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Abstract. Dynamical downscaling of future projections of
global climate model outputs can provide useful informa-
tion about plausible and possible changes to water resource
availability, for which there is increasing demand in re-
gional water resource planning processes. By explicitly mod-
elling climate processes within and across global climate
model grid cells for a region, dynamical downscaling can
provide higher-resolution hydroclimate projections and in-
dependent (from historical time series), physically plausible
future rainfall time series for hydrological modelling appli-
cations. However, since rainfall is not typically constrained
to observations by these methods, there is often a need for
bias correction before use in hydrological modelling. Many
bias-correction methods (such as scaling, empirical and dis-
tributional mapping) have been proposed in the literature, but
methods that treat daily amounts only (and not sequencing)
can result in residual biases in certain rainfall characteris-
tics, which flow through to biases and problems with subse-
quently modelled runoff. We apply quantile–quantile map-
ping to rainfall dynamically downscaled by the NSW and
ACT Regional Climate Modelling (NARCliM) Project in the
state of Victoria, Australia, and examine the effect of this on
(i) biases both before and after bias correction in different
rainfall metrics, (ii) change signals in metrics in comparison
to the bias and (iii) the effect of bias correction on wet–wet
and dry–dry transition probabilities. After bias correction,
persistence of wet states is under-correlated (i.e. more ran-
dom than observations), and this results in a significant bias
(underestimation) of runoff using hydrological models cali-
brated on historical data. A novel representation of quantile–
quantile mapping is developed based on lag-one transition
probabilities of dry and wet states, and we use this to ex-

plain residual biases in transition probabilities. Representing
quantile–quantile mapping in this way demonstrates that any
quantile mapping bias-correction method is unable to correct
the underestimation of autocorrelation of rainfall sequenc-
ing, which suggests that new methods are needed to properly
bias-correct dynamical downscaling rainfall outputs.

1 Introduction

There is a growing and ongoing need for information about
plausible and possible changes to water resource availabil-
ity in the future due to climate change. End users of hydro-
climate projections are interested in more spatially detailed
information, information on water metrics for low- and high-
flow events, and better-predicted interdecadal metrics (Pot-
ter et al., 2018). Dynamical downscaling (such as that pro-
vided by the NARCliM Project for south-eastern Australia;
see Sect. 2.1) has potential to provide this type of informa-
tion; however, there remain challenges associated with the
use of these data. In this paper, we examine the suitability
of NARCliM projections for providing hydroclimate projec-
tions for south-eastern Australia. Specifically, we look at the
extent of biases in rainfall, which necessitate daily bias cor-
rection, and the effect of quantile–quantile mapping (QQM)
bias correction on rainfall sequencing metrics that are impor-
tant for runoff generation. Subsequent research in a related
paper (Charles et al., 2020) focuses attention on the effect of
these biases on runoff.

Of particular interest are possible changes to rainfall char-
acteristics that could affect runoff and streamflow. Informa-
tion on future changes to rainfall are typically derived from
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ensembles of global climate models (GCMs); however, the
spatial resolution of these models is too coarse to provide in-
formation at the scale needed for hydrological impact mod-
elling (i.e. catchments or gauges). Downscaling is the pro-
cess by which finer-scale spatial detail is produced from the
GCM change information, which is at too coarse a resolu-
tion to be usable (Maraun et al., 2010). Many water resource
studies use “empirical scaling”, where historical rainfall ob-
servations are scaled (perhaps annually or seasonally) for di-
rect use, or “statistical downscaling”, in which a direct sta-
tistical relationship is developed between rainfall and other
atmospheric predictors. These methods are relatively simple
to use, and results from empirical scaling typically lie in the
middle of the range of results from other downscaling meth-
ods (Chiew et al., 2010; Potter et al., 2018). However, as em-
pirical scaling methods rely on the historical record of rain-
fall, future changes in rainfall sequencing (e.g. changes to
multi-day accumulations and wet/dry transitions) and conse-
quent effects on runoff cannot be properly modelled. Dynam-
ical downscaling, in which a regional climate model (RCM)
of finer spatial resolution than the host GCM is used, gen-
erates rainfall sequences independent from historical obser-
vations. However, challenges remain with using dynamical
downscaling output since rainfall (and other climate vari-
ables) is not explicitly constrained by observations (see, e.g.,
Piani et al., 2010; Chen et al., 2011; Teutschbein and Seib-
ert, 2013). As such, dynamical downscaling outputs typically
need to be bias-corrected for direct use in hydrological mod-
els. In particular, a common feature of dynamical downscal-
ing is the tendency to underpredict the occurrence of zero-
and low-rainfall days, which is sometimes known as the driz-
zle effect (e.g. Maraun, 2013). RCM output has been bias-
corrected for applications in Australia in Tasmania (Bennett
et al., 2014) and at the central coast of New South Wales
(Lockart et al., 2016), but both these studies found residual
biases in multi-day rainfall events, dry-spell durations and
autocorrelation of rainfall occurrences (see also Themeßl et
al., 2012).

Water resources in Victoria are shared by urban users,
irrigators, industry and the environment. Long-term water
strategies and shorter-term sustainable water strategies are
required for Victoria’s water regions by the Victorian Wa-
ter Act. A key aspect of these water planning processes is
accounting for scenarios of climate change as determined by
the available science. Cool-season rainfall in Victoria since
2000 has averaged 15 % less than the long-term average dur-
ing the 20th century (Hope et al., 2017). This reduction has
been linked to the observed expansion of Hadley cell cir-
culation (Post et al., 2014). The median scenario of climate
change for Victoria typically has reduced rainfall and runoff
later in the century, with slightly larger percentage declines in
the western parts of the state (Post et al., 2012; Potter et al.,
2016). Providing better information to improve water plan-
ning processes includes developing finer-spatial-resolution

projections and different metrics of daily rainfall amounts
and occurrences.

Most bias-correction methods alter daily amounts with the
application of distributional mappings. The temporal struc-
ture of the occurrences is most often unaltered. Further, bias
correction can and does affect the magnitude of change sig-
nals (Hagemann et al., 2011; Gutjahr and Heinemann, 2013;
Dosio, 2016). The underlying assumption of bias correction
is that the RCM output faithfully represents the climate pro-
cesses responsible for rainfall, although the amounts them-
selves may not be accurate. Water resource projection mod-
elling is concerned with future changes, and so an argument
could be made that, although the rainfall amounts are biased
for hindcast (historical) simulations, they will presumably be
equally biased for future simulations. In this way, changes
can be inferred from comparing biased historical and future
rainfall and runoff. However, the sensitivity of runoff to rain-
fall means that biased rainfall can have large effects on the
change signal of runoff (Teng et al., 2015). Furthermore,
hydrological models are calibrated to historical rainfall and
runoff sequences, and since the distribution of runoff is usu-
ally highly skewed, using biased rainfall sequences can dis-
tort the distribution of runoff, thus creating large biases in
high and low runoff amounts. These biases in runoff make
inferences on the changes to runoff characteristics highly un-
certain when biased rainfall inputs are used.

Bias correction identifies a relationship or mapping be-
tween observed historical rainfall and modelled historical
rainfall (in this case hindcast RCM rainfall). This mapping
when applied to hindcast RCM rainfall results in a distribu-
tion of rainfall identical (or very similar, depending on the
methods) to the historical observations. This mapping can
then be applied to future RCM rainfall, resulting in unbiased
future rainfall sequences. Of course, applying the relation-
ship into the future assumes the bias in RCM rainfall does not
change into the future or for different (wetter or drier) climate
periods. Bias-correction methods (see Schmidli et al., 2006;
Boé et al., 2007; Lenderink et al., 2007; Christensen et al.,
2008; Piani et al., 2010; Themeßl et al., 2011; Teng et al.,
2015) fall into three main categories:

– scaling or change-factor methods,

– non-parametric (empirical) quantile–quantile mapping
(QQM),

– parametric (distributional) QQM.

Scaling methods simply consider the change in mean and
apply a constant factor to correct bias in RCM rainfall.
Quantile–quantile mapping matches each quantile (or a se-
lection of quantiles) of the two distributions. This can be
done using the empirical cumulative density or fitting a dis-
tribution to both observed and hindcast RCM daily rainfall
amounts.

Teng et al. (2015) demonstrated that representing daily
rainfall distributions with double-gamma distributions (see
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also, e.g., Yang et al., 2010) was largely identical to empirical
QQM, implying that distributional and empirical approaches
give similar results so long as the distribution is sufficiently
flexible. Arguably, the choice between non-parametric (em-
pirical) or parametric (distributional) mapping is a repre-
sentation of the bias–variance trade-off problem. Empirical
mapping will reduce bias to zero, but at the cost of increas-
ing the variance of predictions, since the mapping will be
very sensitive to individual amounts. Distributional mapping
fits the data across the entire rainfall distribution but can re-
sult in the hindcast RCM rainfall not being mapped exactly
to the historical distribution. For this study we apply empiri-
cal quantile–quantile mapping for each season across integral
percentiles as described below. Overall there is a small and
relatively unimportant difference between different methods
for QQM, at least in the Australian context studied by Teng
et al. (2015).

Whereas quantile–quantile mapping can effectively reduce
historical error in daily rainfall amounts to zero, albeit with
some of the caveats already mentioned, the bias-corrected
rainfall time series could still harbour biases and unrealis-
tic characteristics that will result in runoff biases after being
routed through a rainfall–runoff model. Specifically, QQM
bias correction cannot remove biases in rainfall sequencing
and multi-day accumulations that might not be readily ap-
parent when considering only the daily distribution of rain-
fall amounts (e.g. Addor and Seibert, 2014; Li et al., 2016;
Ines and Hansen, 2006). However, Terink et al. (2010) and
Rajczak et al. (2016) contend that bias correction produces
reasonable transition probabilities and spell durations.

Unfortunately, it is not easy to tell exactly which charac-
teristics of rainfall drive runoff generation, and in general
the sensitivity will depend on catchment physical character-
istics, storm type and intensity, as well as antecedent mois-
ture and groundwater stores (Goodrich and Woolhiser, 1991;
Bell and Moore, 2000; Beven, 2001). Spectral and multifrac-
tal approaches (e.g. Milly and Wetherald, 2002; Matsoukas
et al., 2000; Tessier et al., 1996) show that rainfall variabil-
ity at shorter timescales is by and large incorporated into
soil moisture buffers, thus dampening runoff variability at
these timescales. However, over timescales of several days
and greater, variability in runoff matches variability in rain-
fall more and more closely. As such, it is evident that large,
intense rainfall events (measured perhaps by the upper tail
of the rainfall distribution), more seasonal rainfall regimes
(Wolock and McCabe, 1999), relatively larger variability of
rainfall (Potter and Chiew, 2011) and large multi-day accu-
mulations of rainfall are most important for runoff generation
(Addor and Seibert, 2014), particularly for high-flow events
(Jaun et al., 2008), and we focus on these kinds of rainfall
metrics in this study.

The main aim of the paper is to investigate the effect of
bias correction on rainfall characteristics relevant to runoff
generation. Given that QQM bias-correction approaches are
specifically tailored for correcting daily amounts while re-

taining the existing sequencing of occurrences, we seek to
understand the effect of bias correction on rainfall sequenc-
ing and transition probabilities. Specifically, we investigate
whether key rainfall metrics contain biases in dynamically
downscaled GCM hindcasts relative to observations. We then
examine if bias correction acts to either enhance or moderate
any such biases, and whether bias correction affects change
signals (i.e. downscaled GCM future relative to downscaled
GCM historical). Section 2 describes the data and methods
used in this study, Sect. 3 presents results, and Sects. 4 and 5
contain a discussion and conclusions.

2 Data and methods

2.1 The NARCliM Project

The NSW and ACT Regional Climate Modelling Project
(NARCliM; https://climatechange.environment.nsw.gov.
au/Climate-projections-for-NSW/About-NARCliM, last
access: 28 April, 2020; Evans et al., 2014) is a regional cli-
mate change project to deliver high-resolution dynamically
downscaled climate change projections. As noted previously,
GCMs run at a spatial resolution that is unable to provide
meaningful information for decision makers at catchment
and basin scale. To resolve subgrid processes, the NARCliM
Project uses the Weather Research and Forecasting (WRF)
regional climate model (specifically the Advanced Research
WRF version 3; Evans and McCabe, 2010), which is a
mesoscale atmospheric model with many applications both
in numerical weather prediction and climate projections
(Skamarock and Klemp, 2008), forced by atmospheric vari-
ables output from GCMs. The NARCliM modelling domain
is most of south-eastern Australia and the neighbouring
Pacific Ocean at 10 km× 10 km resolution, nested within the
larger CORDEX Australasian region (Giorgi et al., 2009)
at 50 km× 50 km resolution (Evans et al., 2014). WRF
reads in output from a GCM along its lateral and lower
boundaries and simulates the climate at a finer resolution
within those boundaries (Skamarock et al., 2008). Out of
the 23 CMIP3 (Meehl et al., 2007) GCMs available at the
time the NARCliM Project started, four were eventually
chosen for downscaling: MIROC3.2 (medres), ECHAM5,
CCCM3.1 and CSIRO-Mk3.0 (Evans et al., 2013). Initially,
GCMs that did not adequately represent climate dynamics
of the region were eliminated. Based on a meta-analysis,
GCMs were then ranked, and independence of model error
and future changes was assessed to represent the range of the
model ensemble (Evans and Ji, 2012a). A similar procedure
was applied to select the configurations of WRF used to
downscale each host GCM (Evans and Ji, 2012b; see also
Ji et al., 2016, and Olson et al., 2016). WRF models were
evaluated against 2-week heavy-rainfall events with an intent
to select the best possible RCM configurations for rainfall
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generation while also accounting for model uncertainty
(Olson et al., 2016).

Overall, there is reasonable confidence in NARCliM pro-
jections generally, for both rainfall and temperatures (Evans
et al., 2012; Olson et al., 2016; Ji et al., 2016), particularly at
daily scale for rainfall (Gilmore et al., 2016), although NAR-
CliM has a quantitative cold and wet bias generally (Ji et
al., 2016). The underlying performance of the RCM compo-
nent of WRF has been tested extensively (Evans et al., 2012;
Andrys et al., 2016; Ekström, 2016; Olson et al., 2016; Ji et
al., 2016; Gilmore et al., 2016). The three WRF physics con-
figurations are labelled R1, R2 and R3 (see Evans et al., 2014,
their Table 1); detailed information is provided elsewhere
(Evans et al., 2012; Ekström, 2016; Gilmore et al., 2016; Ji
et al., 2016). The full NARCliM model ensemble thus con-
sists of 12 members (four selected GCMs, each downscaled
by the three RCM configurations).

Ji et al. (2016) evaluated model output against AWAP (see
below) rainfall, demonstrating good representation of precip-
itation processes at a wide range of timescales, but conclude
that bias correction is still needed before applying the data.
For hydrological applications, the R2 configuration is recom-
mended (Olson et al., 2016). Although we consider the entire
modelling ensemble in this paper, in a related paper (Charles
et al., 2020) we use only that specific RCM physics scheme
for modelling runoff. We discuss the physical credibility of
the NARCliM ensemble in greater detail in Sect. 4 below.

2.2 Daily rainfall data

Daily accumulated precipitation from the NARCliM 12-
member WRF-downscaled ensemble (referred to from here
onwards as “NARCliM rainfall”) is produced at approx-
imately 10 km× 10 km grids, corresponding to the NAR-
CliM domain covering south-eastern Australia (Evans et
al., 2014; Ji et al., 2016), which was bilinearly interpo-
lated to a regular grid using Climate Data Operators (CDO;
https://code.mpimet.mpg.de/projects/cdo, last access: 8 July
2019). NARCliM provides bias-corrected data (Evans and
Argüeso, 2014), corrected with a parametric gamma distribu-
tion quantile–quantile mapping procedure, which is similar
in many respects to the non-parametric procedure we apply
to the raw NARCliM data in this paper (Teng et al., 2015).

The historical (baseline) period for NARCliM projections
is 1990–2009, and we relate NARCliM historical rainfall
features to observations and NCEP/NCAR Reanalysis over
the same period in this paper. Realisations of future rain-
fall follow the A2 scenario of the Special Report on Emis-
sions Scenarios (SRES) (Nakićenović et al., 2000) at 2060–
2079. Change signals presented later are thus averages over
2060–2079 compared to 1990–2009. Observed rainfall data
are obtained from the Australian Water Availability Project
(AWAP; Jones et al., 2009). This is a 0.05◦× 0.05◦ gridded
dataset interpolating observations from point rainfall records
from the Australian Bureau of Meteorology. The AWAP

rainfall observations are projected over a regular latitude–
longitude grid, hence the need for interpolation of NARCliM
data to be aligned with this. The AWAP rainfall data are then
regridded by using weighted averages of AWAP grid cells
overlapping the 0.1◦× 0.1◦ AWAP grid.

2.3 Quantile–quantile mapping bias correction

Quantile–quantile mapping bias correction works by esti-
mating the cumulative density function for observed and
modelled historical observed (here AWAP) daily rainfall
amounts: Fo and Fm. These are then combined to produce
a mapping function:

Po = F−1
o ◦Fm(Pm) (1)

(Fig. 1). The map F−1
o ◦Fm thus returns the observed daily

distribution (or approximately so, depending on the method)
when applied to the modelled historical time series and a
bias-corrected future time series when applied to the mod-
elled future time series. We use the R package “qmap” (Gud-
mundsson et al., 2012) to estimate the cumulative density
functions for the mapping function. This package estimates
quantiles for both observed and modelled non-zero rainfall
at integral percentiles including 0 (minimum) and 100 (max-
imum). The quantile for a particular daily rainfall amount is
then estimated using linear interpolation between percentiles,
and linear extrapolation in case of future modelled rainfall ly-
ing outside the historical distribution. Compared to using the
empirical distributions directly, differences between the bias-
corrected modelled rainfall distribution and the distribution
of observations can occur (of the order of 2–3 %) because the
interpolation between large rainfall percentiles (particularly
99 to 100) will not match observed percentiles exactly. As
noted by Teng et al. (2015), sufficiently flexible approaches
to bias correction give very similar results. QQM bias cor-
rection in this way was applied separately to each 3-month
season (i.e. DJF, MAM, JJA and SON) in each grid cell inde-
pendently, using the full historical period (1990–2009) as a
calibration period, to both historical (1990–2009) and future
(2060–2079) periods.

2.4 Defining transition probabilities

Whereas QQM bias correction can correct the daily distri-
bution exactly, daily bias correction is not set up to correct
sequences and accumulations (Addor and Seibert, 2014). To
this end, we consider not only how bias correction affects
daily metrics of rainfall but also the sequencing of wet days
that produce runoff. One way of measuring this is through
transition probabilities of wet and dry sequences. To this end,
we consider a simple two-state Markov chain rainfall occur-
rence model. Here, the probability of a wet or dry day de-
pends on whether the previous day was wet or dry. A “dry”
day can be defined as either zero rainfall or rainfall below a
given threshold (such as 1 mm). Define the wet-to-wet tran-
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Figure 1. Schematic of QQM bias correction. (a) Empirical cumu-
lative density functions for both observed and modelled rainfall in
a given grid cell. Percentiles are estimated from both distributions,
which are equated in bias correction to generate a mapping func-
tion (b). Values lying between percentiles or outside the modelled
maximum value are interpolated or extrapolated linearly.

sition probability (i.e. the probability of a wet day following
a wet day) as w = Pr(Wn|Wn−1) and the corresponding dry-
to-dry transition probability as d = Pr(Dn|Dn−1). These de-
termine the Markov chain since Pr(Dn|Wn−1)= 1−w and
Pr(Wn|Dn−1)= 1− d. Further, the probability of the occur-
rence of a dry day, p, is fully determined by the w and d

parameters, as given by Cox and Miller (1965):

p =
1−w

2− d −w
. (2)

Equivalently,

w = 1−p
1− d

1−p
. (3)

This relationship can be plotted for a range of probabilities p

(dotted lines in Fig. 10). Note that, if a series of occurrences
of dry and wet days has zero autocorrelation (i.e. the state
probability is independent of the rainfall state in the previous
day), then it follows that Pr(Dn|Dn−1)= Pr(Dn|Wn−1)=

Pr(Dn)= p. As such, the diagonal line where p = d (dashed
line in Fig. 10) corresponds to an independent (i.e. zero auto-
correlation) series of occurrences. The area above and to the
right of the dashed line corresponds to a series of occurrences
with positive autocorrelation (i.e. Pr(Dn|Dn−1) > p, so that
dry sequences are more likely to persist), whereas the area
below and to the left of the dashed line corresponds to se-
ries with negative autocorrelation. The framework developed
above is used in Sect. 3.3 as a novel way to represent the
relationships between state transition probabilities and rain-
fall quantiles to investigate the effect of bias correction on
transition probabilities.

3 Results

3.1 Assessment of regional performance of modelled
rainfall

Modelled rainfall is compared to observed (AWAP) rain-
fall in Fig. 2. ECHAM5-R1 was chosen as a representative
GCM–RCM ensemble member here as it had the median
historical regional rainfall across Victoria from the NAR-
CliM model ensemble. The spatial rainfall fields downscaled
from both the reanalysis and GCM both show reasonable
agreement with the spatial pattern of the observed mean an-
nual rainfall, with relatively larger rainfall across the moun-
tain ranges to the east of the state and across the south-
ern coast, and less rainfall to the more arid north-west re-
gion. However, both rainfall fields are evidently positively
biased with around 100–200 mm of excess rainfall consis-
tently across most of the state (Fig. 2f, g), and relatively more
for the far eastern part of Victoria for the reanalysis data and
across the mountain ranges for the GCM data, interspersed
with small patches of negative bias (observations larger than
downscaled data). Averaged across Victoria, the mean abso-
lute bias is approximately 26 % for the downscaled reanalysis
and 43 % for the downscaled GCM data. In comparison, the
absolute change signal averages 3 %, rising to around 10 %
in the eastern part of Victoria (Fig. 2h).

3.2 Bias correction of NARCliM

Consistent with Fig. 2, the raw NARCliM rainfall is mostly
wetter (positive bias) across Victoria (Fig. 3a), except for a
tendency towards underprediction in the south-east coast for
some models. The quantile–quantile bias-correction method
is formulated to correct historical quantiles of rainfall ex-
actly (when applied to the same time period used for cali-
bration) so that bias-corrected mean annual rainfall, as well
as any quantiles, is approximately equal (Fig. 3b). However,
the method used here does not correct high rainfall quan-
tiles (e.g. P99 and above) exactly, due to the interpolation
between quantiles as described in Sect. 2.3 (Fig. 4b). This
residual bias appears to be randomly distributed spatially and
results in bias-corrected mean annual rainfall not being ex-
actly corrected. However, this effect is generally less than
5 % of the mean annual rainfall. This effect can be removed
entirely by using empirical density functions rather than in-
terpolated values, but with the effect of increasing prediction
uncertainty.

Figure 5 shows the distribution of bias for different rain-
fall metrics before bias correction and the residual bias af-
ter QQM bias correction. The bias in raw NARCliM ranges
from 5 to 50 % for all percentiles (Fig. 5a), increasing as the
percentile increases (i.e. more relative bias for higher rainfall
amounts). As with Fig. 3, bias at all percentiles is effectively
reduced to zero after bias correction, although the residual
bias is relatively larger at larger percentiles (higher rainfall),
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Figure 2. Regional mean annual rainfall (mm yr−1). Inset map (e) shows the location of the state of Victoria in Australia. Other panels show
(a) observed (AWAP) rainfall, (b) rainfall downscaled from reanalysis (NCEP/NCAR), (c) historical rainfall downscaled from median GCM
(ECHAM5-R1), (d) future rainfall downscaled from GCM, (f) bias in reanalysis downscaling (compared to observed), (g) bias in GCM
downscaling and (h) change factor of GCM downscaled rainfall.

Figure 3. Percentage bias in WRF-downscaled mean annual rainfall from the GCM/RCMs indicated (a) raw data and (b) residual bias (after
bias correction).

similarly to Fig. 4b. NARCliM rainfall is overestimated at all
seasons and months before bias correction (Fig. 5b), although
winter rainfall is relatively less biased than summer rainfall.
Bias correction reduces bias to zero annually and seasonally,
since QQM is applied to each season separately. Since the
intra-seasonal relative monthly rainfall amounts are not ex-
actly equal to the observed amounts, seasonal bias correc-
tion occasionally overcorrects bias, particularly in February,
April, May and June, with the bias-corrected rainfall in these
months being less than observed whereas they were overpre-
dicted before bias correction; this could be reduced to zero
using monthly correction factors, although at the potential
cost of overfitting. Overall though, the absolute relative bias
is reduced and closer to zero in all months compared to the
raw RCM monthly amounts.

Figure 5c shows relative bias in rainfall-sequencing-
related metrics. Autocorrelation of rainfall amounts is under-
predicted before bias correction, and the magnitude of this
bias actually increases after bias correction. Whereas QQM
reduces bias in dry–dry transition probabilities (i.e. the prob-
ability of dry sequences persisting), bias in wet–wet transi-
tion probabilities increases after bias correction so that, sim-
ilarly to autocorrelation, the probability of wet spells per-
sisting is considerably underpredicted after bias correction.
We examine this in more detail in Sect. 3.3 using the transi-
tion probability framework developed in Sect. 2.4. Since dry
spells are directly related to dry–dry transition probabilities,
the bias in mean and maximum dry spells is well corrected,
whereas maximum 3 d rainfall accumulation and wet-spell
occurrences all have negative bias after QQM bias correc-
tion. Different percentiles of 3 d rainfall accumulation (cal-
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Figure 4. Percentage bias in WRF-downscaled 99th percentile of rainfall (P99) from the GCM/RCMs indicated (a) raw data and (b) residual
bias (after bias correction).

Figure 5. Relative bias (modelled compared to AWAP, as percentages) of (a) rainfall percentiles; (b) mean annual, seasonal and monthly
rainfall; and (c) rainfall-sequencing metrics both before and after bias correction. The range of results represents the spread of downscaled
GCM hindcast spatial averages over Victoria from the NARCliM 12-model ensemble.

culated as percentiles of a 3 d moving sum of rainfall time
series) have different residual bias (Fig. 6). Three-day accu-
mulation percentiles below the 80th are all slightly overesti-
mated after bias correction, but above the 80th percentile a
large residual underestimation is present. This underestima-
tion reduces at around the 99th percentile but is moderated

somewhat for the 3 d maximum (i.e. 100th percentile). As
noted in Sect. 2.1, WRF models were selected according to
their skill in reproducing selected 2-week periods of heavy
rainfall. This provides a potential explanation for the smaller
bias in 3 d maxima relative to 3 d 99 % rainfall.
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Figure 6. Biases in spatial average 3 d rainfall accumulation percentiles. Here a 3 d moving-average filter was applied to each hindcast time
series and equivalent quantiles taken at increasing probability values (x axis).

Figure 7. Ensemble (downscaled GCM hindcasts from the NARCliM 12-model ensemble) median modelled runoff over Victoria: (a) from
AWAP historical observations, (b) absolute bias (mm) and (c) percentage bias (%).

It is likely that underpredicting wet-spell occurrences and
persistence (Figs. 5c and 6) will result in runoff from the
bias-corrected rainfall being underpredicted too. To explore
this, runoff was modelled from bias-corrected rainfall and
observed potential evapotranspiration data using GR4J (see
Charles et al., 2020, for more details). Figure 7 plots the per-
centage difference in bias-corrected ensemble-median mean
annual runoff for each 0.1◦× 0.1◦ cell compared to mean
annual runoff modelled using AWAP-observed rainfall. The
ensemble median of runoff across Victoria is underpredicted
by 10–20 % across almost all of Victoria, which suggests that
the residual bias in wet-spell occurrences and persistence is
problematic for runoff modelling. Whereas the smallest per-
centage biases appear to be over the high-runoff-producing
region (Fig. 7c), this region has the highest absolute biases
with bias in runoff of more than −20 mm (Fig. 7b). Charac-
teristics and biases of runoff from bias-corrected NARCliM
rainfall is explored in more detail by Charles et al. (2020).

3.3 Residual bias in rainfall state transition
probabilities

The results in this study demonstrate that dry–dry transition
probabilities for NARCliM have low residual bias (possibly
due to the emphasis in QQM on preserving zero-rain occur-
rences) but that wet–wet transition probabilities have more
bias (i.e. they are closer to zero; see Fig. 5c) after QQM
bias correction. These residual biases in wet–wet transitions
result in the persistence of wet spells being underestimated
even though the volumetric amount of rainfall is, by design
of QQM bias correction, equal to observed rainfall at any
grid point.

After bias correction, dry–dry transition probabilities for
a 1 mm threshold are reduced but still have a small negative
bias (Fig. 5c). Both the bias-corrected WRF-downscaled re-
analysis and bias-corrected WRF-downscaled GCM results
(Fig. 8) show a spatial pattern very similar to observations
with higher dry–dry transition probabilities to the north-west
of the state and at similar places along the southern coastline.
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Figure 8. Dry–dry transition probabilities (1 mm threshold).

However, the reanalysis and more so the GCM result have a
lower dry–dry transition probability across almost all of the
region (Fig. 8). As such, dry spells from the bias-corrected
model output are likely to be shorter in duration and less
common than those from the observed rainfall (although bias
correction does reduce the bias in dry spells somewhat com-
pared to the bias in the raw data as seen in Fig. 5c).

Whereas the dry–dry transition probabilities were largest
in the north-west, drier, part of Victoria, the wet–wet transi-
tion probabilities are largest over the high-runoff-producing
region (Fig. 9), which corresponds to the high-relief, high-
altitude part of the state. As with the dry–dry transition prob-
abilities, both bias-corrected downscaled reanalysis and bias-
corrected downscaled GCMs reproduce the spatial pattern
of wet–wet transition probabilities, but there is considerable
residual bias in these probabilities across the entire region.
The residual bias in WRF-downscaled GCM transition prob-
abilities is over 10 % over most of Victoria. This residual bias
results in underestimation of wet-spell occurrences and dura-
tions and multi-day accumulations of rainfall (Fig. 5c). The
bias in wet–wet transition probabilities is more problematic
for modelling runoff than the bias in dry–dry transition prob-
abilities, not only because it is of larger magnitude but also
because runoff is sensitive to multi-day wet spells, and the
larger wet–wet probabilities occur in high-runoff-producing
areas, which we would like to model correctly for regional
water availability projections.

Figure 10 shows rainfall percentiles for a sample grid
cell overlaid on the transition-probability space developed in
Sect. 2.4. Other grid cells and GCMs show very similar re-
sponses (as can be seen in the low spread of results for d

and w in Fig. 5c). Quantile–quantile mapping bias correc-
tion equates the quantiles for each rainfall amount such that
equal rainfall amounts for observations and bias-corrected
rainfall occur on the same probability contours (dotted lines
in Fig. 10), with raw values translated along the rainfall
amount curve. That is, values on the blue line in Fig. 10
map to corresponding values on the red line; the slight vari-

ation between the lines is due to different bias corrections
in each season. As such, wet–wet and dry–dry transition
probabilities for a given rainfall threshold (e.g. 1 mm) for
bias-corrected rainfall are equal to the transition probabili-
ties for the corresponding amount in the raw data. For ex-
ample, in Fig. 10, the exceedance probability for 1 mm in
the observed data (green line) is 0.774. The corresponding
quantile in the raw data (blue line) is 2.675 mm. This amount
is mapped to 1 mm in the bias-corrected data (red line), and
the corresponding wet–wet and dry–dry transition probabili-
ties for 2.675 mm are identical to the transition probabilities
for 1 mm in the bias-corrected data. Recall that points above
and to the right in Fig. 10 correspond to more (positive) se-
rial correlation, which means that the observed rainfall time
series contains more correlation structure in the sequence
of wet- and dry-spell occurrences than the modelled rain-
fall sequence, and that QQM bias correction cannot rectify
this since daily QQM retains the autocorrelation structure of
the raw time series since daily amounts are simply rescaled.
We surmise that, as bias correction is ultimately intended to
produce physically plausible rainfall, bias-correction meth-
ods that adjust occurrences are needed to properly correct
biases for hydrological modelling.

3.4 Change signals

Here we examine change signals in rainfall metrics (i.e. per-
centage difference in RCM future relative to RCM historical
averages), specifically looking at whether bias correction al-
ters the change signals. Figure 11a shows the change signals
in different rainfall percentiles. For the raw data, there is a
small decrease in low to moderate rainfall amounts less than
the non-zero 40th percentile and a future increase in non-zero
percentiles above 50 %. The nature of QQM bias correction
means that raw and bias-corrected equal percentiles cannot
be meaningfully compared. Nevertheless, a similar pattern is
found with the bias-corrected data, namely that larger rain-
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Figure 9. Wet–wet transition probabilities (1 mm threshold).

Figure 10. An alternative perspective on quantile–quantile map-
ping: daily rainfall amounts and associated probabilities plotted in
d–w space. Quantile–quantile mapping bias correction (red) maps
daily rainfall amounts from the raw data (blue) to the probability
contours (dotted lines) corresponding to the appropriate observed
daily amount (green). The dashed diagonal line represents p = d

and hence an independent series of events (see Sect. 2.4). Points
lying above or to the right represent quantiles with greater (more
persistent) autocorrelation.

fall amounts have larger relative changes than smaller rainfall
amounts.

Figure 11b shows change signals in mean annual, seasonal
and monthly average rainfall. The magnitude of the median
change signal in mean annual rainfall is around −5 %, and
seasonal changes are comparable to the annual change ex-

cept for SON rain. Rain in SON has a decrease projected by
the NARCliM ensemble of around 20 % (found to be statisti-
cally significant by Olson et al., 2016). Compared to the raw
bias in mean and seasonal rainfall (Fig. 5b) of 25–50 %, these
change signals are between 1/2 and 1/10 of the bias. After
bias correction, there is little difference in the magnitude and
direction of change in seasonal and monthly averages. How-
ever, the mean annual rainfall change is moderated some-
what, and this is problematic since mean annual changes
are most often considered in regional projection applications
(a discussion on bias-correction effects on change signals is
considered in the next section, and Charles et al. (2020) dis-
cuss this in the context of the present study in more detail).

Although the residual bias in rainfall sequencing metrics
is not eliminated, and in some cases (e.g. wet–wet transi-
tion probabilities) is actually increased, after bias correction
(Fig. 5c), Fig. 11c shows that the change signals in rainfall
sequencing metrics is largely unaffected by bias correction.
With the exception of the maximum accumulation of rainfall
over 3 d rainfall accumulation, the distributions of sequenc-
ing change signals are largely identical before and after bias
correction. The difference in change signal for maximum 3 d
rainfall accumulation is presumably related to the relatively
larger increase in large rainfall events (e.g. P99 in Fig. 11a).

4 Discussion

Individual percentiles and seasonal totals are, by design, ef-
fectively reduced to zero using QQM. This elimination of
bias is due to the common calibration and validation period
(1990–2009) used for bias correction. For applications, dif-
ferent calibration and validation periods should be used to
accurately estimate the bias from QQM. Nevertheless, some
interpolation and extrapolation occur in the approach used
here, so there is some random residual bias in higher per-
centiles (i.e. large rainfall amounts). This residual bias can
be eliminated altogether by using the exact empirical density
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Figure 11. Change signal (percentage difference of RCM future relative to RCM historical) in (a) rainfall percentiles; (b) mean annual,
seasonal and monthly rainfall; and (c) rainfall-sequencing metrics both before and after bias correction.

functions, but at the cost of increased predictive uncertainty.
Using empirical densities also raises problems with extrapo-
lation past historical amounts. Although Teng et al. (2015)
demonstrated that distributional and empirical approaches
give similar results if the distribution is sufficiently flexible,
the choice of method should be considered carefully in rela-
tion to the end products required.

We demonstrate in Sect. 3.4 that change signals (future
mean relative to historical) in rainfall metrics can be con-
siderably smaller than the bias (modelled historical relative
to observed historical). On one hand, this seems problematic
since biases in processes can be considered so large that the
changes are insignificant. On the other hand, there is no par-
ticular legitimacy for this viewpoint, certainly not in a sta-
tistical sense. The magnitude of bias does not provide any
sort of confidence level in changes to rainfall metrics. How-
ever, given such relatively large biases, it is reasonable to as-
sume that there are some errors in the way particular climate
processes are modelled, through either the host GCM or the
RCM. It would be desirable to understand the reasons and
climatic process responsible for biases and assess whether
these processes are unrealistic, in addition to whether these
biases render the changes physically implausible.

We acknowledge that the underlying performance of
GCMs in accurately simulating climate dynamics of the re-
gion under consideration is extremely important. In the con-
text of the study area in the current paper, south-eastern Aus-
tralia, the selection of GCMs representing important climate
processes has been an ongoing research strand both for the
CMIP3 climate model ensemble (Smith and Chandler, 2010;
Kirono and Kent, 2011; Kent et al., 2013; CSIRO, 2012;
Evans and Ji, 2012a; McMahon et al., 2015), which is used
for the current NARCliM dataset, and the CMIP5 ensemble
(see CSIRO and Bureau of Meteorology, 2015; Hope et al.,
2016). As mentioned in the Introduction, the RCM compo-
nent of NARCliM, WRF, has been tested extensively, includ-
ing the general cold and wet bias over south-eastern Aus-
tralia. It is suggested that the wet bias (Fig. 3a) is related to
subgrid cloud cover representations (see, e.g., García-Díez
et al., 2015; Di Virgilio et al., 2019), and correction of this
is the subject of current, ongoing research (Di Virgilio et
al., 2019). Current work (NARCliM1.5) is continuing to de-
velop the modelling framework at a higher spatial resolution
(5 km× 5 km), using CMIP5 models and improved RCM
configuration (Downes et al., 2019).

https://doi.org/10.5194/hess-24-2963-2020 Hydrol. Earth Syst. Sci., 24, 2963–2979, 2020



2974 N. J. Potter et al.: Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections

The use of models that produce plausible climate dynam-
ics is of course desirable; however, in practice it is not nec-
essarily always possible. Apart from the fact that the “best”
models identified by the above references differ according to
the criteria used, using a dynamical downscaling ensemble
for hydrological applications is an opportunistic endeavour,
relying largely on existing data products, which have been
prepared with many applications in mind, not just hydrologi-
cal applications. As such, it is not always practical to choose
the GCMs and RCMs that best represent climate dynamics
important for hydrological applications; many studies have
also contended that accuracy in representing historical con-
ditions is no guarantee that future changes are correctly mod-
elled (e.g. Knutti et al., 2010; Racherla et al., 2012).

As mentioned in the Introduction. Evans and Mc-
Cabe (2010) examined the RCM component (WRF) of NAR-
CliM, concluding that the El Niño–Southern Oscillation, the
chief climate process modulating interannual variability of
rainfall (Power et al., 1999), was well modelled over south-
eastern Australia. Evans and McCabe (2010) also concluded
that the severity and duration of recent prolonged droughts
over south-eastern Australia were also captured, although
the spatial pattern was not characterised exactly. The sub-
tropical ridge, which determines the seasonal positioning of
storm tracks over southern Australia, was less well repre-
sented by WRF (Andrys et al., 2016). Based on the results
cited here, we have confidence in the modelling setup of
NARCliM to represent atmospheric circulation for south-
ern Australia reasonably well, although we acknowledge that
bias correction of NARCliM for end-user applications should
consider model skill in atmospheric circulation.

In general, bias correction does not tend to alter the change
signals in rainfall metrics (with the exception of 3 d accu-
mulation and low rainfall percentiles). Nevertheless, small
differences in rainfall metrics can result in large differences
in runoff metrics and other water availability measures (e.g.
low flows and high flows). Large and even average runoff
amounts can be very sensitive to 3 d rainfall accumulation,
which we saw can be altered through daily bias correction.
It is recommended that the effects of bias correction are in-
cluded in any uncertainty analysis undertaken.

Section 3.4 shows that bias correction can affect change
signals (future relative to historical) of different hydrocli-
matic metrics (see also Hagemann et al., 2011; Gutjahr and
Heinemann, 2013; Dosio, 2016). Under the assumption that
bias is time invariant, Gobiet et al. (2015) argue that bias
correction improves the accuracy of climate change signals.
Cannon et al. (2015), however, argue that trend-preserving
methods should be used (see also Li et al., 2010; Wang and
Chen, 2014). Maraun (2016) and Maraun et al. (2017) sum-
marise the debate surrounding the use of trend-preservation
methods and conclude that the decision should be informed
by the credibility or otherwise of the GCMs in represent-
ing the processes driving the changes. This debate further
highlights the need for informed selection and screening of

GCMs at the start of the modelling process. However, we
argue that there is value in reporting both pre- and post-bias-
correction future changes in light of the difficulties involved
in model selection and assessment, particularly in the case of
pre-existing and computationally expensive projections such
as a dynamically downscaled ensemble such as NARCliM.

The simple QQM method used here does not consider
spatial correlation between rainfall gauges or grid cells at
all. Maintaining spatial correlations is clearly important for
runoff generation, and neglecting this can lead to “inflation”.
Inflation refers to a phenomenon in bias correction (Maraun,
2013) or statistical downscaling (von Storch, 1999) where an
unmeasured predictand variable is estimated using the pre-
dicted values from a statistical model. Since models contain
error, the variance of a time series of predicted values is ex-
pected to be less than the variance of the true time series of
the variable. In the present context of bias-correcting rainfall
from RCMs, Maraun (2013) demonstrates that bias correc-
tion reduces subgrid spatial heterogeneity compared to actual
precipitation and that this is particularly problematic when
GCM or RCM resolution is much greater than that of obser-
vations. In this case, the spatial correlation between gauges
is increased. As a result, large rainfall amounts become over-
estimated and small amounts underestimated. Preserving the
correct spatial correlation between gauges and grid points is
an important issue, and the issue of unintended spatial effects
of (temporal) bias correction is compounded by applying bias
correction independently to each grid cell, as we have done
here – although this tends to reduce subgrid spatial correla-
tion (see Hnilica et al., 2017). Maraun (2013) recommends
aggregating catchment rainfall prior to bias correction to re-
duce the issue of inflation, and Charles et al. (2020) examine
this in more detail in relation to catchment runoff production.
Variance inflation due to differing grid cell sizes (Maraun,
2013) is less an issue for the current study, as NARCliM grid
cell size is comparable to that of the gridded rainfall obser-
vations, and the next generation of dynamically downscaled
climate projections (Downes et al., 2019) is to be provided
at 0.05◦× 0.05◦ resolution, identical with the gridded rain-
fall products used in Australia. However, the issue of using
a bias-correction methodology that corrects daily amounts
(and more generally temporal structure) while preserving
spatial structure across catchments and basins remains a chal-
lenge and is a direction for further research. Equally, Bár-
dossy and Pegram (2012) noted that RCM rainfall was con-
siderably less spatially correlated than observations in the
Rhine basin, even after QQM bias correction. Lower mod-
elled spatial correlation in rainfall would lead to underesti-
mated extreme-flow events (even at the level of 1-year return
period events), with a consequent underestimation in areally
averaged inflows. Bárdossy and Pegram (2012) recommend
pre-correcting spatial correlation using matrix recorrelation
methods or by using a sequential recorrelation techniques,
and this should be taken into consideration when applying
bias correction for projection applications.

Hydrol. Earth Syst. Sci., 24, 2963–2979, 2020 https://doi.org/10.5194/hess-24-2963-2020



N. J. Potter et al.: Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections 2975

Although in this study rainfall alone is bias-corrected, tem-
perature or a suitable representation of potential evapotran-
spiration is needed for runoff applications. Methods exist
for correcting rainfall and temperature simultaneously (e.g.
Hoffmann and Rath, 2012; Piani and Haerter, 2012; Mehro-
tra et al., 2018). However, potential evapotranspiration has a
second-order effect on runoff compared to rainfall (Chiew,
2006; Potter et al., 2011), and bias correction was shown
to not significantly affect the inherited relationships between
rainfall and temperature (Wilcke et al., 2013). Certainly, the
host GCM and RCM should correctly represent relationships
between atmospheric variables in the study region, further
highlighting the need for climate model assessment in con-
struction of the model ensemble.

Another important consideration is the relevant metrics to
be considered by end users. Bias correction by season, for
example, can alter change signals annually (Haerter et al.,
2011), and care must be taken as to which metrics are of
interest and which are the most appropriate bias-correction
methods to apply in order to properly account for the metrics
of interest. Certainly, caution must be applied when consider-
ing rainfall and runoff metrics that were not considered when
applying bias correction to projections. Low-flow metrics are
particularly problematic (Potter et al., 2018), where different
downscaling and bias-correction methods can give very dif-
ferent answers.

Although daily bias-correction methods as outlined in this
paper tend to result in residual bias in multi-day metrics,
generally change signals in transition probabilities are very
similar before and after bias correction. This information
could thus potentially be extracted from RCMs to drive local
weather generation or stochastic methods to provide future
rainfall projections that can be suitable for local hydrolog-
ical projections. Maintaining interannual and multi-decadal
correlations and spatial correlations between rainfall gauges
remains a challenge for stochastic methods, however.

5 Conclusions

The relative magnitude of change signals (future RCM to his-
torical RCM) of the different rainfall metrics examined here
is typically less than the magnitude of the bias. Mean an-
nual rainfall change is an order of magnitude smaller than
the bias in mean annual rainfall, but seasonal changes are
closer to half of the bias in seasonal averages. Although this
might call into question the validity of the change signal, one
approach is to assume that the magnitudes of the changes
are responsive to changing greenhouse gas emissions, insofar
as the changing atmospheric processes are realistically mod-
elled by the RCM. Indeed, this is the basic premise behind
empirical scaling, i.e. that the change is the authentic signa-
ture of the climate modelling especially since the RCMs are
not explicitly tuned to observed rainfall.

Individual percentiles and seasonal totals are, by design,
effectively reduced to zero using QQM. Monthly totals retain
some residual bias because of compensating biases within
each season due to small errors in rainfall seasonality by the
RCMs. Metrics associated with rainfall sequencing (e.g. se-
rial correlation, wet–wet and dry–dry state transition prob-
abilities and quantiles of 3 d accumulation) all have signifi-
cant residual bias, particularly so for wet–wet state transition
probabilities in which the magnitude of bias in raw RCM his-
torical runs is amplified after bias correction. This residual
bias leads to a considerable underestimation of mean annual
runoff after rainfall is routed through a hydrological model
because runoff is very sensitive to multi-day accumulations
of rainfall and sequencing of wet spells in particular.

An analysis of the lag-one transition probabilities (i.e. wet
state to wet state and dry state to dry state) showed that NAR-
CliM rainfall had transitions to different states that are more
random (i.e. more independent) compared to observed rain-
fall. QQM bias correction is unable to correct these transi-
tion probabilities as QQM retains the transition probabilities
for any particular quantile. Since persistence of wet spells
is critical for runoff generation, a different approach to bias
correction is needed to successfully use NARCliM for runoff
projections that can correct rainfall sequencing to better rep-
resent the observed correlation structure in wet and dry oc-
currences.

Change signals in annual, seasonal and monthly average
rainfall and rainfall sequencing metrics are largely preserved
after bias correction, with the exception of maximum 3 d
rainfall accumulation. Rainfall sequencing metrics (such as
state transition probabilities and daily rainfall autocorrela-
tion) are largely unchanged by bias correction, which sug-
gests the possibility of using this information to drive either
weather-generation models or stochastic/resampling-based
bias-correction methods to produce hydrologically realistic
rainfall sequences for hydroclimate projection applications.
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