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Abstract. Anthropogenic warming has been projected to in-
crease global drought for the 21st century when calculated
using traditional offline drought indices. However, this con-
tradicts observations of the overall global greening and lit-
tle systematic change in runoff over the past few decades
and climate projections of future greening with slight in-
creases in global runoff for the coming century. This calls
into question the drought projections based on traditional
offline drought indices. Here we calculate a widely used
traditional drought index (i.e., the Palmer Drought Sever-
ity Index, PDSI) using direct outputs from 16 Coupled
Model Intercomparison Project Phase 5 (CMIP5) models
(PDSI_CMIP5) such that the hydrologic consistency be-
tween PDSI_CMIP5 and CMIP5 models is maintained. We
find that the PDSI_CMIP5-depicted drought increases (in
terms of drought severity, frequency, and extent) are much
smaller than that reported when PDSI is calculated using
the traditional offline approach that has been widely used in
previous drought assessments under climate change. Further
analyses indicate that the overestimation of PDSI drought in-
creases reported previously using the PDSI is primarily due

to ignoring the vegetation response to elevated atmospheric
CO2 concentration ([CO2]) in the traditional offline calcu-
lations. Finally, we show that the overestimation of drought
using the traditional PDSI approach can be minimized by ac-
counting for the effect of CO2 on evapotranspiration.

1 Introduction

Drought is an intermittent disturbance of the water cycle that
has profound impacts on regional water resources, agricul-
ture, and other ecosystem services (Sherwood and Fu, 2014).
By taking meteorological outputs from climate model pro-
jections as the inputs to offline drought indices/hydrological
impact models, numerous studies have projected increases
in future drought, in terms of severity, frequency, and ex-
tent, mainly as a consequence of warming associated with
anthropogenic climate change (Cook et al., 2014, 2015; Dai,
2011, 2012; Dai et al., 2018; Huang et al., 2016, 2017;
Lehner et al., 2017; Liu et al., 2018; Naumann et al., 2018;
Park et al., 2018; Samaniego et al., 2018; Sternberg, 2011;
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Trenberth et al., 2014). However, this substantial increase in
projected drought contradicts observations of global vegeta-
tion greening and little systematic change in runoff over the
past few decades and climate projections of future greening
with slight increases in global runoff for the coming century
(Alkama et al., 2013; Greve et al., 2017; Labat et al., 2014;
Roderick et al., 2015; Milly and Dunne, 2016; Scheff et al.,
2017; Yang et al., 2018, 2019; Zhu et al., 2016). The sci-
entific basis underpinning the projected drying trend using
traditional offline drought indices/hydrological impact mod-
els is that the calculated increases in evapotranspiration (E)
are larger than the projected increase in precipitation (P ) in
many places (Sternberg, 2011), which results in an increasing
water deficit and thus increasing simulated future drought.
However, direct climate model outputs of E exhibit a much
smaller increasing trend (Fig. S1 in the Supplement), and the
global land mean P is actually projected to increase more
quickly than its E counterpart (Greve et al., 2017; Milly and
Dunne, 2016, 2017; Roderick et al., 2015; Yang et al., 2018),
leading to a very different conclusion.

Several recent studies have demonstrated that the drying
bias in the offline calculated E trend is primarily due to ne-
glecting the impact of increasing atmospheric CO2 concen-
tration ([CO2]) (and its resultant vapor pressure deficit in-
crease) on the water use efficiency of vegetation (Lemordant
et al., 2018; Milly and Dunne, 2016, 2017; Roderick et al.,
2015; Swann et al., 2016; Yang et al., 2019). This vegetation-
[CO2] response only impacts transpiration, not soil evapora-
tion, interception from vegetation surfaces or sublimation in
snow environments; however, it should be noted that tran-
spiration dominates (∼ 65 %; note that a transpiration over
an evapotranspiration ratio of 0.41±0.11 is estimated by the
Coupled Model Intercomparison Project Phase 5 – CMIP5
– models) global terrestrial evapotranspiration (Lian et al.,
2018; Zhang et al., 2016). In existing hydrologic impact
models/drought indices, P and potential evapotranspiration
(EP; the rate of evapotranspiration that would occur with an
unlimited supply of water) are the two key input variables,
which, respectively, represent water supply to, and water de-
mand from, the land surface. While P is a direct climate
model output, EP is not produced by climate models. The
traditional approach is to calculate EP offline using the me-
teorological variables in the climate model output. The cal-
culated EP together with the climate model projected P are
used to force an offline hydrologic impact model (or hydro-
logic calculations embedded in drought indices) that inde-
pendently calculatesE, runoff (Q), and storage change (1S),
to assess hydrologic changes under future climate scenarios
(the right-hand column shown in Fig. 1). Among various EP
models, the open-water Penman model (Shuttleworth, 1993)
and the reference crop Penman–Monteith model (Allen et al.,
1998) have been most widely used in existing drought assess-
ment studies, given their sound physical basis and relatively
simple formulations. Nevertheless, both Penman-based mod-
els do not faithfully capture the biological processes embed-

Figure 1. Conceptual plot illustrating the inconsistency in the hy-
drologic predictions between climate models and offline hydrologic
impact models. The symbols P , EP, E, Q, and 1S represent pre-
cipitation, potential evapotranspiration, actual evapotranspiration,
runoff, and storage change, respectively. The meteorological vari-
ables used to calculate EP depend on the adopted EP model, but
mainly include net radiation, near-surface air temperature, vapor
pressure, and wind speed. The biological factor here is the response
of surface resistance to elevated [CO2] over vegetated lands.

ded in the climate models. The open-water Penman model
was designed for water surfaces, where surface resistance
(rs) is, by definition, equal to zero. Allen et al. (1998)’s refer-
ence crop Penman–Monteith model prescribed a constant rs
at 70 s m−1, which is appropriate for an idealized reference
crop in the current climate but does not account for the fact
that rs increases with elevated [CO2] over vegetated surfaces
in climate model projections (Yang et al., 2019). As a result,
existing traditional offline hydrologic impact models/drought
indices calculate estimates of E, Q, and 1S that are differ-
ent from those same variables in the original fully coupled
climate model output. For that reason, the consequent assess-
ments of drought changes in existing traditional offline hy-
drologic impact models/drought indices do not correctly rep-
resent the projections in the underlying fully coupled climate
models. Figure 1 illustrates the inconsistency in the hydro-
logic predictions (also see Milly and Dunne, 2017) that have
resulted in different trends in projected future drought be-
tween climate models and traditional offline hydrologic im-
pact models/drought indices.

Here, we re-assess changes in future global drought using
climate model projections from 16 CMIP5 models under his-
torical (1861–2005) and Representative Concentration Path-
way 8.5 (RCP8.5; 2006–2100) experiments (Taylor et al.,
2012). These 16 CMIP5 models were selected as they output
all variables, including runoff, that are needed for the anal-
ysis performed herein. The Palmer Drought Severity Index
(PDSI; Palmer, 1965) is adopted here to quantify drought
as it has been widely used for operational drought moni-
toring and is increasingly used in studies assessing drought
under climate change (Cook et al., 2014, 2015; Dai, 2011,
2012; Dai et al., 2018; Lehner et al., 2017; Liu et al., 2018;
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Sheffield et al., 2012; Swann et al., 2016; Trenberth et al.,
2014). To maintain consistency between the calculated PDSI
and the CMIP5 models, we first calculate PDSI using di-
rect hydrologic outputs (i.e., P , E, Q, 1S) from the CMIP5
models (PDSI_CMIP5; corresponds to the center column in
Fig. 1; also see the Data and methods section). This proce-
dure provides a reference for the PDSI projections. We then
replicate the traditional PDSI calculation by using only me-
teorological data as inputs to calculate the reference crop
Penman–Monteith EP (PDSI_PM-RC) (the right-hand col-
umn shown in Fig. 1). The inference is that this traditional
offline approach that only responds to meteorological forc-
ing will overestimate drought relative to the direct climate
model output because it does not consider the biological ef-
fect of elevated [CO2]. To evaluate that inference, we again
re-calculate the PDSI using an offline formulation that con-
siders both the same meteorological forcing along with the
biological effects of elevated CO2 (Yang et al., 2019) (the
left-hand column in Fig. 1).

2 Data and methods

2.1 Climate model projections

We used outputs from 16 climate models participating in
Phase 5 of the Coupled Model Intercomparison Project
(CMIP5; Table S1 in the Supplement) under historical
(1861–2005) and RCP8.5 (2006–2100) experiments (Taylor
et al., 2012). We used monthly series of runoff, precipita-
tion, soil moisture, and sensible and latent heat flux at the
land surface along with near-surface air temperature, air pres-
sure, wind speed, and specific humidity. All outputs from the
16 CMIP5 models were resampled to a common 1◦ spatial
resolution by using the first-order conservative remapping
scheme (Jones, 1999).

2.2 Calculation of PDSI

The PDSI was used to quantify drought (Palmer, 1965). To
minimize the impact of initial conditions on PDSI estimates,
the first 40 years (1861–1900) are used for model spin-up
with the analyses focused on the 1901–2100 period. Briefly,
the PDSI model consists of two parts: (i) a two-stage bucket
model that calculates the monthly water balance components
(i.e., E, Q, and 1S) using P and EP as inputs and (ii) a di-
mensionless index that describes the moisture departure be-
tween the actual precipitation and the precipitation needed
to maintain a normal soil moisture level for a given time
(i.e., the climatically appropriate one for existing condition
values; these values were calculated for the entire period
of 1901–2100). The soil available water capacity (AWC)
needed for PDSI calculation was derived from the Global
Gridded Surfaces of Selected Soil Characteristics (https:
//webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=569, last ac-
cess: 1 June 2020). While this parameter is inevitably subject

to uncertainties, Sheffield et al. (2012) demonstrated that the
PDSI calculation is insensitive to AWC inputs. Detailed de-
scriptions of PDSI can be found in Palmer (1965). A drought
event is identified with negative PDSI values, with a more
negative PDSI indicating a more severe drought, whereas
moist events are associated with positive PDSI values.

We calculated PDSI following Palmer (1965), yet cal-
culated EP using the reference crop Penman–Monteith
model (PDSI_PM-RC; the right-hand column in Fig. 1).
The Penman–Monteith model explicitly considers influences
from both radiative and aerodynamic components and has
been widely used in previous PDSI calculations (e.g., Dai,
2012; Sheffield et al., 2012). In addition, we also used a mod-
ified Penman–Monteith model (PM[CO2]; detailed later in
the Methods section and also see Yang et al., 2019) that ac-
counts for the impact of elevated [CO2] on rs to calculate
EP and then PDSI (PDSI_PM[CO2]; the left-hand column in
Fig. 1).

Additionally, instead of using hydrological simulations
from the simplified water balance model embedded in the
original PDSI model, we also calculated PDSI by using di-
rect hydrologic outputs E, Q, and 1S from the 16 CMIP5
models (PDSI_CMIP5; the center column in Fig. 1). This
approach ensures that PDSI_CMIP5 faithfully represented
the CMIP5 output. As the original PDSI model depends on
a two-stage “bucket” model of the soil, we correspondingly
regarded the moisture in the upper portion of the soil column
(integrated over the uppermost 10 cm) from CMIP5 models
as the moisture in the first layer and the total soil moisture
content as the available moisture in both layers (so differ-
ences between total soil-depth representation in CMIP5 mod-
els may lead to differences in PDSI estimates from individ-
ual models but are unlikely to impact the PDSI changes).
Moreover, since the estimation of the weighting factor that
converts moisture anomalies into the PDSI index also re-
quires knowledge of EP, we used the EP computed from a
modified Penman–Monteith equation that explicitly consid-
ers the biological effect of elevated [CO2] (i.e., PM[CO2])
(Yang et al., 2019). To comprehensively document how the
different PDSIs were calculated, we illustrate the calcula-
tion procedures of the different PDSIs in Fig. 2. Addition-
ally, Matlab codes with worked examples of the different
PDSIs can be accessed through https://github.com/zslthu/
Calculate-PDSI-in-Matlab (last access: 1 June 2020). The
PDSIs were calculated using outputs of each CMIP5 model
in turn, and the ensemble PDSIs (averaging PDSIs over the
16 CMIP5 models) were used in the following analyses.

2.3 Calculation of potential evapotranspiration

Two potential evapotranspiration formulations were used
to calculate EP. The first is the reference crop Penman–
Monteith EP model, which computes EP (mm d−1) as (Allen
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Figure 2. Flowchart of PDSI calculations. Note that PDSI_PM-RC, PDSI_PM[CO2], and PDSI_CMIP5, respectively, follow the right-hand,
left-hand, and center columns in Fig. 1.

et al., 1998)

EP =
0.4081R∗n + γ

900
T+273uD

1+ γ (1+ 0.34u)
, (1)

where1 (Pa K−1) is the gradient of the saturation vapor pres-
sure with respect to temperature, γ (Pa K−1) is the psychro-
metric constant, R∗n (MJ m−2 d−1) is the surface available ra-
diation (i.e., net radiation minus ground heat flux), D (Pa)
is the vapor pressure deficit of the air at 2 m height, and u
(m s−1) is the wind speed at 2 m height. In the reference crop
Penman–Monteith model, rs is prescribed as 70 s m−1, and
this parameter value is embedded in the equation.

In addition, we used a modified reference crop Penman–
Monteith EP model (i.e., PM[CO2]) that accounts for the
impact of rising [CO2] (expressed in ppm units) on rs,
as derived in Yang et al. (2019). The PM[CO2] model
calculatesEP as

EP =
0.4081R∗n + γ

900
T+273uD

1+ γ
{
1+ u

[
0.34+ 2.4× 10−4 ([CO2] − 300)

]} . (2)

2.4 Determining the timing of global warming target

To demonstrate the impact of warming on drought changes,
we assessed changes in PDSI_CMIP5 under two future
warming targets: 1.5 and 2 ◦C warming above the pre-
industrial level. The 1.5 and 2 ◦C warming levels have been
extensively discussed (Huang et al., 2017; Lehner et al.,
2017; Liu et al., 2018; Park et al., 2018; Samaniego et al.,
2018), as they are the two key warming targets set in the Paris
Agreement on climate change (UNFCCC, 2015). The timing
when the global warming targets (i.e., t1.5 and t2) are reached
in each of the 16 CMIP5 models was computed based on the
model output of the near-surface air temperature (Ta). We
first selected 1986–2005 as the baseline period, which is a
widely used reference period for climate impact assessment
(Lehner et al., 2017; Liu et al., 2018; Park et al., 2018). Then,

we applied a 20-year moving average filter to the global mean
annual Ta time series to remove the interannual fluctuations
in annual Ta (Liu et al., 2018; Park et al., 2018). Each 20-
year moving average is indexed to its final year (for exam-
ple, the 20-year running mean Ta for 2080 is an average of
Ta for 2061–2080). Finally, t1.5 and t2 are, respectively, de-
termined at the times when global mean Ta reached 0.9 and
1.4 ◦C above the 1986–2005 baseline, as this period was at
least 0.6 ◦C warmer than the pre-industrial level (Hawkins et
al., 2017; Schleussner et al., 2016).

3 Results

3.1 Predicted drought changes

Figure 3 shows the global patterns of PDSI trends for the
three PDSIs. Evident drought increases are depicted by
PDSI_PM-RC across much of the North America, South
America, central to southern Europe, Congo basin, south-
ern Africa, southeastern China, and southern coastal areas
of Australia (Fig. 3a), as widely reported previously (Dai,
2011, 2012; Dai et al., 2018; Cook et al., 2014; Lehner
et al., 2018; Liu et al., 2018). However, those broad-scale
trends are not identified by either PDSI_CMIP5 (Fig. 3b)
or PDSI_PM[CO2] (Fig. 3c). Compared with PDSI-PM-RC,
both PDSI_CMIP5 and PDSI_PM[CO2] show much smaller
changes. This result clearly indicates an inconsistency be-
tween the PDSI_PM-RC that has been widely used in tradi-
tional offline calculations for drought assessment studies and
the underlying CMIP5 models, as the PDSI_CMIP5 as used
here is based on the direct hydrologic outputs (E, Q, and
1S) from CMIP5 models.

To examine changes in drought frequency and extent,
changes in months under drought within each year and
changes in land area subject to dry and moist extremes
are, respectively, shown in Figs. 4 and 5. In applications,
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Figure 3. Global spatial pattern of PDSI trends. Spatial distri-
bution of PDSI trends during 1901–2100 for (a) PDSI_PM-RC,
(b) PDSI_CMIP5, and (c) PDSI_PM[CO2], respectively. Black dots
represent locations where the same sign of the PDSI trend is iden-
tified in at least 13 out of the 16 CMIP5 models (i.e., > 80 % of
models).

a PDSI <−3.0 is considered to be severe drought con-
ditions, while a PDSI > 3.0 is considered exceptionally
moist (e.g., Palmer, 1965; Liu et al., 2018). We find that
months with PDSI_PM-RC<−3.0 increase substantially
over areas where PDSI_PM-RC evidently decreases, sug-
gesting an increased drought frequency in these regions
(Fig. 4a). However, when assessed with PDSI_CMIP5 and
PDSI_PM[CO2], these drought frequency increases largely
diminish (Fig. 4b and c). Yet, moving to PDSI_CMIP5 and
PDSI_PM[CO2] apparently does not reduce the widespread
distribution of drought frequency increase compared to
drought frequency decrease (Fig. 4b and c; i.e., there are
more land areas with increasing drought frequency than with
decreasing drought frequency). Similar results are found for
drought extent changes as severe drought during the 21st
century increases by 0.2393± 0.0942 % yr−1 (p < 0.01) for
PDSI_PM-RC but only increases by 0.1099±0.0228 % yr−1

(p < 0.01) for PDSI_CMIP5 and 0.1178± 0.0308 % yr−1

(p < 0.01) for PDSI_PM[CO2], respectively (Fig. 5a–c). By
contrast, moist areas (i.e., PDSI> 3.0) are less divergent
among the three different PDSIs, although the PDSI_PM-
RC still shows the least wetting lands compared to the other
two PDSIs (Fig. 5a–c). Interestingly, both PDSI_CMIP5 and
PDSI_PM[CO2] depict the increase in drought area as es-
sentially equivalent to the increase in moist area (Fig. 5a–

c), which may suggest an overall unchanged PDSI_CMIP5
(PDSI_PM[CO2]) series at the global scale (Fig. S2). The
above results are largely retained when assessing changes
at different thresholds (i.e., mild drought/moist events with
PDSI<−1.0 and PDSI> 1.0 and moderate drought/moist
events with PDSI<−2.0 and PDSI> 2.0; Figs. 4d–i and
5d–i). The fact that the results based on PDSI_PM[CO2]
closely follow that of PDSI_CMIP5 highlights the impor-
tance of vegetation response to elevated [CO2] in the con-
trol of future surface hydrological changes. This demon-
strates that the inconsistency between the PDSI_PM-RC and
CMIP5 models is largely caused by ignoring the vegetation
response to elevated [CO2] in the PDSI_PM-RC calculations.

3.2 The effect of warming on drought changes

Warming has been identified as the key driver of the overall
future drought increase in numerous previous studies (Cook
et al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et
al., 2016, 2017; Lehner et al., 2017; Liu et al., 2018). To fur-
ther understand the impact of warming on drought changes,
we assessed changes in PDSI_CMIP5 at 1.5 ◦C and 2 ◦C
warming above the pre-industrial level. The PDSI_PM-RC
is also presented for comparison. Any substantial increase in
drought is identified when PDSI for a future warming tar-
get decreased by 1.0 compared to PDSI during the 1986–
2005 baseline (i.e., 1PDSI<−1). Additionally, only places
where the 1PDSI<−1.0 threshold is reached in at least 8
CMIP5 models (out of the 16 CMIP5 models, so 50 % and
more) are considered to be robust projections and thus used
herein. Based on the PDSI_CMIP5, our results show that
almost nowhere on earth (only 0.06 % of the global land
area) is projected to have a substantial drought increase at
the 1.5 ◦C warming target, and this number only slightly in-
creases to 0.77 % at the 2 ◦C warming target (Fig. 6a and
b). In comparison, substantial increase in drought is identi-
fied at 5.10 % and 13.41 % of the global land area at the two
warming targets, respectively, when PDSI_PM-RC is used
(Fig. 6a and c). More places are projected to have a sub-
stantial drought increase under future warming if we relaxed
the threshold of PDSI change to −0.5 (i.e., 1PDSI<−0.5)
(Fig. 6d–f). Nevertheless, the PDSI_CMIP5 still shows a
considerable smaller percentage of drying lands (6.2 % and
10.0 %) than the PDSI_PM-RC (26.32 % and 34.77 %) under
the two warming targets, respectively, particularly over North
America, much of Amazonia, Europe, the Congo basin, and
southeastern China.

4 Discussion and concluding remarks

The above results clearly demonstrate an overestimation of
drought severity, frequency, and extent using PDSI in many
previous assessments of future drought (e.g., Cook et al.,
2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Lehner et

https://doi.org/10.5194/hess-24-2921-2020 Hydrol. Earth Syst. Sci., 24, 2921–2930, 2020



2926 Y. Yang et al.: Coupled versus offline assessments of PDSI drought in climate projections

Figure 4. Global spatial pattern of drought trends. (a–c) Spatial distribution of trends in the number of months under severe drought
(PDSI<−3.0) during 1901–2100 for (a) PDSI_PM-RC, (b) PDSI_CMIP5, and (c) PDSI_PM[CO2], respectively. (d–f) Spatial distribu-
tion of trends in the number of months under moderate drought (PDSI<−2.0) during 1901–2100 for (d) PDSI_PM-RC, (e) PDSI_CMIP5,
and (f) PDSI_PM[CO2], respectively. (g–i) Spatial distribution of trends in the number of months under mild drought (PDSI<−1.0) during
1901–2100 for (g) PDSI_PM-RC, (h) PDSI_CMIP5, and (i) PDSI_PM[CO2], respectively.

al., 2017; Liu et al., 2018). The overestimation is primar-
ily caused by neglecting the impact of elevated [CO2] on
rs and consequently on EP in the traditional offline calcu-
lation. As EP is neither used nor produced by climate mod-
els, an offline intermediate EP model is required to estimate
EP based on climate model outputs. However, conventional
EP models, such as the open-water Penman model and the
reference crop Penman–Monteith model, involve an impor-
tant assumption that rs remains constant over time (Allen et
al., 1998; Shuttleworth, 1993). This assumption is in general
valid for water surfaces and/or wet bare soils but is not valid
over vegetated surfaces. Over vegetated surfaces, on the one
hand, elevated [CO2] leads to a partial stomatal closure that
increases rs (e.g., Ainsworth and Rogers, 2007), yet on the
other hand, elevated [CO2] has “fertilized” vegetation result-
ing in an increased foliage cover (e.g., Donohue et al., 2013;
Zhu et al., 2016), which effectively suggests a reduction in
rs. In addition, elevated [CO2] serves as the ultimate driver
of climate warming in the CMIP5 models and consequently
leads to an increase in atmospheric vapor pressure deficit,
which also tends to increase rs (Lin et al., 2018; Novick et
al., 2016).

While the net effect of elevated [CO2] on rs is still un-
certain in the real world, a recent study clearly showed that
in CMIP5 models, elevated [CO2] increases rs, which, with

all else equal, results in a decrease in EP and thus E (Yang
et al., 2019). Yang et al. (2019) also showed that over vege-
tated surfaces, an increase in EP caused by warming-induced
vapor pressure deficit increase is almost entirely offset by a
decrease in EP caused by the increase in rs driven by ele-
vated [CO2] in CMIP5 models. This suggests that climate
change does not necessarily lead to a higher EP over veg-
etated surfaces and hence increased drought under [CO2]
enrichment, which is consistent with CMIP5 model projec-
tions yet contradicts the perception that “warming leads to
drying” presented in many previous studies (Cook et al.,
2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al.,
2016, 2017; Lehner et al., 2017; Liu et al., 2018; Park et al.,
2018; Samaniego et al., 2018; Sternberg, 2011; Trenberth et
al., 2014). Additionally, it is worthwhile mentioning that the
CMIP5 models do project topsoil moisture (within the top
10 cm) declines with a very similar spatial pattern to changes
in PDSI_PM-RC (Dai, 2012; Dai et al., 2018), which might
be important for wildfire risk and various biological pro-
cesses that take place close to the surface. However, since no
systematic decline in runoff or in relevant vegetation param-
eters (e.g., leaf area index and gross/net primary production)
seems to result from it (Greve et al., 2017; Milly and Dunne,
2016, 2017; Roderick et al., 2015; Swann et al., 2016; Yang
et al., 2019), this decline in topsoil moisture in the CMIP
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Figure 5. Time series of the global average fractional land area experiencing drought/moist conditions. (a–c) Global average time series
of land area experiencing severe drought (PDSI<−3.0, red) and exceptionally moist (PDSI> 3.0, blue) conditions for (a) PDSI_PM-
RC, (b) PDSI_CMIP5, and (c) PDSI_PM[CO2], respectively. (d–f) Global average time series of land area experiencing moderate drought
(PDSI<−2.0, red) and moist (PDSI> 2.0, blue) conditions for (d) PDSI_PM-RC, (e) PDSI_CMIP5, and (f) PDSI_PM[CO2], respectively.
(g–i) Global average time series of land area experiencing mild drought (PDSI<−1.0, red) and moist (PDSI> 1.0, blue) conditions for
(g) PDSI_PM-RC, (h) PDSI_CMIP5, and (i) PDSI_PM[CO2], respectively. The solid curves represent the ensemble mean of 16 CMIP5
models and the shading represents the range by individual models. The time series are averaged over global land areas excluding Greenland
and Antarctica.

projections seems to have little influence from the vegetation
and hydrological perspectives. This is likely as root-zone or
deeper soil moisture that is of more agricultural/ecological
and/or hydrological significance is projected to remain more
or less unchanged (Berg et al., 2017; Greve et al., 2017), con-
sistent with PDSI_CMIP5 and PDSI_PM[CO2] (Fig. 3).

Here, we use PDSI as an illustrating case, but note
that similar results were also found in another commonly
used drought index (i.e., the Standardized Precipitation-
Evapotranspiration Index, or SPEI; Vicente-Serrano et al.,
2010) (Fig. S3). Nevertheless, both PDSI and SPEI, as well
as other drought/aridity metrics, are secondary offline im-
pact models. Since climate models are fully coupled land
(and ocean)–atmosphere models that are an internally consis-
tent representation of the climate system (Milly and Dunne,
2016), a scientific prior of applying any offline hydrological
impact models is that the adopted offline model must be able

to recover the hydrological simulations generated by the cli-
mate models (Roderick et al., 2015; Milly and Dunne, 2017;
Yang et al., 2019). Otherwise, any inconsistency in hydro-
logical predictions between offline impact models and cli-
mate models themselves would lead to inconsistent predic-
tions in other components of the climate system. Unfortu-
nately, this important scientific prior has been largely ignored
in many previous drought assessment studies, leading to bi-
ased drought predictions that are actually inconsistent with
the climate model outputs.

In summary, we have shown that climate model projec-
tions of the global drought area under future climate change
have been largely overestimated. Our results suggest that the
“warming leads to drying” perception may be fundamentally
flawed, primarily due to ignoring the vegetation response to
elevated [CO2] (also see Yang et al., 2019). However, de-
spite a small overall trend globally, we find that both dry-
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Figure 6. Areas with substantial drought increase under future warming. (a) Relative land area with substantial drought increase
(1PDSI<−1.0) under 1.5 and 2 ◦C warming based on PDSI_CMIP5 and PDSI_PM-RC. (b, c) Spatial pattern of substantial drought
increase (1PDSI<−1.0) under 1.5 and 2 ◦C warming based on (b) PDSI_CMIP5 and (c) PDSI_PM-RC. (d–f) Similar to panels (a)–(c) but
for 1PDSI<−0.5.

ing and wetting areas are simulated to increase towards the
end of this century (Figs. 5 and S4), suggesting an increased
variability in surface hydrological conditions that will likely
be associated with increased droughts and/or floods and re-
duced reliability of available water at local/regional scales
(e.g., Kumar et al., 2014). In this light, attention should be
paid to regions where droughts and/or floods are projected to
most likely increase (e.g., Mediterranean Europe and central
America), and more efforts may be needed to mitigate the
consequent impact there under climate change.

Code availability. Matlab codes with worked exam-
ples of the different PDSIs can be accessed through
https://doi.org/10.5281/zenodo.3871420 (zslthu, 2020).
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