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Figure S1. Annual precipitation (dots) and fraction of ET/P (bars) over 8 hydrological years 

within the C2 catchment.  
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Table S1. The 10 canopy attributes that has the highest correlation to seasonal IC/P.  

 Canopy Attributes 
Throughfall 

collector 
Seasonal 

 IC/P 
ElevMAD 
medium ElevIQ 

Total return 
count 

Elev 
variance ElevL2 

Total return 
Count above 200 

All returns 
Above 200 ElevAAD 

Totall 
returns Elevstddev 

1 0.30 2.9 6.5 260.0 29.0 2.9 213.0 213.0 4.4 260.0 5.4 
2 0.23 2.7 4.5 167.0 16.9 2.3 150.0 150.0 3.1 167.0 4.1 
3 0.40 2.8 7.1 260.0 22.1 2.6 212.0 212.0 3.9 260.0 4.7 
4 0.76 5.1 10.5 339.0 39.8 3.6 298.0 298.0 5.4 339.0 6.3 
5 0.59 4.0 8.4 271.0 28.3 3.1 216.0 216.0 4.5 271.0 5.3 
6 0.48 3.8 10.0 257.0 34.1 3.3 216.0 216.0 5.0 257.0 5.8 
7 0.33 3.3 5.9 187.0 21.4 2.6 122.0 122.0 3.7 187.0 4.6 
8 0.69 4.9 9.2 298.0 29.9 3.2 252.0 252.0 4.7 298.0 5.5 
9 0.21 3.3 8.3 231.0 27.8 3.0 200.0 200.0 4.5 231.0 5.3 

10 0.30 1.7 3.2 263.0 14.0 2.0 229.0 229.0 2.8 263.0 3.7 
11 0.20 2.3 8.0 207.0 26.3 2.8 164.0 164.0 4.3 207.0 5.1 
12 0.18 1.9 4.4 256.0 9.2 1.7 236.0 236.0 2.5 256.0 3.0 
13 0.27 2.1 3.8 219.0 6.5 1.5 169.0 169.0 2.2 219.0 2.6 
14 0.29 2.5 4.8 249.0 10.0 1.8 207.0 207.0 2.7 249.0 3.2 
15 0.10 1.6 3.1 190.0 6.8 1.5 126.0 126.0 2.1 190.0 2.6 
16 0.26 2.3 4.6 223.0 9.0 1.7 193.0 193.0 2.4 223.0 3.0 
17 0.30 2.8 5.5 140.0 12.3 2.0 132.0 132.0 3.0 140.0 3.5 
18 0.02 0.0 0.0 101.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
19 0.37 3.4 6.6 221.0 19.6 2.5 206.0 206.0 3.7 221.0 4.4 
20 0.30 2.1 4.0 179.0 17.9 2.2 156.0 156.0 3.1 179.0 4.2 
21 0.07 1.1 2.2 112.0 3.7 1.0 42.0 42.0 1.3 112.0 1.9 
22 0.25 1.2 2.6 184.0 2.6 0.9 138.0 138.0 1.4 184.0 1.6 
23 0.17 1.1 2.3 172.0 3.3 1.0 128.0 128.0 1.4 172.0 1.8 
24 0.15 1.1 2.2 204.0 2.3 0.9 133.0 133.0 1.2 204.0 1.5 
25 0.27 1.0 1.6 232.0 1.8 0.8 154.0 154.0 1.0 232.0 1.3 

Correlation between IC/P 
and canopy attributes  0.77 0.62 0.60 0.59 0.59 0.57 0.57 0.57 0.55 0.54 

 

ElevMADmedium = the median of the absolute deviations from the overall median 

ElevIQ = interquartile distance of elevations within the plot 

Total return count = total number of all returns of the plot 

Elevvariance = variance of elevations within the plot 

ElevL2 = second L-moment of the return heights of the plot 

Total return count above 200 = total number of all returns of the plot above 2 meters 
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All returns above 200 = number of returns above 2 meters 

ElevAAD = average absolute deviation 

Totall returns = number of all returns of the plot 

Elevstddev = standard deviation of elevations within the plot    
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Figure S2. Normalized leaf area density distributions for main tree species and their fraction 

of total stand leaf area index (LAItot) with the C2 subcatchment. 
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Table S2. Model parameter values applied in simulations (for plant type specific parameters 

see Table S2). 

Description Parameter value Source 

Canopy radiation parameters   

Clumping coefficient (-) 0.7 (Campbell and Norman, 1998) 

Leaf-angle distribution (-) 1.0 (spherical) (Campbell and Norman, 1998) 

Shoot PAR albedo (-) 0.1 Adjusted to match canopy albedo 

Shoot NIR albedo (-) 0.39 Adjusted to match canopy albedo 

Leaf emissivity (-) 0.98 (Campbell and Norman, 1998) 

Canopy flow parameters   

Normalized horizontal pressure gradient (m s-2) 0.01 
 

Foliage drag coefficient (-) 0.15 (Lee et al., 1994)  

Schmidt number for H20, T, CO2 2.0 
 

Canopy interception parameters   

Maximum interception storage (mm) 0.2–0.5 × LAI (Watanabe and Mizutani, 1996) 

Leaf orientation factor (-) 0.5 (random) (Watanabe and Mizutani, 1996) 

Plant type parameters for photosynthesis–stomatal conductance model 

Carboxylation capacity Vcmax at 25°C (µmol m-2 s-1)a Vcmax25 see Table 2 

Electron transport capacity Jmax at 25°C  (µmol m-2 s-1)a 1.97 × Vcmax25 (Kattge and Knorr, 2007) 

Leaf dark respiration rate rd at 25°C (µmol m-2 s-1)a 0.023 × Vcmax25 (Launiainen et al., 2015) 

Co-limitation parameter 0.95 
 

Curvature of electron transport light response (-) 0.7 (Launiainen et al., 2015) 

Quantum yield parameter (mol mol-1) 0.2 (Launiainen et al., 2015) 

Stomatal model slope (-)b g1 see Table 2 

Residual conductance (mol m-2 s-1)b g0 see Table 2 

Bryophyte layer parameters   

Height (m) 0.095 (Soudzilovskaia et al., 2013) 

Roughness height (m) 0.01 (Launiainen et al., 2015) 

Bulk density (kg m-3) 17.1 (Soudzilovskaia et al., 2013) 

Total pore volume (m3 m-3) 0.98 (Voortman et al., 2014) 

Maximum gravimetric water content, wmax (g g-1) 10 (Soudzilovskaia et al., 2013) 

Minimum gravimetric water content (g g-1) 1.5 (Launiainen et al., 2015) 

Van Genuchten water retention parameter (cm-1) 0.13 (Voortman et al., 2014) 

Van Genuchten water retention parameter (-) 2.17 (Voortman et al., 2014) 

Saturated hydraulic conductivity (m/h) 4.2 × 10-4 (Voortman et al., 2014) 
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Pore connectivity (-) -2.37 (Voortman et al., 2014) 

Emissivity (-) 0.98 (Campbell and Norman, 1998) 

PAR albedo at wmax (-)c 0.11 (Bubier et al., 1997) 

NIR albedo at wmax (-)c 0.29 (Bubier et al., 1997) 

Top soil layer parameters   

Depth (m) 0.1 2 × measurement depth of soil 

temperature and moisture 

Porosity (m3/m3) 0.8  (Launiainen et al., 2015) 

Residual water content (m3/m3) 0.01 (Launiainen et al., 2015) 

Van Genuchten water retention parameter (cm-1) 0.7 (Launiainen et al., 2015) 

Van Genuchten water retention parameter (-) 1.25 (Launiainen et al., 2015) 

Saturated hydraulic conductivity (m/h) 0.015  (Launiainen et al., 2015) 

Thermal conductivity of solids (W/m/K) 2.17 Derived from soil compositiond 

Heat capacity of solids (MJ/m3/K) 2.35  Derived from soil compositiond 

a Temperature response curves of Vcmax and Jmax are adopted from Kattge and Knorr (2007) and of rd from Launiainen et al. (2015) 

b Parameters of Medlyn et al. (2011) optimal stomatal conductance model 

c Response of albedo to bryophyte water content (Kieloaho and Launianen, 2018) 

d Soil composition of top soil layer adopted from Jauhiainen (2004) and thermal properties soil materials from Tian et al. (2016) and 

Campbell and Norman (1998) 
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Table S3. Plant type specific model parameter values applied in simulations. 

Description Parameter value 

 Spruce Pine Birch Understory 

Maximum LAI, LAImax (m2/m2)a 0.31 × LAItot 0.64 × LAItot 0.05 × LAItot 0.4–0.8  

Minimum LAI (m2/m2)a 0.8 × LAImax 0.8 × LAImax 0.1 × LAImax 0.5 × LAImax 

Minimum value for seasonal cycle modifier (-)b 0.1 0.1 0.01 0.01 

Characteristic leaf length scale (m) 0.02 0.02 0.05 0.05 

Nitrogen attenuation coefficient (-) 0.5 0.5 0.2 0 

Vcmax25 (µmol m-2 s-1) 60 50 45 40 

Stomatal model slope g1 (-) 2.5 2.5 4.5 4.5 

Residual conductance g0 (mol m-2 s-1) 0.004 0.004 0.01 0.01 

a Seasonal development of LAI starts when the degree day sum (Tbase = 5°C) exceeds 45 days and reaches maturation at 250 days. Leaf 

senescence in autumn follows Launiainen et al. (2015). LAItot = 3.4–6.9 m2 m-2. 

b Seasonal cycle modifier for photosynthetic capacity is based on the delayed effect of temperature (Kolari et al., 2007; Launiainen et 

al., 2015). 
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Figure S3. Scatter plot comparison, time series and average diurnal cycle for measured and 

modelled components of net radiation (a-b), sensible heat flux (c), latent heat flux (d), and 

gross primary production (e). Eddy covariance data (c-e) is non-gapfilled and only model 

results of times with data available are plotted in diurnal cycles. Modeled data are in colors 

and measured in black. 
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