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Abstract. Poorly monitored river flows in many regions of
the world have been hindering our ability to accurately es-
timate global water budgets as well as the variability of the
global water cycle. In situ gauging sites, as well as a num-
ber of satellite-based systems, make observations of river
discharge throughout the globe; however, these observations
are often sparse due to, for example, the sampling frequen-
cies of sensors or a lack of reporting. Recently, efforts have
been made to develop methods to integrate these discrete ob-
servations to gain a better understanding of the underlying
processes. This paper presents an application of a fixed in-
terval Kalman smoother-based model, called inverse stream-
flow routing (ISR), to generate spatially and temporally con-
tinuous river discharge fields from discrete observations.
The method propagates the observed information across all
reachable parts of the river network (up/downstream from
gauging point) and all reachable times (before/after observa-
tion time) using a two-sweep procedure that first propagates
information backward in time to the furthest upstream loca-
tions (inverse routing) and then propagates it forward in time
to the furthest downstream locations (forward routing). The
ISR methodology advances prediction of streamflow in un-
gauged basins by accounting for a physical representation of
the river system that is not generally handled explicitly in
more-commonly applied statistically based models. The key
advantages of this approach are that it (1) maintains all the
physical consistencies embodied by a diffusive wave rout-
ing model (flow confluence relationships on the river network
and the resulting mass balance, wave velocity, and diffusiv-
ity), (2) updates the lateral influx (runoff) at the pixel level
(furthest upstream) to guarantee exhaustive propagation of
observed information, and (3) works both with a first guess
of initial river discharge conditions from a routing model (as-

similation) and without a first guess (pure interpolation of
observations). Two sets of experiments are carried out un-
der idealized conditions and under real-world conditions pro-
vided by United States Geological Survey (USGS) observa-
tions. Results show that the method can effectively reproduce
the spatial and temporal dynamics of river discharge in each
of the experiments presented. The performance is driven by
the density of the gauge network as well as the quality of the
data being assimilated. We find that when assimilating the ac-
tual USGS observations, the performance decreases relative
to our idealized scenario; however, we are still able to pro-
duce an improved discharge product at each validation site.
With further testing, as well as global application, ISR may
prove to be a useful method for extending our current net-
work of global river discharge observations.

1 Introduction

In the application of water resources for human use, as well
as the monitoring and prediction of global hydrologic haz-
ards, such as floods and droughts, a comprehensive under-
standing of globally distributed runoff and river discharge
is extremely important. In many regions of the world, river
flows are poorly covered by in situ observations, and the
collection of the available observations for consumption by
global end-users has proven to be a difficult challenge, as evi-
denced by the available records from the Global Runoff Data
Center (GRDC; Fekete et al., 2012). Streamflow records are
typically most complete in relatively developed and popu-
lous parts of the world; however, streamflow data in many
regions are often considered proprietary, resulting in, among
other issues, difficult problems in the management of water
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resources in transboundary rivers (see, e.g., Biancamaria et
al., 2011; Pavelsky et al., 2014).

Besides the usefulness of global near-real-time river dis-
charge data for water management, there is a great need
for observations of river discharge data to further our un-
derstanding of the global water cycle and its representation
by reanalysis and climate models. While other observational
sources for the terrestrial water budget have become more
readily available from satellite remote sensing, the lack of
comprehensive river discharge observations has resulted in a
key flux (runoff) in climate models and large-scale land sur-
face models being poorly constrained by observations over
much of the global land surface (Sahoo et al., 2011). Fur-
thermore, the amount of water stored at the land surface and
its time–space variability are poorly known. To better serve
the global hydrologic community, there is then a need for
methods which can make further use of the currently avail-
able global discharge data sources.

These data sources can be divided into the following sets:
(1) observations based on in situ measurements (gauges);
(2) estimates based on remotely sensed observations (e.g.,
satellite altimetry, synthetic aperture radar); and (3) esti-
mates based on land surface models (LSMs) and routing
models (Pan and Wood, 2006). Traditionally, the data pro-
vided by sets 1 and 2 can be thought of as point observations
of river discharge along a river network, whereas set 3 can
provide us with a spatially distributed representation of dis-
charge throughout our basins of interest, derived from mod-
eled runoff fields. These two variables can be connected by
the process of streamflow routing, where the spatially dis-
tributed runoff generated at the land surface flows over the
hillslope and through a river network to become streamflow
in the river channels. From this process we can then say that
the streamflow (as measured at specific points in space and
time) is the integrated response to the runoff through a sub-
set of time and space. Due to this process, all studies using
streamflow as representative of basin runoff are limited to
applications where the temporal differences can be ignored
or accounted for (e.g., for long-term studies the aggregation
of the runoff data allows us to ignore the temporal differ-
ences; Sahoo et al., 2011; Sheffield et al., 2009; Pan et al.,
2012). There is then a need for new methods that are able to
derive spatially and temporally continuous records of runoff
and river discharge from the available data sources.

The goal of this study is to present an application of a
methodology by which we can integrate and use the point-
scale observations of river discharge to derive a product that
is spatially and temporally continuous. One possible method
is the combination of point observations with spatially dis-
tributed model estimates through assimilation. Due to the
integrated nature of the streamflow generation process, any
discharge assimilation must be able to propagate informa-
tion throughout the range of influence in a basin for any
given gauge. Additionally, we must be able to assimilate all
available observations in a basin simultaneously in time and

space, to resolve conflicts due to observational errors. There
have been a number of recent studies investigating the po-
tential for such discharge assimilation using a wide variety
of methods, (e.g., Andreadis et al., 2007; Biancamaria et
al., 2011; Paiva et al., 2013; Pan and Wood, 2013). While
these methods are often robust and comprehensive, the large
computational burden, in particular for those using ensemble
Kalman filters such as that used by Andreadis et al. (2007),
limits their potential for rapid global application. In addi-
tion, many of these methods simply adjust discharge in a for-
ward sense and do not fully account for the upstream spatial
and temporal correlations of the streamflow generation pro-
cess. Alternative methods have focused on the use of kriging-
based statistical techniques to derive spatially distributed es-
timates of river discharge, (e.g., Blöschl et al., 2013; Paiva
et al., 2015; Yoon et al., 2013). These statistical methods
often show good agreement for the reconstructed discharge
with little computational cost, but are highly dependent on
the formulation of the covariance matrix for each river sys-
tem. Here we propose the use of an assimilation and inter-
polation scheme for creating spatially complete and tempo-
rally continuous river discharge records from point observa-
tions based on the inverse streamflow routing (ISR) model,
which was previously used by Pan and Wood (2013) for the
generation of spatially distributed runoff fields to be used in
land surface modeling applications, such as the calibration
of model parameters. The new approach maintains the im-
portant structure of the streamflow generation process with
a relatively low computational burden and guarantees an ex-
haustive propagation of observed information to all reach-
able locations across the river network and reachable times.
This can be more effective compared to the assimilation
and interpolation methods discussed previously, which per-
form assimilation by adjusting the state variables (e.g., water
height/volume, flow rate) and propagate the observed infor-
mation much less exhaustively. Additionally, compared with
the statistical methods commonly used in the Prediction in
Ungauged Basins (PUB) initiatives (Blöschl et al., 2013), one
of the key differentiators is that the ISR method accounts for
a physical representation of the river system (in the form of a
river routing model, albeit a simple one), which should pro-
vide better physical consistency than with a purely statistical
method.

2 Methods

In short, the proposed method tries to propagate the observed
discharge information across all reachable parts of the river
network (up/downstream from gauging point) and all reach-
able times (before/after observation time) using a two-sweep
procedure that first propagates information backward in time
to the furthest possible upstream (inverse routing) and then
propagates it forward in time to the furthest possible down-
stream (forward routing). Figure 1 provides a detailed illus-
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tration of the proposed scheme. The first sweep of the proce-
dure, known as ISR, developed by Pan and Wood (2013) to
generate spatially distributed runoff fields, plays a key role
here (left side of Fig. 1). The ISR helps to guarantee an ex-
haustive propagation of observed information by updating
the boundary influx (runoff) at the pixel level (the furthest
possible upstream) throughout the entire spatial and tempo-
ral domains. The second sweep simply re-runs the same rout-
ing model forward using the runoff fields derived from the
first sweep to reconstruct continuous discharge values every-
where (right side of Fig. 1). Since ISR does not require an
initial guess of discharge from the routing model (Pan and
Wood, 2013), the proposed method works for both data as-
similation (if an initial guess exists) and pure interpolation
of observations (without an initial guess). Given that the dis-
charge records are ultimately created by a routing model, this
approach preserves all the physical consistencies embodied
by the chosen routing model and its parameters such as the
flow confluence relationship on the river network and the re-
sulting mass balance, wave velocity, and diffusivity (if a dif-
fusive wave routing model is used). Such a strong physical
consistency can hardly be implemented by methods based
on statistical correlations between different gauging points
or different state variables in the routing model as, for ex-
ample, in the river kriging method (Paiva et al., 2013). When
used as an interpolator, the proposed method can also exactly
reproduce the input observations at gauging locations/times
(Pan and Wood, 2013). As such, this method can be seen as
performing both data assimilation and interpolation. While it
is true that the experiments with and without an initial guess
can be seen as “data assimilation”, such a distinction is very
important for satellite remote sensing applications such as
the future SWOT mission because estimation with no initial
guess will enable the use of “satellite-only” products, which
is equivalent to performing “interpolation”, instead of “data
assimilation” (i.e., satellite–model combined products). The
mathematical formulation of this method is described below.

2.1 Routing model formulation

The basic routing model selected for this work is the Uni-
versity of Washington (UW) routing model (Lohmann et al.,
1996; Nijssen et al., 2001), which provides a simple linear
routing scheme that is commonly coupled with LSMs. This
model routes runoff through two processes. The first of these
is the drainage of the runoff water within a grid cell to the
outlet of the grid cell as governed by a known unit hydro-
graph function (UHF). This is given by Eq. (1) below, where
u(t) is the UHF, r(t) is the pixel runoff, and o(t) is the pixel
outflow.

o(t)=

∫ t

0
r (t − τ)u(τ)dτ (1)

The second process then governs the travel of water in chan-
nels between pixels through the one-dimensional diffusive

wave equation. This is given by Eq. (2), where q is the
streamflow generated by the pixel outflow at a distance x
downstream, C is the channel wave velocity, and D is dif-
fusivity.

dq
dt
=D

δ2q

δx2 −C
δq

δx
(2)

This model is linear as long as the parameters C and D are
assumed not to be a function of the streamflow, i.e., retention
effects such as lakes and reservoirs as well as human man-
agement are not considered, and thus it is a good candidate
for our inversion. These two stages of the routing process are
then solved together using the form presented by Eq. (3) be-
low, where i(x, t) is the impulse response function as defined
by Eq. (4).

q(xt)=

∫ t

0
r (t − τ)u(t − τ) i (x, t)dτ (3)

i (x, t)=
x

2t
√
πtD

exp
{
−
(Ct − x)2

4Dt

}
(4)

By integrating Eq. (3) for all upstream pixels, denoted as
all(g), for any given gauge g at discretized time steps, we
can determine the streamflow at any gauge location, Q(g, t)
as shown in Eq. (5).

Q(g, t)=
∑
all(g)

q(x, t) (5)

This formulation serves as the basic routing model for inver-
sion and for the final reconstruction of discharge from the
inverted runoff fields.

2.2 Inverse streamflow routing model

Using the routing model presented above, the fixed interval
Kalman smoother can now be established for the inversion
process following Pan and Wood (2013). First, the routing
model must be written in a linear state space form as a func-
tion of input states as seen in Eq. (6).

yt =H0xt +H1xt−1+ ·· ·+Hkxt−k + εt (6)

In this form, yt is a vector of the discharges at a number of
gauges in the basin and xt is a matrix of the runoff for all cells
at time t . Because of the integration to determine flow at each
gauge, the model requires runoff information up to a lag time
of k+ 1 steps, which is the travel time of the basin. Finally,
Ht represents the measurement operator matrix, whose ele-
ments represent the amount of runoff that one specific cell
will contribute to each gauge at a given time. These values
are calculated from the impulse response function. As a re-
sult of the integration described above, there is a need for
the solution of this inverse problem for multiple time steps at
once, which gives rise to the fixed interval smoothing com-
ponent of this inversion. Through a time augmentation, the
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Figure 1. Two-sweep procedure for spatiotemporal assimilation–interpolation of discharge records. The first sweep (c) propagates observed
information collected at gauging points upstream and backward in time following the inverse streamflow routing method developed in
Pan and Wood (2013) and derives continuous runoff fields (lateral influx at furthest possible upstream). The second sweep (d) propagates
information downstream and forward in time (regular routing) to create continuous discharge values everywhere. The stacked spatial maps
at the top illustrate how the observed information at a single point in time–space propagates backward in time–space (a) and how discharge
is reconstructed from the integrated runoff (b).

model can ultimately be written in the Kalman filter form as
shown in Eq. (7) below (Pan and Wood, 2010).

x̂′′t = x̂′t +Kt (y
′
t −H′x̂′t −L′x̂′t−k) (7)

Here, x̂′t is the initial guess of the time augmented runoff
fields, y′t is the time augmented streamflow measurements,
H ′ and L′ are time augmented measurement operators, Kt is
the Kalman gain as given by Eq. (8), and x̂′′t is the updated
estimate of the runoff fields.

Kt = PtH′
T
(H′PtH′

T
+Rt )−1 (8)

The Kalman gain represents a weighting of the update to the
runoff fields and is controlled by Pt , which represents the
error covariance matrix of the initial forecast for the runoff,
and Rt , which is the error covariance matrix of the gauge
measurements. For this study, we perform a set of idealized
experiments in which we set Rt equal to 0, such that the in-
version process provides a maximum correction to the initial
runoff guess. The error covariance (Pt ) is defined as a di-
agonal matrix of the long-term mean runoff error variance.
In practical applications this error term will be derived from
the error utilized in the particular form of the discharge ob-
servations. It should be noted that this method can function
without an estimate of the initial runoff conditions (a null
field) and thus, it also works for streamflow interpolation in
which river discharge is reconstructed purely from observa-
tions. With the first ISR completed through ISR, the second

sweep of flow reconstruction is done by running the same
routing model in a forward sense with the new runoff in-
fluxes.

2.3 Experimental design and study area

For this study we perform two sets of streamflow interpola-
tion experiments over the Ohio River basin. The Ohio River
basin, along with the Tennessee River in the southern part of
the basin, is a large basin covering an area of approximately
490 000 km2. This basin contains a wide variety of river sizes
that drain a mix of developed, undeveloped, and agricultural
areas, all of which are monitored by the United States Ge-
ological Survey (USGS) with a dense network of gauges.
This monitoring network makes the basin a good candidate
for these streamflow interpolation experiments, as we will be
able to use the extensive USGS observations as another set
of data inputs.

The first of these experiments performs the inversion us-
ing synthetically created streamflow values as a proof of
concept for the method. The goal of this experiment is to
see if the streamflow interpolation method can generate the
true discharge, given varying levels of information about
the prior runoff conditions in the basin. The second exper-
iment is the same as the first, except that the synthetic gauge
data are replaced with actual USGS gauge data. In this ex-
periment, the performance of the ISR method is evaluated
under “real-world” conditions given that the routing model
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does not account for the effects of human management and
will produce streamflows that are likely different from the
observed streamflows. Flow charts of these two experiment
sets can be seen in Fig. 2. Each of these experiments were
run for the entirety of 2009. This period was selected be-
cause the daily discharge characteristics were representative
of the climatology, with some individual high flow events
but no dramatic/extended droughts or floods. Such a choice
can minimize the impact of many compounding factors like
the deficiencies of simple diffusive wave routing under ex-
treme conditions (high flow and low flow). In addition, ex-
periments and observations over a “typical” period can be
more generalizable. Based on the previous work of Pan and
Wood (2013), the wave velocity parameter and the smooth-
ing window for the Ohio River basin were set at 1.4 m s−1

and 70 d, respectively.

2.4 Data

In each of the experiments, the NLDAS 0.125◦ meteorologi-
cal data set (Cosgrove et al., 2003) is used to force the Vari-
able Infiltration Capacity (VIC) LSM (Liang et al., 1994,
1996) to produce runoff fields that are considered the “true”
runoff. The NLDAS precipitation forcings were chosen for
this experiment as they combine hourly radar analyses and
daily gauge observations and are considered to provide a
comprehensive and reliable set of forcings over the United
States (Pan et al., 2010). This NLDAS-derived runoff is then
used with the routing model described previously to generate
synthetic streamflow values at set evaluation sites (“pseudo
gauges”) for the study period. These 75 sites are the routing
model grid cells in which an actual USGS gauge is located.
25 of these gauge sites are designated as validation sites and
the remaining 50 sites provide river discharge time series to
be assimilated in the ISR model. The selection of these gauge
sites was based solely on finding gauges within the basin that
had relatively complete discharge records (> 95 % days avail-
able) for the year 2009 and the distribution of validation sites
was random. The use of these USGS gauge-based sites for
validation of the synthetic model results also allows for later
experiments and comparisons with the actual USGS observa-
tions. The distribution of these pseudo gauge stations as well
as a representation of the routing model river basin can be
seen in Fig. 3.

The generated synthetic streamflows are considered the
true observations and are used in the streamflow interpola-
tion process to correct an initial estimate of river discharge
(derived from an initial estimate of daily runoff that is also
routed using the Lohmann routing model). To investigate the
impact of this initial runoff estimate, we perform each syn-
thetic experiment with three daily initial conditions. These
are (1) a long-term mean value of runoff applied over the
entire basin (same value in every grid cell for every day in
the study period), (2) a daily climatology of runoff at each
grid cell, derived from the NLDAS forced VIC LSM, and

(3) daily runoff values derived from the VIC LSM forced
with the real-time TRMM Multi-Satellite Precipitation Anal-
ysis (TMPA) version 3B42RT (Huffman et al., 2007) precip-
itation product. The TMPA product was selected for this ex-
periment as it is globally available between 60◦ N and 60◦ S
at a 3 h temporal and 0.25◦ spatial resolution. The prod-
uct was interpolated to 0.125◦ to force the VIC simulations
(Pan et al., 2010). While this product is not as accurate as
the ground observation-based NLDAS product, it is globally
available and can be used along with the VIC LSM to provide
us with a realistic initial forecast of runoff even when ground
observations do not exist (Pan et al., 2010). The results of
these three purely synthetic experiments and three USGS
observation-based experiments are presented in Sect. 3.

3 Results

Following the above methodology, six discharge interpola-
tion (reconstruction) experiments were performed. To evalu-
ate the performance of the interpolation in each of these ex-
periments we compute the Nash–Sutcliffe efficiency (NSE)
at each of the 25 pseudo gauges designated for validation in
Fig. 3. The NSE is a measure of model performance and is
defined in equation (9), where Qo is the mean of observed
discharges, Qt

m is modeled discharge at time t , and Qt
o is

observed discharge at time t (Nash and Sutcliffe, 1970).

NSE=

∑T
t=1
(
Qt

m−Q
t
o
)2∑T

t=1
(
Qt

o−Qo
)2 (9)

The NSE may range from −∞ to 1, with an efficiency of
1 meaning that there is a perfect match between the modeled
discharge and the observations (or the synthetic truth). An
efficiency of 0 indicates that the model is just as accurate as
the mean of the observations, and a value less than 0 indicates
that the mean would be a better predictor than the model.

In addition, to more comprehensively evaluate the perfor-
mance of these discharge reconstructions, the Kling–Gupta
efficiency (KGE) and its component statistics including cor-
relation coefficient (r), bias ratio (β), and relative variability
(α) are calculated for each experiment, following Eqs. (10)
to (13). In these equations, Qm and Qo denote modeled and
observed discharge, respectively, while σQm and σQo denote
standard deviation of the modeled and observed discharge,
respectively. KGE measures the Euclidean distance between
a point and the optimal point that has r = 1, β = 1, and
α = 1, producing a desired KGE of 1 (Gupta et al., 2009;
Kling et al., 2012). As a result of this, KGE is an integrated
skill metric through which one can jointly consider the mod-
eled time series co-variability with the observations (or syn-
thetic truth), the model bias, and the model standard error
(Gupta et al., 2009).

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (α− 1)2 (10)
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Figure 2. (a) Overall process flow diagram for the synthetic experiments with the ISR model, where p is the input precipitation for the VIC
LSM distributed over the study domain and study period, r is the runoff fields distributed over the same space, and q is discharge at discrete
points during the study period. The superscripts “Init” and “Syn” represent the initial guess and the synthetic truth, respectively, while the
“Inv” superscript indicates the products resulting from the model. (b) Overall process flow diagram for the ISR model, substituting actual
USGS discharge observations for the synthetic truth of the previous experiments.

Figure 3. The Ohio River basin modeled at 0.125◦ resolution and
the distribution of the 75 USGS gauge sites used in the creation of
pseudo gauges for assimilation. Blue dots represent those gauges
used in the assimilation and interpolation while the red dots repre-
sent those gauges which will be reconstructed for evaluation. The
background shading indicates the travel time from each grid cell to
the outlet of the basin.

r =
cov(Qm,Qo)

σQm · σQo

(11)

β =Qm/Qo (12)

α =
σQm/Qm

σQo/Qo
(13)

3.1 Synthetic discharge interpolation

For the first set of experiments we follow the procedure out-
lined by Fig. 2a. An example of the discharge interpolation
can be seen in Fig. 4, where the time series of discharge are
shown for 2 of the 25 validation gauges. The runoff initial
conditions for this set of reconstructions was the climatolog-
ical daily runoff. Figure 4a, which represents a downstream
gauge with a large upstream area, shows the performance of
the ISR method. We find that the NSE increased from 0.527
to 0.995, indicating a large increase in the model perfor-
mance through assimilation. By examining the overall time
series, it is evident that the assimilation was able to correct
for a majority of the conditions imposed by the initial guess
of runoff. For example, between days 50 and 100 the ini-
tial guess had significantly higher flows compared to the syn-
thetic truth, where these high flows centered around day 50,
and the assimilation was able to reconstruct this quite well.
Figure 4b shows the same results for an upstream gauge with
a smaller contributing area, where we observe an increase in
NSE from 0.049 to 0.986 after the discharge reconstruction.
Similar to the previous example, the ISR methodology was
effective in reconstructing spatially and temporally contin-
uous discharge records. Despite this, we find that for some
gauges with the smallest upstream areas, which potentially
contain less assimilated gauges than others, the reconstruc-
tions will occasionally miss the temporal dynamics of the
synthetic truth, such as between days 150 and 200 in Fig. 4b.
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Figure 4. Reconstructed discharge time series during 2009 for 2 of the 25 evaluation sites when the ISR model was run using the clima-
tological initial guess of runoff conditions. The blue line represents the synthetic truth discharge used in the inverse routing, the black line
illustrates the discharge derived from our initial guess of runoff, and the red line illustrates the reconstructed discharge. NSE values are given
for the initial guess and the reconstruction in relation to the synthetic truth.

Figure 5 illustrates the evaluation of the KGE values
across all of the validation sites for each of the three initial
runoff conditions. These plots of the distribution of KGE val-
ues in the validation gauge set for the initial guess and the
reconstructed discharge illustrate the performance improve-
ment from the streamflow interpolation method. Across all of
the initial conditions there is an increase in performance for
many of the gauges, with a shift in the KGE values towards
1. In particular, we find that the null initial guess of runoff
performs the best (Fig. 5d). This is likely because we are not
imposing any temporal or spatial dynamics on the runoff, just
a mean value, which allows the interpolation to adequately
reconstruct the temporal dynamics of the synthetic truth. In
particular, the initial discharges are not very biased (Fig. 5g)
but have very poor correlation and variability (Fig. 5j, m).
The improvement in both correlation and variability illus-
trates the ability of the ISR methodology to significantly im-
prove upon the initial guess. In contrast to this, we found that
the experiment with initial conditions based on the TMPA-
observed precipitation performed the worst, as there were of-
ten differences in when events such as high flows started or
the magnitude of these events, which the assimilation was not
able to completely correct for. Despite these differences, we
find that the ISR method is able to create discharge records
across all initial conditions, with a noticeable increase in per-
formance in each case due to the improvement in correlation
and variability.

To further illustrate the impact of upstream area and gauge
density on the performance of the interpolation, we plot the
upstream area of each validation gauge versus the NSE for
reconstructed discharge in Fig. 6. For each experiment the
same pattern is observed, with a wide variety of NSE val-
ues for gauges with upstream areas of less than 104 km2,

while basins larger than this have NSE values consistently
between 0.9 and 1. These larger sub-basins incorporate the
information of other assimilated upstream gauges, allowing
for more accurate reconstruction of discharge. In addition to
this, the integrative nature of the routing and smoothing pro-
cedure dampens many of the short-term high flow events,
allowing the larger sub-basins to exhibit consistently better
performance given reliable upstream observations.

3.2 USGS gauge interpolation

In addition to these purely synthetic experiments, we evalu-
ated the performance of the streamflow interpolations under
real-world conditions by substituting daily observed USGS
river discharge values for the synthetic truth used previously.
Here we present the results of these three USGS-based ex-
periments, varying the initial runoff conditions in the same
manner as the previous experiments. Figure 7 illustrates the
performance of the ISR model for discharge reconstruction
when assimilating these in situ river discharge observations.
Again, we find that the method works well for the two eval-
uation gauges presented, with the larger basin (Fig. 7a) im-
proving the NSE from 0.166 to 0.862 and the smaller basin
(Fig. 7b) improving from −0.061 to 0.942. Comparing these
results to those from the purely synthetic experiment pre-
sented in Fig. 4, it is clear that the use of the USGS data
degrades the performance of the reconstruction. This is likely
due to the nonlinear components of flow, such as reservoirs,
dams, or backwater effects, which are present in this basin
and can significantly alter the flow from what this linear rout-
ing model predicts. Additionally, during some of the peak
flow periods (such as days 100 to 150 in Fig. 7b), there are in-
stances where the reconstructed discharge is greater than the
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Figure 5. Distributions of NSE values (a, b, c), KGE values (d, e, f), and its component statistics: bias ratio β (g, h, i), correlation coefficient
r (j, k, l), and relative variability α (m, n, o), for the three synthetic experiments with varied initial conditions of runoff (shown in three
columns). These daily initial conditions are (1) null (uniform mean runoff over the entire basin), (2) climatology (average daily runoff over
the entire period from NLDAS), and (3) TMPA (runoff derived from TMPA precipitation and VIC LSM). In each plot, the red bars illustrate
the distribution of the statistic values for discharge generated from the initial guess of runoff and the blue bars indicate the same distribution
after reconstruction with the inverse routing method.

Figure 6. Distribution of NSE values for each of the evaluation sites versus the size of the upstream area for each gauge. The ordering and
experiment names are the same as those in Fig. 5.

synthetic truth. This is a result of a numerical correction done
in the model where physically unrealistic negative runoff val-
ues resulting from each Kalman smoother update are reset to
a value of zero. The effect of this correction is more apparent
in the assimilation of these USGS observations than in the
synthetic experiments.

Figure 8 presents the overall results of these experiments,
again displaying the distributions of KGE values resulting
from the initial guess and the discharge reconstruction. For
all initial conditions, the ISR model is able to create some
improvement in the reconstructed discharge values, mainly
by improving upon the correlation and variability; however,
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Figure 7. Reconstructed discharge time series during 2009 for 2 of the 25 evaluation sites when the ISR model was run using the climato-
logical initial guess of runoff conditions. Here the discharge data assimilated and compared against (the truth) are USGS observations.

the degree of improvement is noticeably less. In contrast
to the synthetic experiments, the initial guess of runoff de-
rived from the TMPA precipitation resulted in the best perfor-
mance for the interpolation while the null and climatological
initial guesses performed similarly, exhibiting a smaller shift
in the KGE values for all the evaluation gauges. In part, this is
due to the nonlinear flow characteristics in the USGS obser-
vations that we are not representing, as there are often con-
flicting estimates of the spatial distribution of discharge be-
tween the USGS observations and the TMPA precipitation-
based discharge, which lead to a decrease in the innovation
term provided by the Kalman smoother. Another potential
cause of this decreased performance could be errors in the
river discharge observations themselves. In situ observations
are likely to have errors of varying magnitudes; however,
we treat these observations as error free for the purposes of
model evaluation. As a result, any potential errors in these
observations will then be transferred to errors in the final re-
constructed discharge estimates.

4 Discussion

The need for global discharge and runoff observations and
estimates is not new and there have been a number of recent
studies that have taken different approaches to generating
spatially and temporally distributed discharge from point ob-
servations (Andreadis et al., 2007; Biancamaria et al., 2011;
Paiva et al., 2013, 2015). The ISR method is an alternative
approach to these methods, which allows for the creation of
spatially distributed discharge fields that are not only spa-
tially consistent but are also consistent through time, due to
the application of a Kalman smoother. The results of these
experiments have shown that the ISR method can produce a

representation of discharge throughout a basin river network
given a wide variety of initial conditions. In particular, the in-
terpolation from USGS observations is promising, as we are
able to generate a very close representation of the discharge
conditions throughout the basin with little to no prior infor-
mation about the specific distribution of runoff present. This
indicates that the ISR method may be able to extend the use-
fulness of observations in basins with sparse gauge networks,
such as in many underdeveloped regions of the world. It is
also important to note that the ISR method produces fields
of runoff that are consistent with the observed discharges,
which may prove beneficial for the calibration and optimiza-
tion of land surface model processes in poorly gauged basins.

Although these experiments have illustrated the potential
for the ISR method to be used for river discharge interpola-
tion in global basins, it is important to acknowledge that these
experiments are idealized and thus, do not contain all of the
potential errors and uncertainties that would be present in a
real-world application. As discussed previously, our method
is limited by the lack of a nonlinear routing model, the pres-
ence of error-free observations and the overall parameteri-
zation of the routing model (static parameters for the wave
velocity and the diffusivity). While the work of Pan and
Wood (2013) focused on the inversion of spatial runoff fields,
the ISR method is used to generate integrated discharge val-
ues; therefore, it is important to see how sensitive the model
will be to similar errors. Figure 9 presents the results of two
sensitivity experiments: (1) selection of a different velocity
parameter, and (2) decreasing amounts of available gauge
data. Both of these experiments were carried out using the
null initial conditions of runoff. For the velocity parameter,
the calibrated velocity of 1.4 m s−1 produces the best per-
formance; however, there is still skill in the discharge re-
construction for velocity values from 50 % to 200 % of the
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Figure 8. Distributions of NSE and KGE values for the three synthetic experiments with varied initial conditions of runoff and USGS
observations as the synthetic truth. The ordering is the same as that in Fig. 5.

optimal value (Fig. 9a). With regards to potentially limited
availability of observations, the number of gauges assimi-
lated in the ISR model was decreased from 0 % to 50 % of
the full set by randomly removing gauges (Fig. 9b). In all
cases, the KGE values indicate adequate model performance;
however, these results are dependent on the information con-
tained within each observation, as removing a gauge with a
larger contributing area is likely to have a larger impact on
the overall model performance that a smaller one. With re-
gards to errors in the observations, Pan and Wood (2013)
tested the impact of these errors on the ISR model’s ability
to reconstruct runoff fields and found that these errors could
potentially be significant enough to remove any positive im-
provements from the assimilation procedure. In real-world
applications we will need to carefully consider the error char-
acteristics of the data sources to be assimilated, as these will
have a significant impact on the quality of the final discharge
product.

Another important variable in the performance of this
method is the availability and selection of gauges (or pseudo
gauges in synthetic experiments) for assimilation and eval-
uation. In this study we present the results of assimilating a
specific configuration of available gauging sites as illustrated
in Fig. 3. To understand better how the results of these exper-
iments might change if the network of gauges were config-

ured differently, we performed a sensitivity study by gener-
ating 100 random configurations of gauges to assimilate and
evaluate from the total set of 75. These gauge networks were
then used to reconstruct discharge in each of the previous six
experiments, evaluating the NSE at each of the 25 evaluation
sites, for each possible network configuration. The results of
these simulations are illustrated in Fig. 10, where the gauge
configurations for each experiment are ranked according to
the median NSE of reconstructed discharge. In addition to
this, the box and whisker plots illustrate the performance
spread for each configuration, as well as any potential out-
liers. Finally, the yellow box in each experiment represents
the specific simulation results that are presented in this pa-
per.

Focusing first on the results of the synthetic experiments
with a null initial condition of runoff (Fig. 10a), it is evi-
dent that there is a significant amount of variation in the spe-
cific distributions of NSE; however, there is little change in
the median value or the lower limit of NSE values across
all configurations. This indicates that regardless of the net-
work configuration chosen, we are able to reasonably recon-
struct spatially and temporally distributed discharge within
the basin river network. Looking across the three initial con-
ditions for the synthetic experiments (Fig. 10a, c, e) shows re-
sults comparable to those presented previously, with the null
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Figure 9. Box plots of KGE values at 25 validation sites for two sensitivity experiments: (a) varying wave velocity parameters, (b) removing
gauges from the observation set. In each of these experiments the null initial condition was used. The mean of each set is denoted with a
red X.

Figure 10. Box plots of NSE values at 25 validation sites for 100 random configurations of the gauge network. Experiments are divided into
two categories: the entirely synthetic discharge reconstructions (a, c, e) and the discharge reconstructions from USGS observations (b, d, f).
These experiments are further differentiated by the three initial runoff conditions used: null (a, b), climatology (c, d), and TMPA derived (e,
f). The yellow box plots represent the gauge network configuration used for the results presented in this study.

and climatological initial runoff conditions providing rela-
tively similar performance. The TMPA-derived initial con-
ditions show a distribution of median NSEs that is slightly
lower than in prior experiments. It is also interesting to note
that with increasing information in the initial conditions,
the model performance spread increases considerably. This
is a further illustration of the case where large differences
between the initial guess and true conditions can degrade
the effectiveness of the ISR model in generating discharge
throughout an entire basin.

Finally, the results of these 100 random configurations for
the experiments using in situ USGS discharge observations
are shown in Fig. 10b, d, and f. Overall, there is a pattern

of decreasing performance from null to TMPA-derived ini-
tial conditions still present. Across all three experiments, the
range of median NSE values is larger than that for the syn-
thetic experiments, indicating that the selection of gauges for
assimilation in this real-world scenario has a more significant
impact. We also find that the spread of the NSE distributions
is greater than those in the synthetic experiments, further re-
inforcing the influence of the previously discussed error and
uncertainty sources in the ISR method. Understanding and
constraining these errors will be critical to future applications
of ISR.
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5 Conclusion

In this study we have developed a two-sweep method for re-
constructing spatially and temporally continuous discharge
records from discrete observations of discharge, in which the
first sweep applies the ISR method (Pan and Wood, 2013) to
propagate observed information backward in time–space and
the second sweep re-runs the same routing model to propa-
gate information forward in time–space. The new formula-
tion is expected to offer more complete propagation of ob-
served information in time and space (thus a better perfor-
mance) and a better physical consistency than existing ap-
proaches. The core algorithm of this method is formulated as
a Kalman smoother, allowing for assimilation–interpolation
of discharge from all available observations of discharge
in a basin. By assimilating and validating against synthetic
and real observations at 75 gauging sites in the Ohio River
basin, the new approach has illustrated the potential for dis-
charge reconstructions across all experiments. In particular,
the results of the discharge reconstructions given a null initial
runoff condition are promising, as they illustrate the ability
of the streamflow assimilation–interpolation methodology to
create continuous discharge records in a basin where we do
not have an adequate climatology or a calibrated hydrologic
model.

The performance of this method will be limited by the
availability and quality of gauge data, the specific initial con-
ditions chosen, the parameterization of the routing model,
and the exclusion of nonlinear features such as dams (Yin et
al., 2016a, b). Further work is needed to determine how this
method will perform as the density of the gauge network is
reduced or as the amount of days missing from a gauge’s dis-
charge record is increased, as would be the case in many of
the global basins which do not currently have robust obser-
vation networks. Temporally sparse observations are particu-
larly challenging for this type of assimilation–interpolation,
as specific extreme events could be missed entirely, or the
method may not have enough data to maintain a correction
through time from the initial guess. At a minimum, ISR can
be used to reconstruct a distributed representation of dis-
charge from one or a few in situ gauge observations; how-
ever, the more information that can be provided for the as-
similation, the more likely we are to produce an accurate es-
timate of the discharge conditions in that basin. Ideally, this
work should be considered in the context of previous work
done on statistical river kriging, e.g., Paiva et al. (2015) and
Yoon et al. (2013); however, due to various limitations (e.g.,
lack of properly trained kriging parameters over the study
area), no experiments have been carried out to compare the
performance of ISR-based approach to statistical river krig-
ing. As such, there are no quantitative metrics to prove the
incremental improvement made by our method.

To improve upon the density of observations in sparsely
gauged regions, this methodology could be extended to per-
form interpolations from remotely sensed river discharge

products, such as those from current generation satellite al-
timetry, or the upcoming NASA Surface Water and Ocean
Topography (SWOT) mission (Alsdorf and Lettenmaier,
2003; Durand et al., 2010; Pavelsky et al., 2014). The SWOT
mission, scheduled to launch in 2021, is of particular inter-
est, as this will contain a swath altimeter designed to pro-
vide global observations of water surface elevation and slope,
from which river discharge can be estimated. Within the 21 d
repeat cycle, a river reach will be observed 2–4 times, on av-
erage (Biancamaria et al., 2010). The prospects for such a
spaceborne sensor are great, especially with respect to global
coverage; however, due to the inclination of the orbit these
observations are not evenly distributed in time or space and
thus they will not be as complete as the USGS observations
used here. In general, we believe that this form of stream-
flow interpolation using the ISR method could serve as a
framework for creating spatially and temporally continuous
discharge records from sparse observations like the future
SWOT mission. Careful consideration will be required to ac-
count for the gaps in observations and the unique error char-
acteristics of these remotely sensed discharge observations.
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