observed
control variables. In our context, a strong correlation between

SSM and soil moisture in deeper soil layers is found, as ex-
pected, showing seasonal patterns that vary geographically.
Moderate correlation and anti-correlations are also noticed
between LAI and soil moisture, varying in space and time.
Their absolute value, reaching their maximum in summer
and their minimum in winter, tends to be larger for soil mois-
ture in root-zone areas, showing that assimilating LAI can
have an influence on soil moisture. Finally an independent
evaluation of both assimilation approaches is conducted us-
ing satellite estimates of evapotranspiration (ET) and gross
primary production (GPP) as well as measures of river dis-
charges from gauging stations. The EnSRF shows a system-
atic albeit moderate improvement of root mean square dif-
ferences (RMSDs) and correlations for ET and GPP prod-
ucts, but its main improvement is observed on river dis-
charges with a high positive impact on Nash–Sutcliffe effi-
ciency scores. Compared to the EnSRF, the SEKF displays a
more contrasting performance.

1 Introduction

Land surface variables (LSVs) are key components of the
Earth’s water, vegetation and carbon cycles. Understand-
ing their behaviour and simulating their evolution is a chal-
lenging task that has significant implications on various
topics, from vegetation monitoring to weather prediction
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and climate change (Bonan, 2008; Dirmeyer et al., 2015;
Schellekens et al., 2017). Land surface models (LSMs) play
an important role in improving our knowledge of land surface
processes and their interactions with the other components of
the climate system such as the atmosphere. Forced by atmo-
spheric data and coupled with river routing models, they aim
to simulate LSVs such as soil moisture (SM), biomass and
the leaf area index (LAI). However, LSMs are prone to errors
owing to inaccurate initialization, misspecified parameters,
flawed forcing or inadequate model physics. Another way to
monitor LSVs is to use observations either from in situ net-
works or satellites. While in situ networks generally provide
sparse spatial coverage, remote sensing provides global cov-
erage of LSVs at spatial resolutions ranging from the kilo-
metre scale to the metre scale but at a daily frequency at best
(Lettenmaier et al., 2015; Balsamo et al., 2018). Not all key
LSVs are observed directly from space. For example, passive
microwave satellite sensors used traditionally to estimate soil
moisture are sensible only to the near-surface (0–2 cm depth)
moisture content (Schmugge, 1983), leading to the develop-
ment of indirect approaches to estimate root-zone soil mois-
ture from satellite data (see e.g. Albergel et al., 2008).

Combining observations with LSMs can overcome flaws
in both approaches. This is the objective of Land Data As-
similation Systems (LDASs). Many of them focus on assim-
ilating observations related to surface soil moisture (SSM),
either using passive microwave brightness temperatures, mi-
crowave backscatter coefficients or soil moisture retrievals
obtained from the aforementioned satellite observations, to
estimate soil moisture profiles (Lahoz and De Lannoy, 2014;
Reichle et al., 2014; De Lannoy et al., 2016; Maggioni et
al., 2017, and references therein). One popular approach has
been the simplified extended Kalman filter (SEKF). Intro-
duced at Météo-France by Mahfouf et al. (2009), it was ini-
tially designed for assimilating screen level observations to
correct soil moisture estimates in the context of numerical
weather prediction and is now involved in the operational
systems of both the European Centre for Medium-Range
Weather Forecast (ECMWF; Drusch et al., 2009; de Ros-
nay et al., 2013) and the UK Met Office. The SEKF has
also been applied to the sole assimilation of soil moisture
retrievals (Draper et al., 2009) and then to the joint assim-
ilation of soil moisture retrievals and leaf area indices (Al-
bergel et al., 2010; Barbu et al., 2011). Even though the
SEKF approach has provided good results, it suffers from
several limitations. It relies on a climatological background
error covariance matrix assuming uncorrelated variables be-
tween grid points and involves the computation of a Jaco-
bian matrix to build covariances between control variables at
the same location. This Jacobian matrix is computed with fi-
nite differences, meaning that one model run is required per
control variable, thus limiting the size of the control vector.
That is why SEKF has been in competition with more flexi-
ble approaches, such as the ensemble Kalman filter (EnKF)
(Reichle et al., 2002; Fairbairn et al., 2015; Blyverket et al.,

2019, among others) and particle filters (see e.g. Pan et al.,
2008; Plaza et al., 2012; Zhang et al., 2017; Berg et al.,
2019) for estimating soil moisture profiles. Those various ap-
proaches have been extensively compared in the context of
the sole assimilation of soil moisture retrievals (Reichle et
al., 2002; Sabater et al., 2007; Fairbairn et al., 2015).

LDASs are, however, not restricted to soil moisture. Re-
cently, monitoring vegetation dynamics through LDASs has
gained attention. LAI is a key land biophysical variable; it is
defined as half the total area of green elements of the canopy
per unit horizontal ground area. One way to monitor LAI is to
assimilate observations already used for surface soil moisture
and indirectly linked to LAI, such as the brightness temper-
ature for low microwave frequencies (see e.g. Vreugdenhil
et al., 2016) and radar backscatter coefficient (Lievens et al.,
2017; Shamambo et al., 2019, among others). This is the ap-
proach followed by Sawada et al. (2015) and Sawada (2018),
who assimilate brightness temperatures using a particle fil-
ter to jointly estimate soil moisture profiles and LAI in the
Coupled Land Vegetation LDAS (CLVLDAS).

Another way to constrain LAI is through the assimila-
tion of direct LAI observations in LDASs. Satellite-derived
LAI products benefit from recent advances in remote sens-
ing (Fang et al., 2013; Baret et al., 2013; Xiao et al., 2013),
and datasets are now available at the global scale and at high
resolution. While other studies have assimilated LAI in crop
models and at a more local scale (see e.g. Pauwels et al.,
2007; Ines et al., 2013; Jin et al., 2018), such assimilation has
been, to our knowledge, seldom performed by LDASs. Jar-
lan et al. (2008) and Sabater et al. (2008) have succeeded in
introducing such an approach in LDASs. The latter study has
notably shown that jointly assimilating observations of SSM
and LAI can improve the quality of root-zone SM estimates
for one location in southwestern France. This work has been
carried out with the CO2-responsive version of the Interac-
tions between Soil, Biosphere and Atmosphere (ISBA) LSM
(Calvet et al., 1998, 2004; Gibelin et al., 2006), developed by
CNRM (Centre National de Recherches Météorologiques).
This version of ISBA allows for the simulation of vegetation
dynamics including biomass and LAI. Building on that work,
Albergel et al. (2010), Rüdiger et al. (2010) and Barbu et al.
(2011) introduced a SEKF jointly assimilating SSM and LAI
and tested the approach on the SMOSREX (Surface Monitor-
ing Of the Soil Reservoir EXperiment) site located in south-
western France. Their study has been extended to a series of
locations over France (Dewaele et al., 2017) and to France
(Barbu et al., 2014; Fairbairn et al., 2017) leading to the de-
velopment of the LDAS-Monde (Albergel et al., 2017). The
LDAS-Monde suite is available through the CNRM mod-
elling platform SURFEX (SURFace EXternalisée; Masson
et al., 2013) and it has been successfully applied to various
parts of the globe: Europe and the Mediterranean basin (Al-
bergel et al., 2017, 2019; Leroux et al., 2018), the contiguous
United States (Albergel et al., 2018b), and Burkina Faso (Tall
et al., 2019).
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Lately other LDASs have started assimilating LAI using
an EnKF assimilation approach. For example, Fox et al.
(2018) assimilated LAI and biomass in order to reconstruct
the vegetation and carbon cycles for a site in Mexico, while
Ling et al. (2019) compared various approaches for the as-
similation of LAI at a global scale. In addition Kumar et al.
(2019) assimilated LAI with an EnKF in the North Amer-
ican Land Data Assimilation System phase 2 (NLDAS-2)
and studied its impact not only on vegetation but also on soil
moisture, with those LSVs being updated indirectly through
the model using the updated LAI. These studies did not up-
date both SM and LAI, as we will do in this study.

This paper aims to develop an EnKF approach for the
joint assimilation of LAI and SSM in the LDAS-Monde.
To that end, it will build upon the work of Fairbairn et al.
(2015), which introduced an ensemble square root filter (En-
SRF; Whitaker and Hamill, 2002) in the LDAS-Monde in
the context of assimilating SSM alone. The EnSRF is one of
the many deterministic formulations of the EnKF (see e.g.
Tippett et al., 2003; Livings et al., 2008; Sakov and Oke,
2008). Fairbairn et al. (2015) compared the performance of
the EnSRF with the SEKF, routinely used in the LDAS-
Monde, over 12 sites in southwestern France. While perform-
ing better on synthetic experiments, the EnSRF provides re-
sults that are equivalent to the SEKF for real cases. Related
to that work, Blyverket et al. (2019) used another determin-
istic EnKF to assimilate satellite-derived SSM values from
the Soil Moisture Active Passive (SMAP) satellite over the
contiguous United States with the ISBA LSM. This work fo-
cused on soil moisture in the near surface, while it did not
update root-zone soil moisture directly through data assimi-
lation.

The present paper aims to (1) adapt the EnSRF to the
joint assimilation of LAI and SSM within the LDAS-Monde,
(2) study the impact of assimilating LAI and SSM on LSVs
using an ensemble approach, and (3) compare the EnSRF
with the routinely used SEKF and its ability to provide im-
proved LSV estimates. To achieve these goals, LDAS-Monde
with EnSRF and SEKF is applied to the Euro-Mediterranean
region for a 10-year experiment (from 2008 to 2017):

– using the vegetation interactive ISBA-A-gs (CO2-
responsive version of the ISBA LSM) LSM (Calvet et
al., 1998, 2004; Gibelin et al., 2006) with the multi-layer
soil diffusion scheme from Decharme et al. (2011),

– coupled daily with CNRM version of the Total Runoff
Integrating Pathways (CTRIP) river routing model
(Decharme et al., 2019) to simulate hydrological vari-
ables such as river discharge,

– forced by the latest ERA5 atmospheric reanalysis from
ECMWF (Hersbach and Dee, 2016; Hersbach et al.,
2020),

– and assimilating satellite-derived soil water index (SWI;
as a proxy for SSM) and LAI products from the Coper-
nicus Global Land Service (CGLS).

The performance of both data assimilation (DA) approaches
is assessed with (i) satellite-driven model estimates of land
evapotranspiration (ET) from the Global Land Evaporation
Amsterdam Model (GLEAM, Miralles et al., 2011; Martens
et al., 2017), (ii) upscaled ground-based observations of gross
primary production (GPP) from the FLUXCOM project (Tra-
montana et al., 2016; Jung et al., 2017) and (iii) river dis-
charges from the Global Runoff Data Centre (GRDC). The
paper is organized as follows: Sect. 2 details the various com-
ponents involved in LDAS-Monde including the data assim-
ilation schemes. Section 3 describes the experimental setup
and the different datasets used in the experiment such as at-
mospheric forcing or assimilated observations. Section 3 also
details the datasets used to assess the performance of the En-
SRF and the SEKF. The impact of the EnSRF on LSVs is
then assessed in Sect. 4, including the comparison with the
SEKF. Finally, the paper discusses the issues encountered
during the experiment and provides prospects for future work
in Sect. 5, before concluding in Sect. 6.

2 LDAS-Monde

LDAS-Monde is the offline, global-scale and sequential-
data-assimilation system dedicated to land surfaces devel-
oped by the Météo-France research centre, CNRM (Albergel
et al., 2017). Embedded within the open-access SURFEX
surface modelling platform (Masson et al., 2013; https://
www.umr-cnrm.fr/surfex/, last access: 16 January 2020), it
consists of the ISBA land surface model coupled with the
CTRIP river routing system and data assimilation. Those
routines routinely assimilate satellite-based products of SSM
and LAI to analyse and update soil moisture and LAI mod-
elled by ISBA. The most recent SURFEX v8.1 implemen-
tation is used in our experiments. We quickly recall the
main components of LDAS-Monde and subsequently de-
tail the novel EnSRF approach for the joint assimilation of
SSM and LAI. More information can be found in Albergel
et al. (2017) (see also https://www.umr-cnrm.fr/spip.php?
article1022&lang=en, last access: 16 January 2020).

2.1 ISBA land surface model

The ISBA LSM aims to simulate the evolution of LSVs such
as soil moisture, soil heat or biomass (Noilhan and Planton,
1989; Noilhan and Mahfouf, 1996). In this paper we use the
ISBA multilayer diffusion scheme which solves the mixed
form of the Richards equation (Richards, 1931) for water and
the one-dimensional Fourier law for heat (Boone et al., 2000;
Decharme et al., 2011). The soil is discretized in 14 layers
over a depth of 12 m. The lower boundary of each layer is
0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 8.0

www.hydrol-earth-syst-sci.net/24/325/2020/ Hydrol. Earth Syst. Sci., 24, 325–347, 2020

https://www.umr-cnrm.fr/surfex/
https://www.umr-cnrm.fr/surfex/
https://www.umr-cnrm.fr/spip.php?article1022&lang=en
https://www.umr-cnrm.fr/spip.php?article1022&lang=en


328 B. Bonan et al.: An ensemble square root filter

and 12 m depth (see Fig. 1. of Decharme et al., 2013). The
chosen discretization minimizes the errors from the numeri-
cal approximation of the diffusion equations.

Regarding vegetation dynamics and interactions between
the water and carbon cycles, we use the ISBA-A-gs config-
uration (Calvet et al., 1998, 2004; Gibelin et al., 2006). This
CO2-responsive version represents the relationship between
the leaf-level net photosynthesis rate (A) and stomatal aper-
ture (gs). Dynamics of vegetation variables such as LAI or
biomass are induced by photosynthesis in response to atmo-
spheric variations. The LAI growing phase from a prescribed
threshold (1.0 m2 m−2 for coniferous trees, 0.3 m2 m−2 for
every other type of vegetation) results from an enhanced pho-
tosynthesis and CO2 uptake. On the contrary, a deficit of pho-
tosynthesis leads to higher mortality rates and a decreased
LAI. Leaf biomass is determined from LAI (and vice versa)
through dividing LAI by the specific leaf area (one of the
ISBA parameters depending on the vegetation type). For arc-
tic regions, hydraulic and thermal soil properties are modi-
fied in order to include a dependency on soil organic carbon
content (Decharme et al., 2016).

From a practical point of view, ISBA is run in this pa-
per at a regular 0.25◦ spatial resolution. Each ISBA grid cell
is divided into 12 generic patches: nine representing differ-
ent types of vegetation (deciduous forests, coniferous forests,
evergreen forests, C3 crops, C4 crops, C4 irrigated crops,
grasslands, tropical herbaceous and wetlands) and three oth-
ers depicting bare soils, bare rocks and permanent snow or
ice surfaces. Each patch covers a varying percentage of grid
cells. Denoted α[p] for patch p of a given grid cell, this per-
centage is also known as the patch fraction. Vegetation and
soil parameters for each ISBA patch and grid cell are derived
from the ECOCLIMAP II land cover database (Faroux et al.,
2013), which is fully integrated in SURFEX.

2.2 CTRIP river routing model

The ISBA LSM is coupled with CTRIP to simulate hy-
drological variables at a continental scale. Based originally
on the work of Oki and Sud (1998), CTRIP aims to con-
vert simulated runoff into simulated river discharges. The
model is fully described in the following papers: Decharme
et al. (2010), Decharme et al. (2012), Vergnes and Decharme
(2012), Vergnes et al. (2014), and Decharme et al. (2019).

CTRIP is available at a 0.5◦ spatial resolution. The cou-
pling between ISBA and CTRIP occurs on a daily basis
through the OASIS3-MCT coupler (Model Coupling Toolkit
of the OASIS coupler) (Voldoire et al., 2017). ISBA pro-
vides updated runoff, drainage, groundwater and floodplain
recharges to CTRIP, while the river routing model returns
the water table depth or rise, floodplain fraction, and flood
potential infiltration to the LSM.

2.3 Data assimilation

LDAS-Monde is a sequential data assimilation system with a
24 h assimilation window. Each cycle is divided in two steps:
forecast and analysis. Quantities produced during the fore-
cast step (analysis step) are denoted with a superscript f (su-
perscript a). The state of the studied system is described by
x[p], the control vector that contains every prognostic vari-
able of the ISBA LSM for a patch p and a given grid point.
In this paper, we consider LAI and soil moisture from lay-
ers 2 (1–4 cm depth; SM2) to 7 (60–80 cm depth; SM7) in
the control vector, with soil moisture in layer 1 being driven
mostly by atmospheric forcings (Draper et al., 2011; Barbu et
al., 2014). As in many LDASs, LDAS-Monde performs DA
for each grid point independently (no spatial covariances are
considered).

The forecast step consists of propagating the state of the
system from a time t to t +24 h using ISBA. Patches in each
ISBA grid cell do not interact between each other. This im-
plies that, for a patch p, the forecast of x[p], denoted by
xf
[p](t+24h), only depends on the analysis at time t , xa

[p](t)

and the ISBA LSM using the parametrization for patch p,
denoted by M[p]. This yields

xf
[p](t + 24h)=M[p]

(
xa
[p](t)

)
. (1)

The analysis step then corrects forecast estimates by assimi-
lating observations of LAI and SSM.

2.3.1 Simplified extended Kalman filter

LDAS-Monde routinely uses a simplified extended Kalman
filter for the analysis step (Mahfouf et al., 2009). Observa-
tions (SSM and/or LAI) are interpolated on the ISBA grid
for assimilation (see Sect. 3.2 for more information). For
each ISBA grid cell, we consider the vector yo containing
all the observations available for that grid cell at the time of
assimilation. The SEKF analysis step is in two parts. First we
calculate the model equivalent, denoted by yf , at the ISBA
grid cell level. This is performed by aggregating control vari-
ables from each patch of the ISBA grid cell using a weighted
average.

yf
=

12∑
k=1

α[k]Hxf
[k], (2)

where H denotes the linear operator selecting model equiva-
lent from each patch (modelled LAI for observed LAI; mod-
elled soil moisture in layer 2 for SSM).

Then, the SEKF analysis step is performed for each ISBA
grid cell. We further assume that there are no covariances
between the patches. Therefore, each patch is updated sepa-
rately. For each patch, the SEKF analysis follows the tradi-
tional Kalman update. It replaces the forecast error covari-
ance matrix with a fixed prescribed error covariance matrix
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B. The observation operator is the product of the model state
evolution from t to t + 24h and the conversion of the model
state into the observation equivalent. Thus, the Jacobian of
the observation operator involves H and M[p], the Jacobian
matrix of M[p]. In the end, for each patch p, we have

xa
[p] = xf

[p]+α[p]B
(
HM[p]

)TC−1
SEKF

(
yo
− yf

)
(3)

and

CSEKF =

12∑
k=1

α2
[k]

(
HM[k]

)
B
(
HM[k]

)T
+R, (4)

where R is the observation error covariance matrix. In prac-
tice, columns of M[p] are calculated by finite differences us-
ing perturbed model runs. For each component xj of the con-
trol vector and its perturbation δxj , the j th column of M[p]
can be written as

[
M[p]

]
j
=
∂xf(t + 24h)

∂xj

≈
M[p]

(
xa(t)+ δxj

)
− xf(t + 24h)

δxj
. (5)

Details on how to obtain Eqs. (3) and (4) can be found in the
Supplement.

2.3.2 Ensemble square root filter

We adapt the EnSRF from Whitaker and Hamill (2002) to
the context of LDAS-Monde following the work of Fair-
bairn et al. (2015). The EnSRF is an EnKF-based approach
in which the state of a system and associated uncertain-
ties are described by an ensemble of Ne control vectors{
x
(i)
[p], i = 1, . . .,Ne

}
for patch p of a given grid cell.The

EnKF approximates the classical Kalman filter equations us-
ing the ensemble mean

x[p] =

Ne∑
i=1

x
(i)
[p] (6)

to describe the state of the system and the ensemble covari-
ance matrix

P[p] =
1

Ne− 1
X[p]XT[p], (7)

where X[p] =
[
x
(1)
[p]− x[p], . . .,x

(Ne)
[p] − x[p]

]
is the ensemble

perturbation matrix used to describe the uncertainties of the
estimation.

In the forecast step, we propagate, as in Eq. (1), each en-
semble member from time t to t+24h using the ISBA LSM.
The analysis step then corrects the ensemble mean and the
ensemble perturbation matrix by assimilating observations.

To that end, we first calculate the model equivalent of the ob-
servations by aggregating the mean of the forecast ensemble
over all the patches.

yf
=

12∑
k=1

α[k]Hxf
[k] (8)

The analysis step then updates the ensemble whose analysed
mean and covariance matrix exactly matches the analysis of
the Kalman filter when the observation operator is linear.

We choose to neglect the ensemble covariances between
patches in the analysis step of the EnSRF. This assumption is
in line with the SEKF method, and it ensures a fair compari-
son between the two approaches. The approach outlined here
is in line with other studies (Fairbairn et al., 2015; Carrera
et al., 2015) showing that 1-D EnKFs can achieve promising
results with around 20 ensemble members.

Following this assumption, for a given patch p, the anal-
ysed mean and perturbation matrix are given by the following
equations:

xa
[p] = xf

[p]+α[p]P
f
[p]H

TC−1
EnSRF

(
yo
− yf

)
(9)

and

Xa
[p] =

(
I−α[p]K̃[p]H

)
Xf
[p] (10)

with

CEnSRF =

12∑
k=1

α2
[k]HPf

[k]H
T
+R (11)

and

K̃[p] = α[p]Pf
[p]H

T
(

CTEnSRF

)−1/2(
C1/2

EnSRF+R1/2
)−1

. (12)

Such an approach, contrary to the SEKF, updates the state
covariance matrix that will evolve in time. This ensures that
information from the analysis is stored in the ensemble and
is propagated forward in time.

3 Experimental setup and datasets

We detail in the following subsections the atmospheric forc-
ing, the assimilated observations and the validation datasets
employed in this paper before detailing the experimental
setup.

3.1 Atmospheric forcing

The ISBA LSM is forced with the ERA5 atmospheric re-
analysis (Hersbach and Dee, 2016; Hersbach et al., 2020)
developed by ECMWF. The ERA5 reanalysis is available
with an hourly frequency at a 31 km horizontal spatial res-
olution. To be used, surface atmospheric variables such as
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air temperature, surface pressure, solid and liquid precipita-
tions, incoming shortwave and longwave radiations values,
and wind speed are interpolated to a 0.25◦ spatial resolu-
tion using bilinear interpolation. Replacing ECMWF’s atmo-
spheric ERA-Interim reanalysis with ERA5 has been shown
to be beneficial in the context of LSV reanalyses with LDASs
(Albergel et al., 2018a, b).

3.2 Observations for assimilation

In this paper we assimilate observations from the SWI-001
and GEOLAND2 version 1 (GEOV1) LAI datasets, both
being distributed by the Copernicus Global Land Service.
These satellite-derived products have already been success-
fully assimilated into LDAS-Monde (e.g. Leroux et al., 2018;
Albergel et al., 2019).

The SWI-001 product consists of soil water indices ob-
tained through a recursive exponential filter (Albergel et al.,
2008) using backscatter observations from the ASCAT (Ad-
vanced SCATterometer) C-band radar (Wagner et al., 1999;
Bartalis et al., 2007). A 1 d timescale is used in the recursive
filter in order to estimate the wetness of the first centimetres
of the soil. This product is available daily at a 0.1◦ spatial
resolution. The raw SWI-001 averaged over the 2008–2017
period can be seen in Fig. 1a.

Prior to the assimilation, the SWI-001 product needs to be
rescaled to the model climatology to avoid introducing any
bias in the LDAS system (Reichle and Koster, 2004; Drusch
et al., 2005). We apply a linear rescaling to SWI-001 to match
the observation mean and variance to the mean and variance
of the modelled soil moisture in the second layer of soil (1–
4 cm). Introduced by Scipal et al. (2008), this rescaling gives
in practice very similar results to CDF (cumulative distribu-
tion function) matching. The linear rescaling is performed on
a seasonal basis (with a 3-month moving window). Draper et
al. (2009) and Barbu et al. (2014) have highlighted the im-
portance of allowing seasonal variability in the rescaling.

The GEOLAND2 version 1 LAI product is obtained
through a neural network algorithm (Baret et al., 2013) trans-
forming observations of reflectance from SPOT-VGT and
PROBA-V satellites into LAI. This dataset is available ev-
ery 10 d with the finest spatial resolution being 1 km. The
GEOV1 LAI averaged over the 2008–2017 period can be
seen in Fig. 1b.

Following Barbu et al. (2014), both observation datasets
are interpolated on the model grid (0.25◦ spatial resolution)
where and when at least half of the observation grid points
are available. As in previous LDAS-Monde studies, we use
a 24 h assimilation window, and observations are assimilated
at 09:00 UTC.

3.3 Validation datasets

We consider independent datasets of evapotranspiration
(ET), gross primary production (GPP) and river discharges
to assess the validity of our approach and measure the influ-
ence of the EnSRF on the improvement of LSV reanalyses.

Satellite-derived estimates of ET come from the GLEAM
v3.3b product (Miralles et al., 2011; Martens et al., 2017).
Daily estimates available for the period 1980–2018 at a 0.25◦

spatial resolution are fully driven by satellite observations
and, as such, are independent of LDAS-Monde estimates.
Figure 1c displays GLEAM ET averaged over the period
2008–2017 considered for validation in this paper.

Observations of GPP are derived from the FLUXCOM
project. This dataset is obtained by merging upscaled mea-
surements from eddy-covariance flux towers and satellite
observations using machine learning. More details can be
found in Tramontana et al. (2016) and Jung et al. (2017). The
FLUXCOM data are available at a 0.5◦ spatial resolution on
a monthly basis for the period 1982–2013. Figure 1d shows
FLUXCOM GPP averaged over the period 2008–2013 con-
sidered for validation in this paper.

River discharge output data from the CTRIP river routing
model are compared to daily streamflow data obtained from
the Global Runoff Data Centre (https://www.bafg.de/GRDC,
last access: 16 January 2020). Due to the low resolution
of CTRIP (0.5◦ spatial resolution), we only consider data
for sub-basins with rather large drainage areas (greater than
10 000 km2) with a long enough time series (4 complete
years or more over 2008–2017).

3.4 Experimental setup

To assess the impact of EnSRF on LSV reanalyses and
compare its skill with the routinely used SEKF, we have
run LDAS-Monde over the Euro-Mediterranean region (lon-
gitude from 11.5◦W to 62.5◦ E, latitude from 25.0◦ N to
75.5◦ N) at a 0.25◦ spatial resolution during the decade 2008–
2017 for three different configurations: one model run with-
out assimilation (i.e. open loop), one using the SEKF and
another one using the EnSRF with a 20-member ensemble.
This size of the ensemble is consistent with Fairbairn et al.
(2015) and Carrera et al. (2015). All three configurations start
from the same initial state obtained after spinning up ISBA–
CTRIP 20 times over 2008. This provides an initial state for
which the system has reached equilibrium.

For the SEKF configuration, the Jacobian matrix Eq. (5)
is obtained by finite differences using perturbed model runs.
Following Draper et al. (2009) and subsequent studies, per-
turbations are taken proportional to the dynamic range (dif-
ference between the volumetric field capacity wfc and the
wilting point wwilt) for the soil moisture variable. In prac-
tice, perturbations for SM are set to 10−4

×(wfc−wwilt). Re-
garding the fixed background error covariance, we prescribe
a mean volumetric standard deviation (SD) of 0.04 m3 m−3
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Figure 1. Satellite-derived products of the (a) original soil water index (SWI), (b) leaf area index (LAI), (c) evapotranspiration (ET) and
(d) gross primary production (GPP) values. They are averaged over 2008–2017 for (a), (b) and (c) and over 2008–2013 for (d).

for SM in the second layer and 0.02 m3 m−3 for SM in deeper
layers, both are then scaled by the dynamic range of SM. For
LAI, perturbations are set to a fraction (0.001) of the mod-
elled LAI following Rüdiger et al. (2010). LAI background
error SD is set to 20 % of the LAI value for modelled val-
ues above 2.0 m2 m−2 and to a constant 0.4 m2 m−2 for mod-
elled values below 2.0 m2 m−2. This SEKF configuration is
the same as the one detailed in Albergel et al. (2017).

About the EnSRF configuration, the initial ensemble is ob-
tained by perturbing the initial state using perturbations sam-
pled from a multivariate Gaussian distribution with a zero
mean and using the prescribed B covariance matrix used in
the SEKF as the covariance matrix of that multivariate Gaus-
sian distribution. Ensemble Kalman filters tend to underes-
timate variances and ensembles spreads. This brings about
an artificially small spread leading ultimately to filter diver-
gence if not counteracted. Hamill and Whitaker (2005) has
shown that adding random perturbations to each ensemble
member (additive inflation) at the start of each assimilation
cycle can overcome this issue. It can also be used to repre-
sent model error. As in Fairbairn et al. (2015) we use time-
correlated model errors using a first-order auto-regressive

model. We prescribe an associated Gaussian noise with zero
mean and an SD of λ(wfc−wwilt) for SM, with λ= 0.5 for
SM in layer 2 (1–4 cm depth), 0.2 for SM in layer 3 (4–10 cm
depth), 0.05 for SM in layer 4 (10–20 cm depth) and 0.02 for
SM in deeper layers. These values are in line with Fairbairn
et al. (2015). For LAI, we prescribe a Gaussian noise with
zero mean and an SD of 0.5 m2 −2. We also fix the time cor-
relation to 1 d for SM in the second layer and 3 d for SM in
deeper layers. This is similar to the work of Reichle et al.
(2002) and Mahfouf (2007). For LAI, a rather small 1-day
time correlation has to be used in order to avoid a collapse of
the ensemble during the winter season due to the LAI thresh-
old in ISBA.

For both SEKF and EnSRF configurations, we follow pre-
vious LDAS-Monde studies and set SSM observational er-
rors to 0.05 m3 m−3 scaled to the dynamic range and LAI ob-
servational errors to 20 % of the observed LAI values (see e.g
Albergel et al., 2017; Leroux et al., 2018; Tall et al., 2019).

3.5 Evaluation strategy

As a check, we first verify that EnSRF estimates of SSM and
LAI are closer to observations than their open-loop counter-
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parts. We also compare the impact of EnSRF and SEKF on
SM in layer 2 (1–4 cm depth; SM2) and LAI. This is achieved
using scores such as biases, correlation coefficients (R), root
mean square differences (RMSDs) and normalized root mean
square differences (nRMSDs; RMSD divided by the aver-
aged value of the studied variable).

The impact of assimilation on unobserved control vari-
ables (SM in deeper layers) is then assessed using a daily
analysis increment. Moreover, we study the evolution of
the ensemble correlations between unobserved and observed
variables in the EnSRF configuration. They drive (as Jaco-
bian values in the SEKF configuration) the influence of ob-
servations on unobserved control variables. We focus on SM
in layer 4 (10–20 cm depth; SM4) and layer 6 (40–60 cm
depth; SM6), as SM in layer 3 (4–10 cm depth) exhibits the
same behaviour as SM4, and soil moisture in layer 5 (20–
40 cm depth) and layer 7 (60–80 cm depth) have the same
behaviour as SM6 (not shown).

Potential improvements in EnSRF and SEKF estimates of
ET and GPP are measured using the same metrics as for SSM
and LAI.

Finally the influence on river discharges for both DA ap-
proaches is measured by the Nash–Sutcliffe efficiency (NSE)
score.

NSE= 1−
∑T
t=1(Q

st −Qot )2∑T
t=1(Q

ot −Q
o
)2
, (13)

whereQst is the simulated or analysed river discharge at time
t ,Qo

t is the observed river discharge at the same time andQ
o

is the observed averaged river discharge. The NSE is a quan-
tity between −∞ and 1. An NSE value of 1 means that the
model or analysis perfectly matches observations. An NSE
value of 0 means that the model or analysis has the same NSE
as the observed averaged river discharge. Improvements or
degradations caused by the SEKF or the EnSRF compared to
the open loop is measured with the normalized information
contribution index (NIC).

NICNSE = 100×
NSEanalysis−NSEmodel

1−NSEmodel
(14)

4 Results

4.1 Impact of assimilation on LAI

Figure 2 displays the open-loop, SEKF and EnSRF analyses
and observed LAI 10 d time series averaged over Europe and
the Mediterranean basin and spanning the period 2008–2017.
It shows that the model simulation underestimates LAI com-
pared to observations during winter and summer. The grow-
ing phase of vegetation occurs at a slower pace with averaged
LAI reaching its maximum early August instead of late June
to early July for observations. The senescence phase subse-
quently takes place later in the autumn compared to obser-

vations. Both DA systems efficiently correct model simula-
tions for that latter phase. However, both SEKF and EnSRF
fail to compensate for the slower LAI dynamics of the model
during spring. This is in compliance with what Albergel et
al. (2017) and Leroux et al. (2018) have observed over the
Euro-Mediterranean region. During the growing phase, mod-
elled LAI is more sensitive to atmospheric conditions than to
initial LAI conditions. This implies that, while DA can ar-
tificially add LAI and biomass, its impact can be limited by
the atmospheric forcing. During the senescence, LAI dynam-
ics is driven by the rate of mortality, thus making DA more
efficient.

As expected, both DA approaches produce estimates
that are closer to the assimilated LAI observations than
their open-loop counterpart. RMSDs are reduced from
0.880 m2 m−2 for the open loop to 0.671 m2 m−2 for SEKF
and 0.694 m2 m−2 for EnSRF. Correlations with assimilated
observations are increased from 0.593 for the model to 0.732
for SEKF and 0.723 for EnSRF. A full summary of statistics
for LAI can be found in Table 1. We also note that the maxi-
mum LAI for EnSRF is smaller than the model or the SEKF
maxima. The averaged bias for the open loop is rather small
with−0.020 m2 m−2, but it hides a negative bias during win-
ter and summer that is compensated for by a positive bias
during autumn. DA approaches mostly correct the positive
autumnal bias, thus making the averaged bias more negative,
−0.116 m2 m−2 for the SEKF and −0.201 m2 m−2 for the
EnSRF. The bias is more negative for the EnSRF than for the
SEKF for every season. This is due in part to a systematic
negative bias introduced by the EnSRF model perturbations.
This bias can sometimes lead to degraded performances. As
pointed out by Fairbairn et al. (2015), model perturbations
can introduce a bias into the system in LDASs.

Figure 3 shows nRMSD calculated over 2008–2017 for
the open loop (a) and the difference between nRMSD for
the open loop and the estimates produced with SEKF (b)
and EnSRF (c). On average nRMSD is reduced from 0.57
(open loop) to 0.42 (EnSRF) and 0.40 (SEKF). Both as-
similation approaches display the same geographical pat-
terns significantly reducing nRMSD over most parts of the
Euro-Mediterranean region (in blue in Fig. 3). For example,
roughly 20 % of the domain has an nRMSD reduced by 0.25.
We note that the largest nRMSD reductions occur in places
where nRMSD is large. The main differences between the
two methods occur in Ireland, western Great Britain, north-
west Spain, the Alps, Scandinavia and Arctic regions, where
the SEKF shows a greater positive impact than EnSRF, the
latter even providing slightly degraded estimates compared
to the open loop for 3 % of the total domain (in red in Fig. 3c).

The geographical patterns identified in Fig. 3 can be ex-
plained in part by the type of vegetation covering grid cells.
We investigate the impact of DA for each of the four main
vegetation types encountered in the Euro-Mediterranean re-
gion: deciduous forests, coniferous forests, C3 crops and
grasslands. To that end, we consider only grid cells (GCs) in
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Figure 2. 10 d time series of LAI averaged over the whole domain from the open loop (blue line), observations (green dots and dotted line)
and analyses obtained with the SEKF (dashed purple line) and the EnSRF (red line) for the period 2008–2017.

Table 1. Statistics (RMSD: root mean square difference, nRMSD: normalized RMSD, R: correlation and bias) between LDAS-Monde
estimates (open loop, SEKF and EnSRF) and observations for CGLS SSM, CGLS LAI, GLEAM ET and FLUXCOM GPP averaged over
the Euro-Mediterranean region for the period 2008–2017 (for SSM, LAI and ET) or 2008–2013 (for GPP).

Variable Experiment RMSD nRMSD R Bias

open loop 0.880 m2 m−2 0.568 0.593 −0.020 m2 m−2

LAI SEKF 0.671 m2 m−2 0.401 0.732 −0.116 m2 m−2

EnSRF 0.694 m2 m−2 0.419 0.723 −0.201 m2 m−2

open loop 0.035 m3 m−3 0.161 0.544 0.002 m3 m−3

SSM SEKF 0.032 m3 m−3 0.138 0.652 0.001 m3 m−3

EnSRF 0.027 m3 m−3 0.117 0.760 0.001 m3 m−3

open loop 0.833 kg m−2 d−1 0.712 0.789 −0.328 kg m−2 d−1

ET SEKF 0.778 kg m−2 d−1 0.689 0.803 −0.114 kg m−2 d−1

EnSRF 0.745 kg m−2 d−1 0.678 0.823 −0.059 kg m−2 d−1

open loop 1.369 g(C) m−2 d−1 0.913 0.784 −0.412 g(C) m−2 d−1

GPP SEKF 1.393 g(C) m−2 d−1 0.962 0.786 −0.146 g(C) m−2 d−1

EnSRF 1.344 g(C) m−2 d−1 0.908 0.817 −0.105 g(C) m−2 d−1

which at least 50 % of their surface is covered by one of these
vegetation types. Figure 4 displays the spatial distribution
of those grid cells: 1589 GCs for deciduous forests (5.7 %
of the domain), 4223 GCs for coniferous forests (15.2 %),
1672 GCs for C3 crops (6.0 %) and 1725 GCs for grass-
lands (6.2 %). We calculate the averaged seasonal RMSD
for the open loop and SEKF and EnSRF analyses for the
entire domain (Fig. 5a) and for each dominant vegetation
type (Fig. 5b–e). The biggest impact of assimilating LAI oc-
curs in autumn for deciduous forests (Fig. 5e). For exam-
ple, RMSD is reduced from 2.69 m2 m−2 for the open loop
to 1.72 m2 m−2 for the SEKF and 1.45 m2 m−2 for the En-
SRF. For C3 crops (Fig. 5c) both assimilation approaches re-
duce RMSD in a similar manner, the largest decrease hap-
pening between August and October. The SEKF and the En-
SRF offer contrasting performances in the case of grasslands

(Fig. 5d) as RMSDs are decreased by 0.18 m2 m−2 from the
open-loop to SEKF estimates but by 0.09 m2 m−2 for EnSRF
estimates. The largest RMSD reductions occur for both cases
in April and September. This explains the reduced perfor-
mance of the EnSRF compared to the SEKF over grasslands-
dominated Ireland, western Great Britain and Arctic regions.
For coniferous trees (Fig. 5b), the SEKF has a small positive
impact on RMSDs, and the EnSRF has a slightly negative
impact. This explains the rather poor performance of the En-
SRF over Scandinavia. This also explains what happens in
northwestern Spain and in the Alps. While not being domi-
nated by one type of vegetation, coniferous trees and grass-
lands, the two types for which the EnSRF performs poorly,
represent more than 70 % of the vegetation in those places.

The scale of reduction in RMSD for EnSRF analyses is
directly connected to estimated variances and standard devi-
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Figure 3. (a) Normalized RMSD (nRMSD) between observed LAI and its open-loop equivalent for the period 2008–2017 and the nRMSD
difference between assimilation experiments (SEKF in b and EnSRF in c) and the open loop.

Figure 4. Grid cells of the domain where a vegetation type (or
patch) is predominant (patch fraction above 50 %). Coniferous trees
are dominant for around 15 % of the domain that has plants (dark
green); deciduous broadleaved trees (green), C3 crops (orange) and
grasslands (light green) are in the majority for 6 % of the domain
each.

ations from the ensemble. The bigger the ensemble variances
are, the larger the weight of observations in the DA system
is. Figure 6 displays the seasonal evolution of ensemble stan-
dard deviations averaged over the whole domain and for grid
cells dominated by one type of vegetation. Ensemble stan-
dard deviations are clearly larger in summer than in winter
peaking in July for C3 crops at 0.22 m2 m−2, in August for
grasslands at 0.14 m2 m−2 and in September for coniferous
forests at 0.07 m2 m−2. The maximum standard deviation is
observed for deciduous forests and reaches 0.35 m2 m−2 also
in September.

Standard deviations in the EnSRF relies heavily on the
model perturbations. In the case of LAI, model perturbations
applied to LAI in every vegetation patch are sampled from

the same distribution. However, the behaviour of ensemble
standard deviations varies greatly seasonally and for each
type of vegetation. Standard deviations for coniferous trees
are so low it leads to almost no impact of DA. Such behaviour
can be explained by two caveats: first, ISBA-modelled LAI
evolves over a prescribed threshold (1 m2 m−2 for conifer-
ous forests, 0.3 m2 m−2 for other vegetation patches). Model
perturbations can lead to LAI values below this threshold. To
avoid model issues, estimated LAI is reset to that threshold
when this is the case. It can lead to an artificially reduced
ensemble standard deviation when modelled LAI is close to
that threshold as in winter. Secondly, since LAI dynamics
are smooth, reduced ensemble standard deviations due to the
winter season still have an impact in spring through the ISBA
LSM. An approach for model errors tailored for each vege-
tation patch could overcome the observed caveats.

4.2 Impact of assimilation on SSM

This section studies the impact of assimilating jointly LAI
and SSM on estimated SSM. We firstly recall that observed
SSM is derived from the SWI-001 satellite product and is
matched to the model climatology of soil moisture in the
second layer of soil (1–4 cm depth) using a seasonal lin-
ear rescaling. This means that assimilating observed SSM
mostly corrects the short-term variability of estimated SSM
and does not modify its climatological seasonal cycle. Re-
sults from either SEKF or EnSRF experiments are in line
with this statement. For example, the bias between observed
and estimated SSM remains, on average over 2008–2017, be-
low 0.002 m3 m−3 over all the domain (see also Table 1 all
the averaged scores with observed SSM).

Figure 7 displays RMSD calculated over 2008–2017 for
the open loop (a) and the difference between RMSD for the
open loop and the estimates produced with SEKF (b) and En-
SRF (c). On average, RMSD is reduced from 0.035 m3 m−3

(open loop) to 0.032 m3 m−3 (SEKF) and 0.027 m3 m−3 (En-
SRF). RMSD for the open loop tends to be generally larger in
wetter places than in drier places with the exception of south-
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Figure 5. Seasonal RMSD between LAI from observations and the open loop (blue line), the SEKF analysis (dashed purple line) and the
EnSRF analysis (red line) averaged over (a) the whole domain and grid cells where (b) coniferous trees, (c) C3 crops, (d) grasslands and
(e) deciduous broadleaved trees represent more than 50 % of plants for the period 2008–2017.

Figure 6. Seasonal standard deviation of the ensemble from the En-
SRF averaged over the whole domain (thick blue line) and grid cells
where deciduous broadleaved trees (green squares), coniferous trees
(black triangles), C3 crops (red circles) and grasslands (dashed pur-
ple line) represent the majority of plants for the period 2008–2017.

eastern Spain and parts of northern Africa where RMSDs can
be larger than 0.050 m3 m−3. Both assimilation approaches
significantly reduce RMSD in many places over the domain
(in blue in Fig. 7b–c). The main reduction occurs for both
approaches in the southern part of the Euro-Mediterranean
region where grid cells consist of bare soil and bare rocks.
In those places, vegetation is sparse, and SSM is the main
source of information in assimilated observations, making its
impact more straightforward. We also notice that the EnSRF
tends to systematically produce estimates that are closer to
observations than SEKF estimates. This is due to the model
perturbations for the EnSRF and the prescribed background
error covariance matrix in the SEKF. The prescribed model
error for the EnSRF leads to ensembles with a bigger stan-

dard deviation than the one prescribed in the SEKF for SSM.
This leads to a bigger weight to SSM observations in EnSRF
than in SEKF, thus, making EnSRF estimates closer to SSM
observations than SEKF estimates.

Assimilation also improves correlations with observed
SSM from 0.544 for the open loop on average to 0.652 for
SEKF and 0.760 for EnSRF. Figure 8 illustrates correlations
for the open loop (a) and the difference between correla-
tions for the open loop and SEKF (b) and EnSRF (c) out-
puts. From correlation results, similar conclusions are drawn
as from RMSDs. In particular the main improvement occurs
in northern Africa for both approaches. Finally we observe
negative correlations between the open-loop and observed
SSM (even with the seasonal linear rescaling) in arid places
such as the Sahara and deserts in the Arabian Peninsula. This
shows that the short-term variability of the observations is
different from what we model with ISBA in this region. It
raises the question of the quality of ISBA and/or SSM obser-
vations (after seasonal linear rescaling) in arid places. Stoffe-
len et al. (2017) have shown that observed SSM derived from
scatterometers can have poor quality in arid places. Further
studies of such aspects are beyond the scope of this paper.

4.3 Correlations between observed and unobserved
control variables

Examining Jacobians in the SEKF has provided interesting
insights into the sensitivity of SSM and LAI on soil mois-
ture in deeper layers (see e.g. Albergel et al., 2017, for cov-
erage of the Euro-Mediterranean region between 2000 and
2012). In the EnSRF, the Jacobian is replaced by correla-
tions sampled from the ensemble covariance matrix. Fig-
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Figure 7. (a) Root mean square difference (RMSD) between observed (rescaled) SSM and its open-loop equivalent for the period 2008–2017
and RMSD difference between assimilation experiments (SEKF in b and EnSRF in c) and the open loop.

Figure 8. (a) Correlation (R) between observed (rescaled) SSM and its open-loop equivalent for the period 2008–2017 and R difference
between assimilation experiments (SEKF in b and EnSRF in c) and the open loop.

ure 9 shows maps of correlations between soil moisture
in layer 2 (1–4 cm depth; SM2, which is used as a proxy
for SSM) and SM in layer 4 (10–20 cm depth; SM4) and
layer 6 (40–60 cm depth; SM6) and correlations between
LAI and SM2, SM4 and SM6. Correlations are averaged by
season (December–January–February, March–April–May,
June–July–August and September–October–November) over
the whole period 2008–2017.

The first two rows of Fig. 9 show the seasonal evolution of
correlations between SM2 and SM4 and SM6. SM4 is highly
correlated to SM2 (in blue), with R being above 0.5 for most
places of the domain for each season. SM6 is also highly cor-
related to SM2, but it is to a lesser extent, meaning that corre-
lations with SSM decrease in absolute value when we reach
deeper soil layers. We also notice seasonal tendencies. For
example, correlations with SM2 tend to be larger in western
Europe during spring, while they reach their maximum dur-
ing summer in Scandinavia. Negative correlations with SM2
(between −0.35 and −0.20) tend to appear during winter
over Russia. It means that in those areas in winter, there is
less liquid water in the surface when there is more liquid wa-
ter in deeper layers. This is linked to snow and freezing as we
only compare liquid soil moisture from the different layers of

soil. We further notice that SM2 and SM6 are uncorrelated in
summer over Spain and northern Africa. This decorrelation
between surface and root-zone soil moisture occurs during
very dry conditions, such as those which occurred in Spain
and northern Africa during summer. The same phenomenon
appears in very arid places such as in the Sahara. SM2 is not
correlated to soil moisture in deeper layers such as SM4 or
SM6 for each season. This implies that assimilating SSM in
those areas will not modify soil moisture in deeper layers, as
we will show in the next section.

The last three rows of Fig. 9 show the seasonal evolution of
correlations between LAI and soil moisture in layers 2, 4 and
6. Soil moisture tends to be less correlated on average to LAI
than to SSM; nevertheless the values reached are relatively
large (between−0.5 and 0.5). It means that assimilating LAI
has an impact on estimated soil moisture. In detail, correla-
tions between LAI and SM6 are larger in absolute value than
SM4 and SM2, meaning that LAI is more correlated to root-
zone soil moisture than with SSM. We also observe seasonal
geographical patterns. Positive correlations tend to appear in
summer in northern Europe, where deciduous and conifer-
ous forests are dominant, meaning more water in the soil
leads to a greater LAI. On the contrary in spring and sum-
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Figure 9. Correlation between the model variables sampled from ensembles and averaged seasonally (DJF: December–January–February,
MAM: March–April–May, JJA: June–July–August and SON: September–October–November). From top to bottom: correlation between soil
moisture in the second layer (1–4 cm; SM2) and the fourth layer (10–20 cm; SM4), between SM2 and soil moisture in the sixth layer (40–
60 cm; SM6), between LAI and SM2, between LAI and SM4, and between LAI and SM6. Areas is blue exhibit positive correlations; areas
in red exhibit anti-correlations.

mer, negative correlations appear around the Mediterranean
basin. This means a higher LAI leads to reduced soil mois-
ture due to plant transpiration in part. Barbu et al. (2011) has
already highlighted this kind of behaviour for Jacobians for
grassland places in southwest France.

Overall conclusions drawn from correlations are in ac-
cordance with those derived from the analyses of SEKF
Jacobians drawn in Albergel et al. (2017) over the Euro-
Mediterranean region and Tall et al. (2019) over Burkina
Faso. Nevertheless, we note that correlation can be influ-
enced by the way we apply model error. Another type of
model error, perturbing for example atmospheric forcing,
may have led to different characteristics of the covariances
between the ISBA variables.

4.4 Impact of assimilation on soil moisture in deeper
layers

Figure 10 displays soil moisture for layers 4 and 6 averaged
over 2008–2017 from the open loop (left) and the averaged
difference with SEKF estimates (central panels) and EnSRF
estimates (right). We observe that the SEKF and the EnSRF
overall have averaged SM4 values similar to the open loop.
The main difference occurs in northern Africa and in the Ara-
bian Peninsula, where the soil is estimated wetter than in
SEKF, with a difference reaching 0.02 m3 m−3. This dispar-
ity over arid regions in due solely to a wet bias introduced by
model error. In those places, EnSRF cannot correct this bias
using observations of SSM or LAI. In other places, EnSRF
can correct the bias potentially introduced by the model per-
turbations to unobserved control variables through the help
of correlations. We also identify greater EnSRF SM4 esti-
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mates over places such as Poland and Spain, but the differ-
ence with the open loop is always below 0.01 m3 m−3.

Regarding SM6 estimates, both SEKF and EnSRF pro-
duce a drier soil layer than the model for most of the do-
main as shown in Fig. 10. We identify these patterns for ev-
ery month without any seasonality (not shown). Also, En-
SRF SM6 is wetter for regions where bare soil dominates in
northern Africa than SM6 obtained with SEKF or the open
loop. Again this is due solely to the wet bias introduced by
model soil moisture perturbations as SM6 and SM2 are un-
correlated in those places. Then, we can observe for SM6 an
abrupt change in the Arctic region for both SEKF and En-
SRF compared to the open loop. This difference is due to
modified hydraulic and thermal soil properties in ISBA for
Arctic regions. This modification has been implemented by
Decharme et al. (2016) in order to include a dependency on
soil organic carbon content.

Figure 11 shows analysis increments in SM4 for SEKF
(top row) and EnSRF (bottom row) for May, July and
September. We see that increments in SM4 tend to be neg-
ative in May and September in most parts of the domain and
positive in July, particularly in northern Europe for SEKF.
The SM4 analyses increments for SEKF and EnSRF tend to
be similar, except for arid regions. This makes the SM4 esti-
mates less dependent on the data assimilation method.

For analysis increments for SM6, SEKF increments are
close to zero for every season (not shown). This implies that
the drier estimates are solely due to the joint effect of the
ISBA LSM and the updated LAI and soil moisture near the
surface. For EnSRF, this joint effect also occurs, but analysis
increments are not negligible (−0.01 m3 m−3 for the biggest
values). The EnSRF SM6 analysis increments compensate
for the wet bias from model error (not shown) and lead to
similar SM6 estimates as the SEKF in most places as shown
previously.

Overall SEKF and EnSRF provide similar estimates for
soil moisture in deeper layers for most places but not neces-
sarily through the same mechanisms.

4.5 Evaluation using evapotranspiration and gross
primary production

We now evaluate the performance of our data assimilation
systems using independent satellite-based datasets of ET and
GPP.

The open loop tends to underestimate ET leading to
an averaged negative bias of −0.328 kg m−2 d−1 reaching
−0.8 kg m−2 d−1 in June and July. Both SEKF and EnSRF
reduce this bias to −0.114 and −0.059 kg m−2 d−1, respec-
tively. More statistics on ET can be found in Table 1. Fig-
ure 12 displays correlations between the GLEAM dataset
and open-loop estimates (a) and the difference between cor-
relations for the open loop and the estimates produced with
SEKF (b) and EnSRF (c). Overall the correlation is increased
on average from 0.789 to 0.803 (SEKF) and 0.823 (EnSRF).

EnSRF provides estimates that are more correlated with this
independent dataset for almost all grid cells; it improves cor-
relation (between 0.05 and 0.1) especially over Spain, north-
ern Africa or around the Caspian Sea, where correlations be-
tween the open loop and GLEAM were poorer than for the
rest of the domain, showing its positive impact on ET. Simi-
lar conclusions can be drawn from geographical patterns ob-
served for RMSD and nRMSD (not shown; see Table 1 for
averaged results).

Figure 13 depicts the correlation between GPP from the
FLUXCOM dataset and open-loop estimates (a) and the dif-
ference between correlations for the open loop and the esti-
mates produced with SEKF (b) and EnSRF (c). As for ET,
EnSRF provides GPP estimates that are more correlated to
the FLUXCOM dataset than open-loop and SEKF estimates
for almost everywhere, on average 0.817 compared to 0.784
for the model and 0.786 for SEKF. The biggest improve-
ments are noticeable around the Caspian Sea (above 0.05),
where correlations between the model and FLUXCOM GPP
were poorer than for the rest of the domain. Also contrary
to the SEKF, degradations are confined to only few places in
Iraq, Iran and close to the Arctic Circle. Again similar con-
clusions can be drawn from geographical patterns observed
for RMSD and nRMSD (not shown; see Table 1 for averaged
results).

Overall the EnSRF exhibits moderate improvements for
GPP and ET compared to SEKF.

4.6 Evaluation using river discharges

We limit our evaluation to 92 stations over Europe with a
model NSE above −1. The NIC of EnSRF compared to the
open loop is displayed for those stations in Fig. 14. Most sta-
tions are located in France and Germany. Blue circles denote
a positive impact (above 3 %) of EnSRF on estimated river
discharges; red circles denote a negative one (below −3 %);
and grey diamonds denote a neutral impact (between −3 %
and 3 %). A positive NIC is observed for 61 stations and a
negative NIC for only 11 stations. The rest of the stations
(20) showed a neutral impact. The largest NIC values are
seen for German stations. Such a positive influence for En-
SRF contrasts with the rather neutral effect of SEKF on river
discharges. In compliance with previous studies (Albergel et
al., 2017; Fairbairn et al., 2017), we observe a significantly
positive NIC of SEKF for only 15 stations and a negative
NIC for 3 stations (not shown).

The rather systematic improvement of EnSRF estimates
compared to the open loop may be due in part to the assim-
ilation of SSM and LAI. It may also be due in part to a bias
added by the EnSRF ensemble formulation (as observed for
other LSVs) that compensates for an existing bias due to the
coupling between ISBA and CTRIP. Further investigations
have to be conducted to explore this question. Moreover, a
negative NIC is observed for most of the Spanish stations,
where anthropogenic effects (irrigation, importance of dams,
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Figure 10. From left to right: averaged soil moisture for the open loop (fourth layer: 10–20 cm; SM4; sixth layer: 40–60 cm; SM6) over
2008–2017, averaged analysis impact for SEKF (c, d) and EnSRF (e, f).

Figure 11. Averaged analysis increments for soil moisture in the fourth layer (10–20 cm; SM4) for SEKF and EnSRF for the months of
May (a, b), July (c, d) and September (e, f).

etc.) can potentially modify soil moisture, streamflow and
river discharges (Milano et al. , 2013). Since CTRIP does not
consider anthropogenic effects, this can explain poor perfor-
mances of the LDAS–CTRIP system.

5 Discussion

5.1 Dealing with model errors in the LDAS-Monde
EnSRF

As seen in the previous section, the quality of EnSRF esti-
mates highly depends on the specified model error. We have
seen that our system would benefit from a more tailored ap-
proach. One way that has been followed in the LDAS com-
munity is to use perturbed atmospheric forcings to generate
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Figure 12. (a) Correlation (R) between observed GLEAM ET and its open-loop equivalent for the period 2008–2017 and R difference
between assimilation experiments (SEKF in b and EnSRF in c) and the open loop.

Figure 13. (a) Correlation (R) between observed FLUXCOM gross primary production and its open-loop equivalent for the period 2008–
2013 and R difference between assimilation experiments (SEKF in b and EnSRF in c) and the open loop.

more physical model perturbations and to obtain an ensem-
ble whose covariances are more physically based. This can
be done by either perturbing precipitations only (e.g. Fair-
bairn et al., 2015; Munier et al., 2015), operating a more
complex system of perturbations that includes correlations
between precipitation, or shortwave and longwave radiation
(see among others Reichle et al., 2007; Liu et al., 2011;
Kumar et al., 2014). Another possibility is to perturb land
parameters such as the soil texture (Blyverket et al., 2019)
or vegetation parameters. The main drawback of such ap-
proaches is that they tend to overcome underestimated en-
semble variances by putting too much uncertainty on atmo-
spheric forcings or model parameters that might be far better
known than assumed. They can also induce a bias in model
estimates (as shown by Fairbairn et al., 2015).

The model error in ensemble Kalman filters aims to com-
pensate for insufficiencies of the model and forcings, but it
is difficult to prescribe as it aims to compensate something
we do not know. One way to curb this issue is to estimate
model error. Dee (2005) describes a range of approaches to
account for model biases in data assimilation systems. The
last decade has also seen the development of techniques to
estimate model error covariance matrices (see Tandeo et al.,

2020, for a review of existing approaches). Approaches based
on diagnostics developed in Desroziers et al. (2005) (Todling,
2015; Bowler, 2017) or on statistics of consecutive innova-
tions (Berry et al., 2013; Harlim et al., 2014) seem affordable
for LDASs from a computational point of view.

All these approaches help to estimate model deficiencies
but do not necessarily provide the reasons for those caveats.
For land surface models, they can come not only from possi-
bly inadequate atmospheric or soil and vegetation parameters
but also from inadequate model physics (missing processes,
etc.). Finding the reasons for those is a complex task. An in-
teresting step would be to assess the influence of atmospheric
uncertainties on LSMs by using ensemble atmospheric forc-
ings such as the 10-member atmospheric reanalysis included
in ERA5 (available at a coarser spatial and temporal res-
olution though) or the 51 members of ECMWF ensemble
medium-range forecasts. Such ideas have been explored over
Spain in the case of multi-model and multi-forcing ensem-
bles by Ehsan Bhulyan et al. (2019).
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Figure 14. Normalized information contribution (NIC) index assessing the improvement of Nash–Sutcliffe efficiency indices for EnSRF
river discharge estimates compared to open-loop counterparts. Blue circles denote a positive impact of DA; red circles denote a negative
impact; and small diamonds denote a neutral impact.

5.2 The question of 1-D or 3-D filtering

Both SEKF and EnSRF in this paper do not consider co-
variances between patches and between grid cells. However,
those covariances are likely to exists. For example, each
patch of a given grid cell is forced with the same atmospheric
forcing, errors in the forcing would result in correlated er-
rors for the state of each patch. The same thing could be said
for the state of two neighbouring grid cells since errors in
atmospheric reanalyses are spatially correlated (Hersbach et
al., 2020). Including those covariances could be beneficial to
LSV reanalyses.

By construction, the SEKF cannot include these covari-
ances by itself. Indeed the SEKF relies on the ISBA land
surface model to calculate covariances between variables by
building the Jacobian matrix of the model. Since each patch
of each grid cell of the model does not interact with the oth-
ers, the Jacobian between two variables of different patches
is zero. The same occurs for variables between different grid
cells. Therefore, if we want to include covariances between
patches or between grid cells, they have to be prescribed in
the fixed background error covariance matrix.

On the contrary, ensemble Kalman filters can include this
information automatically as estimated covariances are built
from the ensemble, thus making EnKFs more flexible than
the SEKF. In our case, that would lead to a single state vector
containing LAI and SM in the various layers of soil of each
patch, multiplied by around 12 for the size of this state. Fair-
bairn et al. (2015) and Carrera et al. (2015) have shown that
LDASs can use a small ensemble to provide good LSV es-
timates without experiencing the traditional undersampling
issues or spurious ensemble covariances. However, includ-
ing covariances between patches or between grid cells would
make undersampling and spurious covariances more likely
to occur due to the increased size of the state vector. Nev-
ertheless these two potential issues can be overcome. Infla-
tion aims to compensate undersampling by artificially inflat-

ing the ensemble spread. Approaches have been built to es-
timate inflation (under the form of a multiplicative coeffi-
cient). Anderson (2009) has proposed to add inflation as a
parameter in the control vector leading to inflation being up-
dated at each EnKF analysis. Bauser et al. (2018) have suc-
cessfully applied this approach to a soil hydrology problem.
Other approaches based on consistency diagnostics devel-
oped by Desroziers et al. (2005) (Li et al., 2009; Miyoshi,
2011) or reformulated EnKFs (Bocquet, 2011; Bocquet and
Sakov, 2012) have gained popularity.

Long-range spatial spurious covariances can be filtered out
using localization procedures either by artificially reducing
distant spurious correlation (Hamill et al., 2001; Houtekamer
and Mitchell, 2001) or by assimilating observations locally
(Ott et al., 2004); LDAS-Monde could be seen as an extreme
application of the second approach because of the 1-D nature
of the ISBA LSM. Localization procedures are very efficient
and are routinely used for a wide range of applications.

Unfortunately, the problem of potentially spurious covari-
ances between patches remains as we would need to fix a
criterion to determine which covariance has to be reduced.
Recently Farchi and Bocquet (2019) have proposed a local-
ization procedure based on augmented ensembles. Such for-
mulation allows for a covariance localization not based on
spatial characteristics, and it could be used to include covari-
ances between patches in the LDAS-Monde EnSRF.

6 Conclusions

In this paper, we have adapted the ensemble square root filter
used by Fairbairn et al. (2015) to the context of the joint as-
similation of surface soil moisture and leaf area index within
LDAS-Monde. The validity of our approach has then be as-
sessed over the Euro-Mediterranean region for the period
2008–2017 and compared to a simplified extended Kalman
filter that is routinely used in LDAS-Monde. Results show
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that EnSRF provides estimates of LAI of a similar quality
to SEKF. Estimated EnSRF surface soil moisture levels tend
to get closer to observations than their SEKF counterparts.
We have also examined the impact of EnSRF on controlled
soil moisture for deeper soil layers. For soil moisture in near-
surface layers (4–20 cm depth), analysis increments are sim-
ilar for both approaches, but EnSRF estimates tend to be
wetter especially for arid places due to a bias introduced by
the model error perturbations. For deeper layers (20–80 cm
depth), SEKF and EnSRF estimates of soil moisture are sim-
ilar but are obtained through different mechanisms. While
drier soil moisture in SEKF is obtained through the model
by transferring information from updated soil moisture at
or near the surface, the EnSRF produces soil moisture es-
timates partly because of the data assimilation routine itself,
acting like a bias correction procedure for soil layers either
near the surface or in the root zone to compensate for the
wet model bias via the correlations between soil moisture in
deeper layers and surface soil moisture and LAI. Finally, val-
idation of our approach has been carried out using datasets of
ET, GPP and river discharges, showing a moderate positive
impact for ET and GPP, but it is a marked positive one for
river discharges. This paper shows the potential of EnSRF
within LDAS-Monde and constitutes a good basis for further
developments.

One limitation of assimilating LAI is that LAI products
are only available every 10 d (for CGLS products). This only
allows for an update of LAI every 10 d, as the assimila-
tion of surface soil moisture is found to have a negligible
impact on the LAI analyses. LDAS-Monde would benefit
from having observations linked to vegetation available ev-
ery day. Lievens et al. (2017) and Shamambo et al. (2019)
have shown that ASCAT radar backscatter coefficients can
be linked to surface soil moisture and LAI (or vegetation op-
tical depth) through a water cloud model. The development
and the calibration of the water cloud model linking surface
soil moisture and LAI to radar backscatter coefficient is cur-
rently under development at CNRM. Assimilating ASCAT
radar backscatter coefficients would replace the assimilation
of ASCAT-derived soil water indices. It would open the pos-
sibility of having access to daily indirect observations of LAI
and improve LDAS-Monde daily updates of LAI and soil
moisture.

Code availability. LDAS-Monde is interconnected with the ISBA
land surface model and is available as an open-source project via the
surface modelling platform SURFEX. SURFEX can be downloaded
freely at http://www.umr-cnrm.fr/surfex/ (CNRM, 2016) and uses
the CECILL-C licence (a French equivalent to the L-GPL li-
cence; http://cecill.info/licences/Licence_CeCILL_V1.1-US.html;
CEA-CNRS-Inria, 2013). It is updated at a relatively low frequency
(every 3 to 6 months). If more frequent updates are needed, or
if what is required is not in Open-SURFEX (DrHOOK, FA/LFI
formats or GAUSSIAN grid), you are invited to follow the pro-

cedure to get an SVN account and to access real-time modifi-
cations of the code (see the instructions in the first link). The
developments presented in this study stem from SURFEX ver-
sion 8.1. The LDAS-Monde technical documentation and con-
tact point are freely available at https://opensource.umr-cnrm.fr/
projects/openldasmonde/files (CNRM, 2019).
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