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Abstract. The high spatio-temporal variability of precipi-
tation is often difficult to characterise due to limited mea-
surements. The available low-resolution global reanalysis
datasets inadequately represent the spatio-temporal variabil-
ity of precipitation relevant to catchment hydrology. The
Bureau of Meteorology Atmospheric high-resolution Re-
gional Reanalysis for Australia (BARRA) provides a high-
resolution atmospheric reanalysis dataset across the Aus-
tralasian region. For hydrometeorological applications, how-
ever, it is essential to properly evaluate the sub-daily precip-
itation from this reanalysis. In this regard, this paper eval-
uates the sub-daily precipitation from BARRA for a period
of 6 years (2010–2015) over Australia against point observa-
tions and blended radar products. We utilise a range of ex-
isting and bespoke metrics for evaluation at point and spatial
scales. We examine bias in quantile estimates and spatial dis-
placement of sub-daily rainfall at a point scale. At a spatial
scale, we use the fractions skill score as a spatial evaluation
metric. The results show that the performance of BARRA
precipitation depends on spatial location, with poorer per-
formance in tropical relative to temperate regions. A possi-
ble spatial displacement during large rainfall is also found at
point locations. This displacement, evaluated by comparing
the distribution of rainfall within a day, could be quantified
by considering the neighbourhood grids. On spatial evalua-
tion, hourly precipitation from BARRA is found to be skilful
at a spatial scale of less than 100 km (150 km) for a thresh-
old of 75th percentile (90th percentile) at most of the loca-
tions. The performance across all the metrics improves sig-
nificantly at time resolutions higher than 3 h. Our evaluations
illustrate that the BARRA precipitation, despite discernible
spatial displacements, serves as a useful dataset for Australia,

especially at sub-daily resolutions. Users of BARRA are rec-
ommended to properly account for possible spatio-temporal
displacement errors, especially for applications where the
spatial and temporal characteristics of rainfall are deemed
very important.

1 Introduction

Precipitation is highly variable across both space and time,
especially at spatial and temporal scales relevant to catch-
ment hydrology (Michaelides et al., 2009). An understand-
ing of the spatio-temporal pattern of precipitation is vi-
tal for many scientific and operational applications, such
as hydro-climatic modelling and the forecasting of floods
(Golding et al., 2016; Kucera et al., 2013; Paschalis et al.,
2014). This understanding relies on access to high-resolution
precipitation datasets. However, the availability of fine-
scale precipitation products (e.g. spatial resolution less than
around 0.25° on an hourly timescale) are limited. The gen-
eral sources of precipitation data are gauge measurements,
ground-based radars, satellites, and atmospheric reanalysis
models (Michaelides et al., 2009). Gauge measurements,
which are localised in nature, are hindered by the sparse
and uneven distribution of gauge networks, whereas the cov-
erage of ground-based radars is limited. Global reanalysis
datasets (e.g. NCEP-CFSR, Saha et al., 2010; ERA-Interim,
Dee et al., 2011; JRA-55, Kobayashi et al., 2015) and satellite
products (e.g. TMPA, Huffman et al., 2007; IMERG, Huff-
man et al., 2018) provide a continuous and consistent esti-
mate at varying spatial (0.05 to 2.5◦) and temporal resolution
(hourly to daily).
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An atmospheric reanalysis merges observations and mod-
els to provide four-dimensional earth system data at a regular
spatial and temporal resolution over a long time period, of-
ten years and decades (Parker, 2016). The variables in the
reanalysis (such as precipitation, cloud, and soil moisture)
are related to one another through modelled physical rela-
tions and to the analysed observations. By undertaking mod-
elling over a limited area, a regional atmospheric reanalysis
can provide precipitation estimates at finer spatial and tem-
poral scales than a global reanalysis. It can incorporate more
observations at a finer scale to better constrain the evolution
of a higher-resolution model and thus can account for the
effects of mountains, coastlines, and mesoscale atmospheric
circulations in greater detail. Such analyses can thereby pro-
vide precipitation estimates with greater spatial relevance to
local fine-scale studies than coarser-scale models. BARRA
(Bureau of Meteorology Atmospheric high-resolution Re-
gional Reanalysis for Australia) is one such high-resolution
(∼ 12 km) regional reanalysis (BARRA-R). It is driven with
initial and boundary conditions from the global ERA-Interim
reanalysis (∼ 79 km) and provides estimates over the Aus-
tralasian region from 1990 to 2018 (Jakob et al., 2017; Su
et al., 2019).

BARRA-R (referred to here as simply BARRA) provides
hourly precipitation estimates at 12 km horizontal resolution
(Jakob et al., 2017; Su et al., 2019). Rainfall observations
are not assimilated in this reanalysis, and precipitation is es-
timated by model physics and parameterisation. Evaluating
its suitability for scientific studies and its use in hydrologi-
cal applications can be facilitated by identifying its strengths
and limitations through a quantitative assessment. An ini-
tial assessment of daily precipitation from BARRA showed
that it was able to reproduce the precipitation statistics and
large precipitation amounts at point (gauged locations) and
grid scales of 5 km (Acharya et al., 2019; Su et al., 2019).
However, precipitation data at sub-daily temporal resolutions
are essential to support the application of flood modelling
(Chiaravalloti et al., 2018) and analysis of precipitation ex-
tremes in convective systems. Therefore, it is useful to assess
the performance of BARRA at sub-daily resolution along
with its ability to represent the spatial structure of rainfall
events.

The performance of BARRA at a daily scale was sum-
marised using continuous metrics and categorical metrics
at both point and grid scales (Acharya et al., 2019). How-
ever, at sub-daily scales, such one-on-one evaluations can be
misleading for several reasons (Jermey and Renshaw, 2016).
First, sub-daily precipitation is dominated by zero values and
has a highly skewed distribution, which makes it difficult to
interpret the correlation statistics. In addition, these metrics
doubly penalise a modelled rainfall field that is displaced
in space or time: once as a missed observation and again
as a false alarm. This situation is popularly known as the
“double-penalty problem” (Rossa et al., 2008), and to mit-
igate this issue it is necessary to adopt an evaluation ap-

proach which considers likely displacements in space and
time (Gilleland et al., 2009; Jermey and Renshaw, 2016;
Thiemig et al., 2012). For example, when evaluating heavy-
rainfall events at a point scale, Thiemig et al. (2012) adopted
an error metric that explicitly considers possible time lags in
the gridded dataset. Similarly, Jermey and Renshaw (2016)
considered temporal displacement while evaluating the pre-
cipitation by grouping the events into seven synthetic cate-
gories with varying temporal shift and bias structure. Besides
these methods which look at temporal displacement, a pos-
sible shift across space can be considered when evaluating
high-resolution precipitation datasets. However, such evalu-
ations may be limited by the availability of suitable gridded
observation data for comparison, and it is thus preferable to
undertake assessments using multiple evaluation techniques
(Jermey and Renshaw, 2016).

The metrics used to undertake the evaluation need to
match the prospective use of the dataset. For example, it may
be sufficient for some urban and storm water design problems
to only evaluate the non-conditional frequency distribution of
precipitation at a point. However, for most hydrological mod-
elling purposes, it is necessary to evaluate the representation
of spatio-temporal characteristics of rainfall events over the
catchment of interest. The spatial and temporal resolution of
the prospective applications also play a critical role in selec-
tion of the performance measures, so it is useful to assess the
efficacy of the reanalysis over a range of different temporal
and spatial accumulations.

The objective of this paper is to present an evaluation of
sub-daily BARRA precipitation at temporal and spatial reso-
lutions that are relevant to catchment hydrology applications.
The evaluation is undertaken using ground measurements
and radar-based rainfall observations across Australia over
a 6-year period spanning 2010–2015. Following the assess-
ment of BARRA at a daily scale (Acharya et al., 2019), this
study further explores BARRA precipitation at different time
accumulations ranging from hourly to daily. In addition, we
compare the temporal distribution of gauged rainfalls with
neighbouring grids, specifically for large rainfall events. We
also employ a spatial evaluation metric (Roberts and Lean,
2008) to evaluate the ability of the reanalysis dataset to rep-
resent the spatial distribution of rainfalls against a gauge-
corrected radar dataset. Overall, our aim is to assess the abil-
ity of BARRA to capture the behaviour of sub-daily precip-
itation at the catchment scale, particularly for large events.
To this end, we use a combination of existing and bespoke
metrics to evaluate performance over different temporal and
spatial accumulations in different climatic zones.

2 Study area and data sources

The primary sources of reference data used to evaluate the
performance of BARRA data were derived from pluviome-
ter gauges and radar-based products. Ground-based obser-
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vations are not assimilated in BARRA, and thus these data
serve as an independent dataset for evaluation. The plu-
viometer observations in this study encompass three of the
broad climatic zones across Australia, namely tropical, tem-
perate, and arid (Fig. 1). Rainfall in Australia is highly vari-
able across space and time. Rainfall is concentrated during
summer in the tropical north, whereas rainfall is more preva-
lent during winter in the temperate south and southwest.
The southeast region experiences a more consistent rainfall
throughout the year. The central arid region receives the least
total rainfall, and the eastern coast the highest average rain-
fall. The spatial evaluation across the whole of Australia is
impeded by the availability of a high-resolution observation-
based dataset. Therefore, the spatial evaluation is undertaken
by using radar-based datasets at four city-centred regions
(Brisbane, Darwin, Melbourne and Sydney). These study ar-
eas are located in the tropical and temperate zones with vary-
ing rainfall climates.

Hourly rainfall observations from pluviometer gauges
were obtained from the Australian Bureau of Meteorology.
Observations from a total of 441 gauges were selected, cov-
ering a common period of record between 2010 and 2015
(Fig. 1). The observed rainfall is used to approximate pre-
cipitation as most precipitation in Australia is in the form of
rainfall.

The blended radar precipitation dataset was also obtained
from the Australian Bureau of Meteorology for regions sur-
rounding the four city centres (Fig. 1). The spatial resolution
of the radar data is 1.5 km, and it is only available from 2014.
The radar fields have been blended with the observed rainfall
using conditional merging (Sinclair and Pegram, 2005). The
approach is in principle close to a copula-based approach,
which exhibits less bias and yields a smaller error metric
compared to non-parametric radar rainfall estimation (Hasan
et al., 2016). The blended radar estimates are still likely to
be erroneous and biased for reasons that include errors in
reflectivity measurement (e.g. radar beam overshoot, terrain
blocking, and clutter), inaccurate radar reflectivity–rain rate
relationship, tendency of the radar to underestimate rainfall at
distance, and quality control algorithms rejecting gauge data
used for bias adjustment (Chumchean et al., 2006; Seo et al.,
2010). Further, there is a fundamental difference in represen-
tativity between radar measurements and modelled precipita-
tion, where radar infers precipitations at height over a cubic
kilometre in size. However, we follow prior studies (e.g. Mit-
termaier et al., 2013; Roberts and Lean, 2008) and use radar
rainfall to compare spatial rainfall at sub-daily time steps as-
suming that the spatial distribution of rainfall is preserved.
In addition, we apply quantile-based thresholds in order to
remove the potential bias in the daily rainfall totals, although
we note the strategy remains limited by the fact that the bias
is spatially varying.

BARRA utilises the Met Office Unified Model (UM;
Davies et al., 2005) and its 4D variational data assimila-
tion system (4D Var). BARRA extends spatially over −65.0

to 19.4◦ N, 65.0 to 196.9◦ E at a spatial resolution of 0.11◦

(approximately 12 km) and with 70 levels up to 80 km into
the atmosphere. The model includes a comprehensive set
of parameterisations, including a modified boundary layer
scheme, mixed-phase cloud microphysics, a mass flux con-
vection scheme, and a radiation scheme. The model parame-
terisation in BARRA is mainly inherited from the UK Met
Office Global Atmosphere (GA) 6.0 configurations as de-
scribed in Walters et al. (2017). Observations from land sur-
face stations, ships, buoys, aircrafts, radiosondes, and satel-
lites are assimilated in BARRA, conducted 4 times a day
with a 6 h analysis window centred at time t0 = 00:00, 06:00,
12:00, and 18:00 UTC. Surface and satellite rainfall obser-
vations are not assimilated, and the precipitation fields are
determined by the modelled dynamics. In particular, they are
estimated from the 12 h forecast runs of the UM from t0−3 h,
using the microphysics scheme based on Wilson and Ballard
(1999) and the mass flux convective parameterisation scheme
of Gregory and Rowntree (1990). The former describes the
atmospheric processes that transfer water between the vari-
ous states of water to remove moisture resolved on the grid
scale. At 12 km horizontal resolution, BARRA requires the
convection scheme to model sub-grid-scale convection us-
ing an ensemble of cumulus clouds as a single entraining–
detraining plume (Clark et al., 2016). The scheme prevents
unstable growth of cloud structures on the grid and explicit
vertical circulations, and can only predict an area-average
rainfall instead of a spectrum of rainfall rates. This parame-
terisation scheme adopted for sub-grid convection is limiting
in resolving convective rainfall and affects the locations dom-
inated by such rainfall (especially the tropics). Further details
on parameterisation and assimilation schemes in BARRA are
provided by Su et al. (2019).

3 Methodology

Hourly BARRA precipitation estimates at 12 km resolution
are evaluated at varying spatial and temporal scales. A range
of point-to-grid and grid-to-grid evaluations are undertaken
using gauged rainfall and blended radar estimates over vari-
ous temporal and spatial scales.

3.1 Frequency distribution of sub-daily rainfall

A point-to-grid analysis is undertaken to evaluate the sub-
daily frequency distribution of BARRA precipitation. At
each gauge location as shown in Fig. 1, corresponding
BARRA estimates are obtained using the nearest-neighbour
interpolation. The basis of comparison requires some thought
as the fraction of zero values in sub-daily rainfall data is high
(the 95 % quantiles at hourly temporal resolution are zero).
This issue could be addressed by selecting suitable condi-
tional thresholds, though different thresholds would need to
be adopted for each temporal accumulation. For example, a
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Figure 1. Study area with locations of pluviometer gauges (points) and the radar data (boxes surrounding city centres). The locations of radar
datasets are the Darwin, Brisbane, Sydney, and Melbourne regions. The climatic classification is adapted from Peel et al. (2007).

threshold of 0.1 mm h−1 could be adopted for hourly data and
1 mm d−1 for daily data. However, the slight problem with
this approach is that any trends in the performance metric
with temporal accumulation will be confounded by the some-
what arbitrary choice of thresholds for intermediate tempo-
ral accumulations (3, 6, and 12 h). Accordingly, we derived
quantiles for sub-daily rainfalls that occurred only on the rain
days for each dataset individually, where a “rain day” is de-
fined based on a threshold of 1 mm d−1 (Ebert et al., 2007).

In investigating the frequency of rainfall, we compute the
various quantiles (80, 90, 95, and 99 %) at different time ac-
cumulations (1, 3, 6, 12, and 24 h). The analysis of frequen-
cies corresponding to different accumulations (up to 24 h) is
selected to be of relevance for design rainfall applications.
We then estimate percentage bias using (m− o)/o× 100,
where m and o denote the reanalysis and observed precipi-
tation corresponding to the selected quantiles, respectively.
This evaluation is further stratified across three broad cli-
matic zones (arid, tropical, and temperate) as defined by the
Köppen–Geiger classification (Peel et al., 2007; Fig. 1). It is
worth noting that comparisons of point (gauged) and areal
(gridded) rainfall are generally biased as the average precipi-
tation over a grid cell is lower than rainfall recorded at a par-
ticular point. It would also be expected that sub-daily point
rainfalls are more variable than those averaged over a grid
cell area.

3.2 Neighbourhood-based sub-daily patterns at point
locations

A direct comparison of precipitation, especially in higher-
resolution datasets, is difficult as the conventional metrics

are not able to penalise intensity and location errors in a
desirable manner (Rossa et al., 2008). Performance metrics
which compare point observations with model estimates av-
eraged over a grid cell are heavily influenced by errors in
the spatial pattern and location of rainfall events, even if the
average rainfall depths over the local domain are the same.
This is particularly the case with high-resolution precipita-
tion datasets and with the analysis of sub-daily periods.

To mitigate this problem in a gauge-based evaluation,
we adopt an approach that allows for possible timing and
displacement differences in rainfall occurrence. The ap-
proach is similar to the neighbourhood (or “fuzzy”) ap-
proach used with single observation-neighbourhood fore-
casts (Ebert, 2008), in which gridded observations were eval-
uated against gridded forecasts. This method accounts for sit-
uations where an event defined on the basis of gauge mea-
surements may miss the nearby grid cell, resulting in spatial
error, and/or appear non-coincident at the nearby grid cell
signifying a temporal error. For the former case, an evalua-
tion that considers neighbouring grid cells can account for
spatial errors. For cases involving a time displacement, a
moving storm may appear at a neighbouring grid cell at the
time step under consideration, approaching the nearby grid
cell.

To account for these different types of errors, we employ
an analysis that explicitly considers the occurrence and tim-
ing of rainfalls at neighbouring grid cells. This evaluation
is undertaken by selecting large rainfall events (greater than
10 mm d−1) in the gauge dataset. The cumulative fraction
of rainfall over the day is computed for the gauge and the
nearest neighbouring grid (Eq. 1). The squared difference in
the fraction of cumulative rainfall occurring in each hour be-
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tween the gauge and reanalysis rainfalls is then averaged to
provide an error score (Eq. 2).

Fh =

h∑
i=1

fi, 1≤ h≤ 24, (1)

where fi is the fraction of daily rainfall occurring at the ith
hour.

Error score=
1
23

23∑
h=1

(
Fh,model−Fh,gauge

)2 (2)

Note that 23 is used in the denominator as F24,model =

F24,gauge = 1 and is not included in the computation of the er-
ror score. The temporal error is considered by using cumula-
tive precipitation at a daily scale, which penalises large tem-
poral errors more than small ones. Similarly, to account for
possible spatial displacement, we analyse the temporal dis-
tribution of precipitation by searching over neighbourhood
space to find the best-performing grid cell. The error score
is computed for both the nearest grid and the neighbourhood
grid cells equidistant from the nearest grid. The minimum
error score is selected and then averaged across all rainfall
events at a location.

The average error score varies between 0 and 1. A score
of 1 represents the worst-possible situation in which rainfall
occurs in the first hour in one dataset and the last hour in
the other. Conversely, a score of 0 indicates a perfect match
between observations and model estimates. Scores between
0 and 1 indicate differing degrees of temporal error, where,
for example, a score of 0.33 indicates that rainfall occurs in
either the first or last hour in one dataset and is distributed
uniformly throughout the day in the other.

3.3 Neighbourhood-based spatial evaluation

Finally, a spatial evaluation of reanalysis precipitation
against blended radar estimates is undertaken. For each
spatial domain, the largest 25 rainfall events to have oc-
curred over the 3-year period are selected based on domain-
averaged daily precipitation. Radar precipitation, which is
available as 30 min accumulations, is aggregated to hourly
values to match the temporal resolution of BARRA. Simi-
larly, a common spatial resolution is adopted. The precipita-
tion from BARRA (∼ 12 km) is re-gridded to the resolution
of the radar grid (∼ 1.5 km) using area-weighted re-gridding,
which means that single BARRA precipitation estimates are
distributed over 8× 8 radar grid cells.

Different metrics have been developed for undertaking
spatially variable evaluations (Ebert, 2008, 2009). This study
adopts the fractions skill score (FSS) from Roberts and Lean
(2008), as it measures the variation of skill across increasing
spatial scales and hence indicates the minimum spatial scale
at which the model is skilful.

The FSS metric is based on the likelihood that rainfall
over a given threshold occurs somewhere within the neigh-
bouring window of grid cells. A common threshold rainfall

rate is selected for both the observed and modelled grid cells.
An increasing window of size n× n centred on a particular
grid is selected (which yields N windows over the whole do-
main). For each window i, a fraction of grid points exceeding
the threshold in observed rainfall (po,i) and modelled rainfall
(pm,i) are computed. Then, the FSS is calculated as

FSS= 1−
1
N

∑N
i=1
(
pm,i −po,i

)2
1
N

∑N
i=1p

2
m,i +

1
N

∑N
i=1p

2
o,i

. (3)

The FSS score varies between 0 and 1. A score of 0 repre-
sents a complete mismatch between two rainfall fields, and
a score of 1 represents a perfect match. Usually, FSS is
computed for varying sizes of spatial windows, and results
are plotted as a function of window size. A random score
(FSSrandom) is the FSS that would be achieved, on average, by
a random field with the same fraction of observed events (po)
over the domain. A benchmark score, a target or “uniform”
skill (FSSuniform), is given to a uniform field with a probabil-
ity of occurrence equal to po at each grid cell (Roberts and
Lean, 2008). FSSuniform is expressed as 0.5+po/2, which
is halfway between a perfect score (1) and a random score
(FSSrandom = po). This FSSuniform can be approximated to
0.5 when po is small, as in the case of larger precipitation
thresholds.

The thresholds used to calculate FSS are based on rain-
fall quantiles in observed and reanalysis data which are de-
rived for each time step. A rainfall intensity greater than
0.2 mm h−1 is used as a threshold to define a rainy grid cell
for which quantile-based thresholds are computed. This en-
sures that the model and observed rainfall fields have an iden-
tical fraction of rain events for each threshold value. The ap-
plication of quantile-based thresholds aims to remove the im-
pact of any bias in rainfall amount and focus solely on spa-
tial accuracy of modelled precipitation (Mittermaier et al.,
2013; Roberts and Lean, 2008; Skok and Roberts, 2018).
It is worth noting that the FSS metric only provides infor-
mation on variation of performance with increasing spatial
scale. The timing errors at finer temporal scales can be in-
directly discerned by analysing variation of FSS with time
accumulations. Therefore, the FSS is evaluated at temporal
aggregations of 3 and 6 h.

4 Results

4.1 Frequency distribution of sub-daily rainfall

Figure 2 illustrates the spatial distribution of quantile bias
and its summary across climatic zones. Overall, the spatial
distribution of bias across all time accumulations and quan-
tiles exhibits a similar pattern. The biases in the northern
region are higher and spatially more variable than those in
the southern region. The variation in bias across quantiles is
the highest for hourly rainfall, especially in arid and tropical
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climatic zones. For the 80 % quantile of hourly rainfalls, all
stations in the arid and tropical zones exhibit a higher posi-
tive bias than those in the temperate zone. This difference is
partly due to the tendency of BARRA to overestimate light-
rain events (Su et al., 2019). Despite considering wet days
only in comparing quantiles, hourly rainfall at the 80 % quan-
tile for the arid and tropical region is dominated by small
precipitation amounts, which results in a high positive bias.
At higher quantiles, the BARRA estimates are all lower than
the gauged point rainfalls. This negative bias is largest in the
tropical zone, followed by the arid zone. Although the nature
of the high hourly bias varies with location, a step reduc-
tion in bias is observed when the accumulation time periods
increase from 1 to 3 and 6 h. This is partly due to reduced
inherent bias arising from the adoption of longer temporal
accumulations, which reduces the potential for differences in
timing between observations and model estimates.

The spatial distribution of biases associated with the differ-
ent quantiles exhibits a similar pattern for all temporal accu-
mulations considered. At shorter accumulations (up to 3 h),
the biases change from positive to negative and gradually in-
crease in magnitude with increasing quantile. At higher accu-
mulations (6, 12, and 24 h), the bias is negative but decreases
in magnitude with increasing quantiles. At higher quantiles
(95 and 99 %), the bias is the least in the temperate zone. The
BARRA estimates are under-predicted at all time accumula-
tions, but this improves with increasing temporal accumula-
tions.

4.2 Neighbourhood-based sub-daily patterns at point
locations

Figure 3 shows how the minimum error score changes with
varying neighbourhood grid size. It is seen that the error
score decreases significantly when a neighbourhood of 3× 3
grid cells (about 35×35 km) is considered instead of a single
nearest neighbour only. The error score continues to decrease
slightly as the size of the neighbourhood increases, though
the adoption of a larger neighbourhood increases the likeli-
hood that rainfall events unrelated to the gauge observations
are being considered. The results show that the temporal dis-
tribution of the BARRA precipitation estimates within a wet
day are representative yet displaced in terms of location. The
error scores are all less than 0.33, which indicates that the
temporal distribution of sub-daily BARRA precipitation is
on average superior to a uniform distribution of estimates de-
rived by simply disaggregating daily rainfalls over a day.

4.3 Neighbourhood-based spatial evaluation

Figure 4 shows the hourly precipitation rates corresponding
to different quantile thresholds in the Brisbane, Darwin, Mel-
bourne, and Sydney regions, for the largest 25 events that
occurred between 2014 and 2016. The Melbourne and Syd-
ney regions are more similar than other domains in terms of

the frequency distribution of hourly precipitation and the dis-
crepancy between radar and BARRA precipitation.

Overall, the rainfall magnitude corresponding to quantiles
is higher for the radar estimates than for BARRA, and this
can be attributed to the difference in spatial scale and the
area-weighted re-gridding scheme. The difference between
the two datasets is greater at higher quantiles. However, at
around 99 % quantiles, the precipitation from BARRA is
close to or greater than radar precipitation.

FSS is calculated for varying quantile thresholds (50, 75,
90, 95, and 99 %) at different accumulations across time (1,
3, and 6 h) and presented in Fig. 5. As expected, FSS in-
creases with increasing neighbourhood size and decreases
with increasing threshold. If there is no frequency bias, then
the FSS curve is expected to asymptote to 1 as the neigh-
bourhood size is increased. In Fig. 5, the maximum FSS of
1 is not achieved even at the neighbourhood size of 300 km,
which signifies a frequency bias in BARRA.

The FSS scores vary with location, where the regions in
increasing order of performance are Darwin, Brisbane, Mel-
bourne, and Sydney. The results for hourly precipitation and
75 % quantile threshold suggest that the skilful spatial scale
L (FSS > 0.5+po/2) is less than 100 km for all the loca-
tions except Darwin. The skilful spatial scale for 90 and 95 %
quantile thresholds increases to 150 km. For the 99 % quan-
tile threshold, BARRA estimates only exhibit useful skill
over spatial scales larger than around 250 km.

The FSS metric only provides information on how perfor-
mance varies with increasing spatial scale. It does not ac-
count for timing errors associated with events that might be
initiated at different times and/or evolve at different rates.
An indication of such timing errors may be discerned by as-
sessing how the FSS varies with increasing time accumula-
tions. The results shown in Fig. 5 indicate that FSS improves
with increasing time accumulations. For example, at Darwin,
BARRA is able to provide skilful estimates of 50 % thresh-
old of hourly rainfalls only at a scale of 200 km; however, at
3 and 6 h accumulations, the corresponding spatial scale re-
duces to 125 and 100 km, respectively. The accuracy of the
BARRA estimates decreases with increasing rainfall sever-
ity, and even at the longest time accumulations the spatial
scale at which rainfalls above the 99 % quantiles are skilful
extends out to 300 km.

5 Discussion

To understand the performance of BARRA precipitation at
sub-daily scales, a range of evaluation methods are employed
to ascertain its spatial and temporal characteristics. Key in-
sights arising from the results are discussed below.
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Figure 2. Percentage bias in precipitation at quantiles (rows) and accumulations (columns). The box plots represent the summary of percent-
age bias across climatic zones for respective rows and columns. Each box in the box plot represents 25th–75th-quantile values, the horizontal
line in the box represents the median, and whiskers represent the 5th–95th quantiles.

Figure 3. Box plots showing the distribution of the minimum er-
ror score across stations in each neighbourhood grid size. The box
represents 25–75th-quantile values, the horizontal line in the box
represents the median, and whiskers represent 5–95th quantiles.

5.1 Performance based on wet-day quantiles

The unconditional evaluation of precipitation frequency in
terms of wet-day quantiles examines the representativeness

of sub-daily climatology (Fig. 2). The minimum bias across
all time accumulations and quantiles in the temperate zone
suggests that BARRA provides unbiased estimates of tem-
perate rainfalls over the observed range of events. In addi-
tion, an improved performance is observed across all regions
when temporal accumulations are considered. This includes
the arid and tropical zones where BARRA performs poorly
at an hourly scale. A slight negative bias is observed across
all locations in most of the quantiles. This underestimation
is however expected due to the mismatch in spatial scale be-
tween point observations and grid-average precipitation (Ma-
raun, 2013). The point precipitation, in general, is expected
to be higher than areal rainfall at a 12 km spatial scale.

5.2 Spatio-temporal representation of rainfall

A potential displacement of the precipitation field in space
and time is expected when evaluating high-resolution pre-
cipitation datasets, especially when performance is assessed
on an hourly timescale and at a point (or single grid cell)
location (Rossa et al., 2008). The BARRA estimates exhibit
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Figure 4. Hourly precipitation rates corresponding to quantiles for
BARRA and blended radar data at four different locations.

such displacement errors, as evidenced by improved perfor-
mance in neighbourhood analysis and FSS analysis. An as-
sessment of hourly temporal patterns shows an improvement
when neighbourhood grid cells are considered (Fig. 3). This
suggests that, when using precipitation from BARRA, users
could benefit from considering spatial and temporal displace-
ment in the precipitation field, especially during large events.
This further suggests an opportunity to utilise hourly distri-
bution of rainfall for disaggregating daily totals.

At the catchment scale, the accuracy of the spatial distribu-
tion of rainfall is important for flood modelling. The evalua-
tion of the spatial performance of BARRA against radar data
for selected large events showed a mixed result between loca-
tions. BARRA rainfalls for the 90 % quantile at 3 h accumu-
lation achieves the target FSS at a spatial scale of range 100–
140 km for all domains except Darwin (250 km) (Fig. 5).
Achieving useful skill only at a large spatial scale can be
partly attributed to the spatial error in the precipitation fields.
The higher quantile thresholds are related to small-scale fea-
tures which are even more likely to be subject to spatial error.
Therefore, it is difficult to achieve a skilful spatial scale for
these more extreme rainfalls. This has also been pointed out
by Roberts and Lean (2008) based on the skill of numerical
weather prediction (NWP) model outputs at various quan-
tile thresholds (75, 90, 95, and 99 %). The nature of such
spatial displacement errors should be considered if BARRA
estimates of precipitation are intended to be used for hydro-
logical modelling.

This spatial evaluation is conducted at selected locations to
take advantage of the availability of high-resolution blended
radar datasets. Across the whole Australian continent there
is a dearth of such high-resolution observations of precipita-
tion, and BARRA could be relied upon to provide estimates
of sub-daily precipitation at selected spatial scales in regions
where there is a paucity of gauging data.

5.3 Performance dependence on spatial location

The overall performance of BARRA varies with location, and
this similar trend was evident across all evaluation methods.
Both the bias analysis of quantiles and the FSS evaluation
show that the performance of BARRA gradually improves as
we move from northern to southern regions (Figs. 2 and 5).
This variation in performance can partly be attributed to the
different rainfall climate in these regions. The convective pre-
cipitation during the summer season is dominant at northern
(low) latitudes, whereas winter (or uniform) frontal rainfall
is dominant at southern (high) latitudes. The poorer perfor-
mance in the tropics, where convective precipitation is dom-
inant, reflects the limitations of the parameterisation scheme
to describe sub-grid-scale rainfall (Su et al., 2019). This is
consistent with the finding of Ebert et al. (2007) that focuses
on general performance of NWP models. The variation in
performance of sub-daily BARRA precipitation across spa-
tial location and different climatologies is consistent with the
daily evaluation performed in Acharya et al. (2019).

5.4 Performance as a function of temporal resolution

Availability of hourly rainfall observations (based on both
pluviometer and radar products) enables BARRA estimates
of hourly rainfalls to be evaluated. The uneven and sparse
distribution of pluviometer gauges across Australia and the
limited availability of radar products is not sufficient for
an overall assessment of sub-daily precipitation across the
whole of Australia, yet, given the wide range of climatologies
considered, the analyses provide a comprehensive evaluation
of BARRA. Our unconditional (Fig. 2) and direct compar-
isons (Fig. 5) both illustrate a similar dependency of perfor-
mance on temporal resolution. The performance shows a sig-
nificant improvement when estimates are accumulated from
1 to 3 h. The increased performance for coarser temporal res-
olution can also be linked to the smoothing effect of rainfall
at larger accumulation times and reduction of inherent bias.

The trade-off between performance and temporal resolu-
tion needs to be considered in combination with the objec-
tives for which the precipitation estimates are used. However,
in general terms the increased performance at 3 and 6 h accu-
mulation suggests that it is better to use these accumulations
from BARRA. Given that the performance of BARRA does
vary with location, it is expected that shorter (3 h) accumula-
tions may be appropriate for use in temperate locations, and
longer accumulations (6 h) in the tropical and arid regions.
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Figure 5. Mean FSS as a function of neighbourhood distance for rainfall above quantile thresholds (indicated by colours) at various locations
(rows) and accumulations (columns). The dashed horizontal lines indicate the target or uniform (FSStarget or FSSuniform) skill for each
threshold as specified by Roberts and Lean (2008).

6 Conclusions

An accurate representation of spatial and sub-daily temporal
characteristics of precipitation fields is important for many
hydro-meteorological applications. BARRA is a regional re-
analysis dataset that provides long-term high-resolution esti-
mates of atmospheric variables over the Australian continent.
In this study, the spatio-temporal characteristics of sub-daily
BARRA precipitation estimates are assessed using various
metrics to evaluate its performance at various spatial and
temporal scales. Based on the results, we conclude the fol-
lowing:

1. Sub-daily precipitation from BARRA exhibits negative
bias at higher quantiles. The magnitude of bias varies
with event severity and temporal accumulation.

2. There is some tendency for BARRA reanalysis precip-
itation to exhibit spatial displacement, and this is more
pronounced for rainfall corresponding to higher quan-
tiles.

3. The performance of BARRA precipitation depends on
spatial location, with poorer performance in tropical rel-
ative to temperate regions. These spatial trends are con-
sistent across evaluations undertaken using both gauged
point rainfalls and blended radar observations.
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4. Bias in BARRA precipitation quantiles at a point scale
and spatial displacement errors at a spatial scale de-
crease with increasing time aggregation, and the perfor-
mance is reasonably skilful at most of the locations for
temporal accumulations of 3 h and greater.

One of the limitations of this study is that the spatial as-
sessment of BARRA is restricted to a few locations where
radar-based datasets are available and the performance of
BARRA across Australia is generalised based on evalua-
tion at those locations. Currently, the lack of high-quality
and high-resolution benchmark datasets limits our ability to
fully understand the performance of BARRA across the en-
tire continent. However, a more detailed spatial assessment
of BARRA will be possible once such benchmark datasets
are available.

A natural interest of the users of BARRA is the potential
application of the data in hydro-meteorology. Information on
sub-daily rainfalls across the Australian continent is limited
due to sparse gauge measurements, the availability of radar at
only few locations, spatially coarser global reanalysis prod-
ucts, and few satellite products (∼ 25 km, going back to only
1998). BARRA stands out as one of few available datasets
at hourly temporal resolution. In that respect, it serves as a
useful dataset for the applications requiring sub-daily pre-
cipitation. Further, it can be used to help characterise rainfall
behaviour in regions where gauges are sparse or non-existent.
One of the potential applications of BARRA is for deriving
probabilistic design rainfall events for engineering applica-
tions, which utilise information on the relationship between
rainfall magnitude and its exceedance probability either at a
point or over an area. Such applications are probabilistic in
nature and are less sensitive to spatial and temporal errors
of the individual events. For applications in flood modelling,
where the spatial and temporal distribution of precipitation
is important, the likely spatio-temporal displacement errors
in the BARRA precipitation need to properly be taken into
account.

The strength of the BARRA dataset is that it provides es-
timates of sub-daily areal rainfall which can be used across
diverse hydrological applications that require such estimates.
In addition to providing absolute estimates of precipitation,
BARRA would also appear well suited to providing informa-
tion on sub-daily patterns of areal rainfalls which can be used
as a means of disaggregating daily rainfalls obtained from
more reliable sources. The extent to which such estimates
might provide a better representation of areal sub-daily rain-
fall for design and hydrological modelling warrants further
investigation.
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