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Abstract. Hydrologic modeling studies most often repre-
sent humans through predefined actions and fail to account
for human responses under changing hydrologic conditions.
By treating both human and hydrologic systems as co-
evolving, we build a socio-hydrological model that combines
an agent-based model (ABM) with a semi-distributed hydro-
logic model. The curve number method is used to clearly il-
lustrate the impacts of land cover changes resulting from de-
cisions made by two different agent types. Aiming to reduce
flooding, a city agent pays farmer agents to convert land into
conservation. Farmer agents decide how to allocate land be-
tween conservation and production based on factors related
to profits, past land use, and willingness. The model is im-
plemented for a watershed representative of the mixed agri-
cultural/small urban area land use found in Iowa, USA. In
this preliminary study, we simulate scenarios of crop yields,
crop prices, and conservation subsidies along with varied
farmer parameters that illustrate the effects of human sys-
tem variables on peak discharges. High corn prices lead to
a decrease in conservation land from historical levels; con-
sequently, mean peak discharge increases by 6 %, creating
greater potential for downstream flooding within the water-
shed. However, when corn prices are low and the watershed
is characterized by a conservation-minded farmer population,
mean peak discharge is reduced by 3 %. Overall, changes in
mean peak discharge, which is representative of farmer land
use decisions, are most sensitive to changes in crop prices as
opposed to yields or conservation subsidies.

1 Introduction

Humans change the water cycle through actions that affect
physical and chemical aspects of the landscape, and these
changes occur from global to local scales and over vary-
ing time periods (Vorosmarty and Sahagian, 2000). Despite
their significant impacts to the landscape, humans remain
the most poorly represented variables in hydrologic models
(Sivapalan et al., 2012). Land cover and land use are com-
monly treated as fixed in time in many hydrologic models
through the use of static parameters. When made dynamic,
landscape change is often limited to predefined scenarios that
are developed without consideration of how economics, local
culture, or climate may combine to influence land use deci-
sions. For example, the field of integrated water resources
management (IWRM), which attempts to explore the inter-
actions between humans and water, typically uses “scenario-
based” approaches (Savenije and Van der Zaag, 2008). While
scenario-based studies allow for the quantification of the im-
pacts of a management decision on the hydrologic system,
there are significant limitations (Elshafei et al., 2014; Siva-
palan et al., 2012). Human and environmental systems are
highly coupled: feedbacks from one system create stress on
the other system, which, in turn, affects the behavior of the
first system. Therefore, representing management decisions
as predetermined will not reproduce the real-world variabil-
ity that may arise as a result of complex feedbacks between
the human system and the physical system.

Arguments have emerged in the hydrological sciences and
water resources systems analysis (WRSA) fields for mod-
eling in which humans and the environment are treated as
co-evolving (e.g., Di Baldassarre et al., 2013; Brown et al.,
2015; Montanari, 2015; Rosengrant et al., 2002; Sivapalan et
al., 2012; Sivapalan and Blöschl, 2015; Wainwright, 2008).
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In this way, models can account for disturbances to nat-
ural systems by humans and simultaneously assess physi-
cal processes and economic and social issues. In the hydro-
logic literature, two approaches have been used to simulate
coupled human and natural systems: a classic top-down ap-
proach and a bottom-up approach using agent-based model-
ing (ABM). In the first approach, all aspects of the human
system are represented through a set of parameterized differ-
ential equations (e.g., Di Baldassarre et al., 2013; Elshafei
et al., 2014; Viglione et al., 2014). For example, Elshafei
et al. (2014) characterizes the population dynamics, eco-
nomics, and sensitivity of the human population to hydro-
logic change through differential equations to simulate the
coupled dynamics of the human and hydrologic systems in
an agricultural watershed. In contrast, the ABM approach
consists of a set of algorithms that encapsulate the behav-
iors of agents and their interactions within a defined system,
where agents can represent individuals, groups, companies,
or countries (Axelrod and Tesfatsion, 2006; Borrill and Tes-
fatsion, 2011; Parunak et al., 1998). System agents can range
from passive members with no cognitive function to indi-
vidual and group decision-makers with sophisticated learn-
ing and communication capabilities. The ABM approach has
several advantages over the traditional top-down approach
(Bonabeau, 2002). Agent-based models are able to capture
emergent phenomenon that result from interactions between
individual entities. In addition, simulating individual entities
through ABM provides for a more natural description of a
system in contrast to developing differential equations that
capture the behavior of the system as a whole. ABMs also
provide for greater modeling flexibility by allowing for a dif-
ferent number of agents, various degrees of agent complex-
ity, and behavioral differences among the agents. ABM has
been used to study the influence of human decision-making
on hydrologic topics such as water balance and stream hy-
drology (Bithell and Brasington, 2009), flooding (Du et al.,
2017; Jenkins et al., 2017; Yang et al., 2018), irrigation and
water usage (Barreteau et al., 2004; Becu et al., 2003; Berger
et al., 2006; Berglund, 2015; van Oel et al., 2010; Schlüter
and Pahl-wostl, 2007), water quality (Ng et al., 2011), and
groundwater resources (Noel and Cai, 2017; Reeves and
Zellner, 2010).

A dominating topic in the hydrologic sciences that can be
studied through the use of ABMs is the issue of land use
change impacts on hydrologic flows in intensively managed
agricultural landscapes (Rogger et al., 2017). A number of
studies have attempted to quantify the impact of land use
change on streamflow (Ahn and Merwade, 2014; Frans et
al., 2013; Naik and Jay, 2011; Schilling et al., 2010; Tomer
and Schilling, 2009; Wang and Hejazi, 2011). Ahn and Mer-
wade (2014) is one such study that found that 85 % of stream-
flow stations in Georgia indicated a significant human impact
on streamflow. Another study by Schilling et al. (2010) indi-
cated a 32 % increase in the runoff ratio in the Upper Mis-
sissippi River basin due to land use changes, mainly stem-

ming from increases in soybean acreage. Results of Wang
and Hejazi (2011) are consistent with Schilling et al. (2010).
They found a clear spatial pattern of increased human im-
pact on mean annual streamflow over the Midwest US due to
increases in cropland area.

The above studies use more traditional methods such as
hydrologic modeling, trend analysis, or Budyko analysis to
determine the impact of land use change on streamflow. We
use the social–hydrologic modeling approach to better under-
stand the effects of land use change. Using ABMs may allow
for a more in-depth investigation of hydrologic changes and
how they may be tied to external economic variables and wa-
tershed population characteristics.

In this study, we develop a social–hydrologic model that
simulates changes in conservation land area over time within
an agriculturally dominated watershed as a function of dy-
namic human and natural factors. Using a sensitivity anal-
ysis approach, we utilize this model to quantify the impact
of economic and human factors on land use changes relating
to conservation implementation and, subsequently, how these
land use changes impact the hydrologic system. We explore
the following research questions:

1. To what degree do economic and agronomic factors
(specifically crop prices, conservation incentives, and
crop yields) impact the success of a conservation pro-
gram designed to reduce peak flows?

2. To what degree are hydrologic outcomes sensitive to
various factors that commonly influence agricultural
land use decisions?

Using simulations of a historical 47-year period, we ex-
plore land use and hydrologic outcomes for a typical agri-
cultural watershed in Iowa under the following six scenar-
ios developed from economic data: crop yields 11 % above
and below historical values, corn prices 19 % above and be-
low historical values, and conservation subsidy rates 27 %
above and below historical cash rent values. Additionally, we
simulate land use and hydrologic outcomes for the historical
period without any perturbations to these economic data for
comparison purposes. The following model methodology is
described using the ODD (Overview, Design Concepts, and
Details) protocol developed by Grimm et al. (2006).

2 Model purpose

The purpose of the model is to understand the impact of land
use decisions by upstream farmers on flooding response in a
downstream urban area under perturbations to extrinsic eco-
nomic and natural factors (e.g., crop prices, land rental val-
ues, and climate), as well as intrinsic factors (e.g., internal
farmer behavior and local government incentives). System
behavior under changes in extrinsic and intrinsic factors is
analyzed using a scenario-based ensemble approach.
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Figure 1. Flow of information within the agent-based model.

2.1 State variables and scales

The model links an agent-based model of human decision-
making with a rainfall–runoff model to simulate social and
natural processes within highly managed agricultural water-
sheds (Fig. 1). The agent-based model consists of two types
of agents: a group of farmer agents and a city agent.

The primary modeling domain consists of the watershed
and the subbasins located within the watershed. The model
user must define the subbasins based on external analyses
of hydrologic flows and conditions. Each subbasin is popu-
lated by one or more farmer agent as specified by the user.
A farmer agent modifies the land use of the subbasin in pro-
portion to the subbasin area assigned to that agent. The most
downstream subbasin in the watershed is populated by an ur-
ban center, which is represented by a city agent. The city
agent impacts land use by providing subsidies to upstream
farmer agents to change their land management.

2.1.1 Farmer agent state variables

The primary state variable for a farmer agent is the con-
servation parameter (Consmax), which characterizes the de-
gree to which a farmer agent is “production-minded” versus
“conservation-minded”. This concept is based on McGuire et
al. (2013) who identified that US Corn Belt farmers tend to
fall along a spectrum from purely productivist to purely con-
servationist. Consmax is randomly assigned to each farmer
agent upon initialization and provides variation in farmer
agent behavior based on how an individual agent may prefer
to balance maximizing crop yields versus protecting the envi-
ronment. Consmax represents the maximum fraction of land
a farmer is willing to put into conservation. The minimum

value is 0.0, in which case a farmer is purely production-
minded and is unwilling to convert any production land into
conservation. We set the maximum value at 10 % (Consmax =

0.10) based on the conservation practice used in this study
(Sect. 2.7.1). Therefore, a farmer is purely conservation-
minded at a parameter value of 0.1, and is willing to convert
up to 10 % of their production land into conservation. This
range of values corresponds to the percentage of conservation
land implemented over each of the last 10 years for the entire
state of Iowa (∼ 5 %–6 % conservation land) and the central
Iowa agricultural district (∼ 3 %–4 % conservation land).

A secondary state variable of importance to the farmer
agent is risk aversion attitude (Prokopy et al., 2019). Risk
aversion can be defined as the willingness to change land use
under uncertainty. Farmers with a high risk aversion are un-
willing to change their land use practices because they are
trying to avoid risk. Keeping their land use consistent rep-
resents a more predictable payoff, even if the revenue may
not be as great as another land use choice. However, farmers
that are more risk tolerant are more likely to adopt new prac-
tices such as conservation. Farmer agents are further charac-
terized by their decision-making preferences, which describe
the relative importance that farmer agents place on different
decision variables when adjusting their land use. The farmer
agent decision characteristics are described in Sect. 2.7.2.

Each farmer agent is assigned state variables character-
izing the percent of different soil types associated with the
farmer’s land. Corn crop productivity and crop production
costs (including the land rental value) vary for each soil type.
Thus, the soil types associated with a farmer agent’s land im-
pact their revenue.

https://doi.org/10.5194/hess-24-2873-2020 Hydrol. Earth Syst. Sci., 24, 2873–2894, 2020



2876 D. Dziubanski et al.: Linking economic and social factors to peak flows in an agricultural watershed

Figure 2. Timeline of agent decisions and actions within the agent-based model.

2.1.2 City agent state variables

The city agent is characterized by a conservation goal that
defines the amount of acres of conservation land desired.
The purpose of the conservation land is to reduce flooding
in the city, and the conservation goal changes from year to
year depending on prior hydrologic events. The damage that
the city agent incurs from a flood event is defined by a flood
damage function. A parameter, ConsGoalmax, in the agent
model defines how responsive the city agent is to prior hydro-
logic outcomes and determines how much the city agent will
change the conservation goal by after experiencing a flood
event (Sect. 2.8)

2.2 Model overview and scheduling

Each year, the agent-based model proceeds through monthly
time steps to simulate the relevant decision-making. The
hydrologic module proceeds in shorter hourly time steps
to capture flood discharge events associated with rainfall
events. Figure 2 depicts the decision-scheduling within the
agent-based model. In January, the farmer agent calculates
their preferred land division between production and con-
servation based on their risk aversion attitude, conservation-
mindedness, newly acquired information about the global
market (crop prices, crop production costs, and crop insur-

ance), conservation subsidies provided by the city agent, and
recent farm performance (profits and yields; Fig. 2, purple
box).

In February, the city agent contacts farmer agents in ran-
dom order to establish new conservation contracts if an un-
met conservation goal remains or to renew any expiring con-
tracts (Fig. 2, yellow box). If the farmer agent wants to
add additional conservation acreage, a new contract is estab-
lished for a 10-year period. The contract length is based on
the Conservation Reserve Program (CRP), which is a pro-
gram administered by the Farm Service Agency that pro-
motes the removal of environmentally sensitive land from
agricultural production in exchange for an annual subsidy
payment. However, if the farmer agent wants fewer conser-
vation hectares, expiring contracts are renewed for a smaller
number of hectares or are ended. The farmer is obligated to
fulfill any contracts that have not yet expired (i.e., contracts
less than 10 years old). Any new acreage that has been es-
tablished in conservation in addition to currently active con-
tracts is subtracted from the city agent’s conservation goal
that was established in January. The city agent contacts as
many farmer agents as needed until the conservation goal is
reached. If there are not enough farmer agents willing to en-
ter into conservation contracts and the conservation goal is
not reached, the goal rolls into the next year. Because the
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farmer agents’ land use decisions change on a yearly basis,
it may be possible for the city agent to establish further con-
tracts in the next year and fulfill the conservation goal.

Prior to May, the farmer agent establishes any newly con-
tracted conservation land on the historically poorest yielding
land. The farmer agent makes no further decisions during
May through August (Fig. 2). The city agent continuously
keeps track of any flooding that occurs during the May–
August period (when the maximum discharge is assumed
to occur; Fig. 2, orange box). The associated flood damage
cost is calculated in September and used to calculate whether
any further conservation land should be added (Fig. 2, green
box). If no flooding occurred, the conservation goal remains
unchanged. In October, the farmer agent harvests their crop
and calculates yields and profits for that year (Fig. 2, blue
box).

2.3 Design concepts

Emergence: patterns in total conservation land and flood
magnitude arise over time, depending on a number of vari-
ables. Agent decision-making parameters and behavioral
characteristics (e.g., conservation-mindedness) influence the
total acreage in conservation land, which in turn affects the
magnitude of floods through changes in runoff productivity
of the landscape.

Objectives and Adaptation: the goal of the city agent is to
reduce flood damage in the city. The city agent attempts to
meet this goal through an incentive program in which farmer
agents are paid to convert production land to a conservation
practice that will reduce runoff. If the city agent incurs a large
cost from flooding in a given year, the city agent adjusts their
“conservation goal” upward in order to reduce future flood
damage from events of similar magnitude. The objective of
the farmer agent is to balance profits with conservation and
risk aversion attitude. The farmer agents incrementally adjust
their land use on an annual basis by taking profit variables,
risk aversion, and conservation-mindedness into account.

Stochasticity: adjustments and stochastic variability are
added to key agricultural variables, which include crop
yields, production costs, cash rent values, and opportunity
costs associated with conservation land in order to account
for economic and environmental randomness within the sys-
tem (Sects. S1.1, S1.2, and S2 in the Supplement). Random
factors for these variables are drawn from uniform continu-
ous distributions that are based on field data of crop yields,
empirical survey data, and estimates published by Iowa State
University Extension and Outreach. Changes in these distri-
butions are also accounted for, depending on crop price lev-
els.

Learning: as will be outlined further in Sect. 2.7.2, each
year, the farmer agents calculate profit differences between
crop production and conservation subsidies. Farmer agents
save this profit difference information from the beginning
of the simulation and use it to adjust their decision-making

Figure 3. Example input time series of corn price, production cost,
and cash rent compared with mean crop yields.

space on an annual basis. The profit difference information is
based on past crop prices, production costs, and conservation
subsidies.

2.4 Model input

2.4.1 Economic inputs

Inputs to the agent-based models are historical crop prices
(USD MT−1), production costs (USD ha−1), cash rental
rates (USD ha−1), and federal government subsidy estimates
(USD ha−1). An example of these model inputs is shown in
Fig. 3 in comparison to mean Iowa crop yields.

2.4.2 Production costs

Production costs are treated as a time series input, with total
costs per hectare for each year represented by one lumped
value. Production costs used in this model application in-
clude land rent, machinery, labor, crop seed, chemicals, and
crop insurance (Plastina, 2017). As estimates put the amount
of land rented out in Iowa for farming at 60 %–80 %, it is as-
sumed that all farmer agents rent their land (Plastina et al.,
2018; Zhang, 2015). This significantly increases expenses as
land rental costs account for approximately half of total pro-
duction costs (Plastina, 2017).
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2.4.3 Conservation subsidy and costs

The conservation subsidy is based on the CRP “Contour
Grass Strips” practice (CP-15A) which includes annual land
rental payments and 90 % cost share for site preparation and
establishment (USDA Conservation Reserve Program Prac-
tice CP-15A; USDA, 2015). Subsidies are calculated us-
ing annual inputs of historical cash rental rates. The cost
of establishing and maintaining conservation land is based
on analysis conducted by Tyndall et al. (2013). These costs
are adjusted based on the land quality of each farmer agent
(Sect. S1.2).

2.4.4 Federal government subsidies

Calculation of federal government crop subsidies for indi-
vidual farmer agents were not included in the agent-based
model due to the complexity and variety of commodity pro-
grams available to US farmers, each of which focuses on dif-
ferent aspects of revenue protection (e.g., protection against
low crop prices and protection against revenue loss). Rather,
federal crop subsidies are an input to the model and applied
equally to each farmer agent. In this study, crop subsidy in-
puts are based on historical estimates produced by Iowa State
University Agricultural Extension (Hofstrand, 2018).

2.4.5 Environmental variables

The hydrology module requires hourly liquid precipita-
tion (mm) as an input to simulate discharge from short-term
heavy rainfall events. The crop yield module requires inputs
of mean monthly precipitation and temperature to estimate
crop yields (Sect. 2.6). The module calculates mean monthly
precipitation based on the hourly precipitation input; how-
ever, the user must provide an input of mean monthly tem-
peratures (◦C).

2.5 Hydrology module

A model structure that is designed to simulate peak flows was
chosen for the hydrology module. Because the city agent in
this model is impacted only by the maximum annual peak
flow, precisely simulating the full time series of hydrologic
flows as well as hydrologic components such as groundwa-
ter flow and evapotranspiration were not needed to meet the
objectives of the current study. The modeling structure was
designed based on a version of the US Army Corps of Engi-
neers’ Hydrologic Engineering Center Hydrologic Modeling
System (HEC-HMS) (Scharffenberg, 2013) used by the City
of Ames, Iowa, for flood forecasting in the Squaw Creek wa-
tershed in central Iowa. The Squaw Creek watershed repre-
sents the type of rural–urban conditions of interest for this
study and is a useful test bed for this modeling application
(Sect. 3). Further, calibrated parameters were available for
the Squaw Creek watershed (Schmieg et al., 2011), provid-
ing a realistic baseline for the hydrology module.

Using the configuration and parameters previously defined
by Schmieg et al. (2011) for the Squaw Creek watershed, the
model was within 12.7 % on average of the observed peak
discharge for 12 major events simulated. Six of these events
were simulated within 3 %–8 % of the observation, while the
least satisfactory simulation overestimated the observed peak
discharge by 33 %. This error was most likely due to the
high spatial variability of precipitation for that event. For
the two most recent record flooding events, the model un-
derestimated the peak discharge by 6.2 % (2008; observed:
356.7 m3 s−1; simulated: 334.6 m3 s−1) and 16.6 % (2010;
observed: 634.3 m3 s−1; simulated 528.3 m3 s−1), showing
that the model is able to simulate the flooding events needed
to run scenarios within the ABM with a fair degree of accu-
racy. The HEC-HMS model has also been successfully used
for simulation of short-term rainfall–runoff events and peak
flow and flood analysis in other studies (Chu and Steinman,
2009; Cydzik and Hogue, 2009; Gyawali and Watkins, 2013;
Halwatura and Najim, 2013; Knebl et al., 2005; Verma et al.,
2010; Zhang et al., 2013).

In the module, basin runoff is computed using the Soil
Conservation Service (SCS) curve number (CN) method,
runoff is converted to basin outflow using the SCS unit
hydrograph (SCS-UH) method, and channel flow is routed
through reaches in the river network using the Muskingum
method (Mays, 2011). A single area-weighted CN parame-
ter is required for each subbasin and is the only hydrology
module parameter that changes during the simulation if land
cover changes. The SCS-UH method requires the specifica-
tion of subbasin area, time lag, and model time step. The
Muskingum method is based on the continuity equation and a
discharge–storage relationship which characterizes the stor-
age in a river reach through a combination of wedge and
prism storage (Mays, 2011). The Muskingum method re-
quires specification of three parameters for each reach within
the river network: Muskingum X, Muskingum K , and the
number of segments over which the method will be applied
within the reach (Mays, 2011). Muskingum X describes the
shape of the wedge storage within the reach, whereas Musk-
ingum K can be approximated as the travel time through the
reach.

For the agricultural areas, empirically derived CN values
(Dziubanski et al., 2017) are used for native prairie strips;
a CN of 82 is used for 100 % row crop production; and a
CN of 72 is used for the conservation option implemented by
the farmer agents. Urban areas are set to a CN of 90 which
is derived from the standard lookup tables for residential ar-
eas with lot sizes of 0.051 ha or less (soil group C; USDA-
NRCS, 2004). Subbasin delineations and Muskingum pa-
rameters previously defined by Schmieg et al. (2011) are
used.

The model accepts point-scale rainfall data (e.g., rain
gauge data) and calculates mean areal precipitation using the
Thiessen polygon gauge weighting technique (Mays, 2011).
The Thiessen weights are entered as parameters to the mod-
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ule. For the initial testing presented in this paper, uniform
precipitation over the entire watershed was assumed.

Output from the hydrology module is discharge at the wa-
tershed outlet (m3 s−1). The hydrology module is run contin-
uously but is designed primarily for the simulation of peak
flows, which generally occur during the summer in the study
region; therefore, for simplicity, a constant baseflow is as-
sumed and snow is ignored. Runoff, river routing processes,
and discharge are computed at a time step identical to the in-
put rainfall data. The model is run at an hourly time step in
this study, but is capable of running at a 30 min time step.

2.6 Crop yield module

Crop yields are modeled with a multiple regression equa-
tion that takes monthly precipitation and temperature into
account. The regression equation, which was developed us-
ing historical crop yield and meteorological data for Iowa
from 1960 to 2006, can be represented as follows (Tannura
et al., 2008):

yieldt= β0+β1
(
yeart

)
+β2(September through April precipitation)

+β3(May precipitation)+β4(June precipitation)

+β5(June precipitation)2+β6(July precipitation)

+β7(July precipitation)2+β8(August precipitation)

+β9(August precipitation)2+β10(May temperature)

+β11(June temperature)+β12(July temperature)

+β13(August temperature)+ εt .

(1)

Mean error of the above regression for Iowa over the
1960–2016 period is −0.395 MT ha−1, and mean absolute
error is +0.542 MT ha−1. An error correction factor of
+0.395 MT ha−1 was added to the yield for each year to cor-
rect for this error. The above regression model is only appro-
priate for reproducing mean historical crop yields. As each
farmer’s land can be composed of different soil types, ad-
justments are applied to the crop yield for each soil type to
account for differences in soil productivity (Sect. S2).

2.7 Farmer agent module

2.7.1 Conservation option

The conservation option implemented by farmer agents is na-
tive prairie strips, a practice in which prairie vegetation is
planted in multiple strips perpendicular to the primary flow
direction upland of and/or at the farm plot outlet (Dziubanski
et al., 2017; Helmers et al., 2012; Zhou et al., 2010). Either
10 % or 20 % of the total field size is converted into native
prairie vegetation under this practice. Prairie strips have been
shown to reduce runoff by an average of 37 % (Hernandez-
Santana et al., 2013) and have the additional benefits of re-
ducing nutrients (Zhou et al., 2014) and sediments (Helmers

et al., 2012) in runoff. The greatest runoff reduction was real-
ized under the 10 % native prairie cover; therefore, the most
conservation-minded farmers (Consmax = 0.10) in the model
potentially convert up to 10 % of their total land into native
prairie.

2.7.2 Farmer agent land use decision process

Agents within an ABM can be modeled using a variety of de-
cision models with varying degrees of complexity (An, 2012;
Zenobia et al., 2009). The study by An (2012) compiled a list
of nine of the most common decision models used in agent-
based modeling studies. Examples of a few of these include
microeconomic models, space-theory-based models, cogni-
tive models, and heuristic models. In microeconomic models,
agents are typically designed to determine optimal resource
allocation or production plans such that profit is maximized
and constraints are obeyed (Berger and Troost, 2014). Ex-
ample studies using optimization include Becu et al. (2003),
Ng et al. (2011), and Schreinemachers and Berger (2011). In
heuristic-based models, agents are set up to use “rules” to de-
termine their final decision (Pahl-wostl and Ebenhöh, 2004;
Schreinemachers and Berger, 2006). The “rules” are typi-
cally implemented using conditional statements (e.g., if...,
then...). Example studies using heuristics include Barreteau
et al. (2004), Le et al. (2010), Matthews (2006), and van Oel
et al. (2010).

We take a different approach from the aforementioned
studies by modeling agent decision-making using a nudging
concept that originated in the field of data assimilation (Asch
et al., 2017). Agents nudge their decision based on outcomes
(i.e., flood damage and farm profitability) from the previous
year. Information relevant to an individual agent is mapped
into the decision space through a weighting function that up-
dates the previous year’s land use decision to create a new de-
cision for the current year. The approach used for both agents
is different from optimization in that the agents are not trying
to determine the best decision for each year. These types of
agents behave based on the idea of “bounded rationality”. In
this case, the rationality of the agents is limited by the com-
plexity of the decision problem and their cognitive ability to
process information about their environment (Simon, 1957).
These agents try to find a satisfactory solution for the cur-
rent year, and they are thus termed “satisficers” rather than
optimizers (Kulik and Baker, 2008).

At the start of each calendar year, a farmer agent decides
how to allocate their land between production and conserva-
tion based on five variables: risk aversion, crop price projec-
tions, past profits, conservation goal, and neighbor land deci-
sions. These factors were chosen based on numerous studies
indicating profits, economic incentives, conservation beliefs,
beliefs in traditional practices, neighbor connections, and ob-
servable benefits to be the key factors influencing on-farm
decision-making related to conservation adoption (Arbuckle,
2017; Arbuckle et al., 2013; Burton, 2014; Daloǧlu et al.,
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Table 1. Variables in farmer and city agent equations.

Variable Description Unit

Ct−1:t−X Mean total amount of land allocated to conservation during the previous X years (ha)
Dt−1 Previous year’s conservation land decision (ha)
δCfutures:Y Conservation decision based on crop price projections for Y years into the future (ha)
δCprofit:X Conservation decision based on mean past profit of previous X years (ha)
δCcons Conservation decision based on conservation goal (ha)
Cneighbor Weighted mean conservation land of the farmer agent’s neighbors (ha)
Profitdiff Differences in profit between an acre of crop and an acre of conservation land (USD ha−1)
Hectarestot Total land owned by farmer agent (ha)
Gt Government agent conservation goal for the current year t (ha)
Gt−1 Unfulfilled conservation land from the previous year’s t − 1 conservation goal (ha)
Atot Total agricultural land in watershed (ha)
Ctot Total land currently in conservation (ha)
P Total conservation land to be added to the goal as a percentage of production land Dimensionless
Pnew Variable describing change in conservation goal with flood damage (1/USD)

Table 2. Primary agent model parameters in decision-making equations.

Agent Description Range
model
parameters

Wrisk-averse Weight placed on farmer agent’s previous land use 0.0–1.0
Wfutures Weight placed on farmer agent’s decision based on future crop price 0.0–1.0
Wprofit Weight placed on farmer agent’s decision based on past profit 0.0–1.0
Wcons Weight place on farmer agent’s decision based on their conservation goal 0.0–1.0
Wneighbor Weight placed on farmer agent’s decision based on their neighbor’s decisions 0.0–1.0
Consmax Farmer’s conservation goal – used to describe the farmer’s conservation-mindedness 0.0–0.1
X Number of previous years a farmer agent takes into account for their land decision 1–5
Y Number of future years a farmer agent takes into account for their land decision 5–10
ConsGoalmax Conservation goal at maximum flood damage 0.0–0.1

2014; Davis and Gillespie, 2007; Hoag et al., 2012; Lambert
et al., 2007; McGuire et al., 2015; Nowak, 1992; Pfrimmer
et al., 2017; Prokopy et al., 2019; Ryan et al., 2003).

A farmer agent’s decision of the total amount of land to be
allocated into conservation, Dt , for the current year t is

Dt=Wrisk-averse
[
Ct−1:t−X

]
+Wfutures

[
Dt−1+ δCfutures:Y

]
+Wprofit

[
Dt−1+ δCprofit:X

]
+Wcons

[
Dt−1+ δCcons

]
+Wneighbor

[
Cneighbor

]
, (2)

where Ct−1:t−X is the mean total amount of land allocated
to conservation during the previous X years, Dt−1 is the
prior conservation decision (total amount of land the farmer
would have liked to implement in conservation) in year t−1,
δCfutures:Y is the decision based on crop price projections for
Y years into the future, δCprofit:X is the decision based on
the mean past profit of the previous X years, δCcons is the
decision based on the conservation goal of the farmer, and
Cneighbor (Sect. S3) is the weighted mean conservation land
of the farmer agent’s neighbors (Table 1). A given farmer can
make a certain random number of neighboring connections

with farmers that are located in the same subbasin (Sect. S3).
The variable Y indicates that one farmer agent might con-
sider their history of conservation land implemented over the
last year, while another farmer agent might consider their
conservation land implemented over the last 5 years. Simi-
larly, the variable X indicates that one farmer agent might
take future crop projections for the next 5 years into account,
while another farmer agent might consider crop projections
for the next 10 years.

Decision weights alter how each of the five components
factor into the farmer agent’s decision: Wrisk-averse reflects
the unwillingness to change past land use, Wfutures reflects
the consideration of future price projections, Wprof reflects
the consideration of past profits, Wcons is the agent’s consid-
eration of their conservation goal, and Wneighbor reflects the
importance that the agent places on their neighbor’s decision
(Table 2). Upon initializing each farmer agent, values are al-
located for each decision weight such that

Wrisk-averse+Wfutures+Wprofit+Wcons+Wneighbor = 1. (3)
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The above decision scheme allows for varying decision
weights; thus, one farmer’s decision may be heavily weighted
by future crop prices, whereas another farmer’s decision may
be heavily weighted by past profits. If the majority of a
farmer’s decision is based on Wrisk-averse, then that farmer is
less inclined to change their previous land use.

The decision components for past profit and future crop
prices are based on a partial budgeting approach that com-
pares land use alternatives. Under this budgeting approach,
farmer agents take added and reduced income into account,
as well as added and reduced costs from changing an acre
of land from crop production to conservation (Tigner, 2006).
The result from performing this budget indicates the net gain
or loss in income that a farmer agent may incur if they make
the land conversion.

The past profits decision is solely based on outcomes that
have been fully realized for the previous X years. In this de-
cision, the land allocated to conservation is based on the net
amount of money that could have been earned per hectare of
conservation land versus crop land and is calculated as fol-
lows:

δCprofit:X =
[
A ·Profit2diff+B ·Profitdiff+C

]
·Consmax

·Hectarestot, (4)

where Profitdiff is the difference in profit between a hectare
of cropland and a hectare of conservation land (Table 1),
Consmax is the farmer agent’s maximum conservation pa-
rameter, and Hectarestot is the area of the agent’s land.
Profitdiff integrates costs and revenue of crop production as
well as costs and revenue of conservation land, which are
computed based on model input data (Sects. 2.4 and S4).
In the case of δCprofit:X, Profitdiff is calculated using real-
ized crop prices from previous years (Sect. S4). The future
price decision variable, δCfutures:Y , is also calculated using
the same form of Eq. (4). However, Profitdiff is calculated us-
ing projected crop prices for the Y upcoming growing sea-
sons. These price projections are based on historical crop
prices with an added adjustment calculated from historical
errors in crop price forecasts produced by the US Department
of Agriculture (Sect. S5).

The first term in Eq. (4), the second-degree polynomial
of form Ax2

+Bx+C = y, is displayed in Fig. 4. At the
start of each year, farmers may decide to alter their land
use based on observed Profitdiff from harvests in previous
years (δCprofit:X) or calculated Profitdiff based on projected
crop prices (δCfutures:Y ). If Profitdiff is positive (i.e., greater
profit is earned from crop production than conservation land),
the farmer agent will potentially decrease the amount of
land in conservation (gray curve). Likewise, under nega-
tive Profitdiff, conservation land is potentially increased be-
cause revenue is lower from crop production (black curve).
Half of the maximum allowable percent increase in conser-
vation land is assumed to correspond to the median histori-
cal negative Profitdiff, whereas half of the maximum allow-

Figure 4. Example of percent conservation change for δCprofit
and δCfutures. Gray curves indicate negative percent change (de-
crease in conservation land), and black curves indicate positive per-
cent change (increase in conservation land).

able percent decrease in conservation land corresponds to
the median historical positive Profitdiff (Fig. 4). We assume
that farmer agents will not change land use when a very
small profit difference between the two possible options is
observed because changing land use requires extra upfront
time and resources (Duffy, 2015). Similarly, we assume that
farmer agents will fully implement the maximum land con-
version possible prior to reaching the most extreme Profitdiff
values. Three equations need to be simultaneously solved
to determine coefficients A, B, and C (Sect. S4). The three
equations are based on the median and the 25th and 75th per-
centiles of historical Profitdiff information. Thus, farmers are
continually utilizing historical observations of Profitdiff to
formulate their decision space through time.

The use of a profit function (i.e., Eq. 4) is meant to cap-
ture the effects of changes in crop prices on conservation
land. In 2008 and 2011, corn prices rose to a record high
values, and farmers in the Midwest US (e.g., Iowa and Min-
nesota) were converting significant portions of CRP land
back into crop production (Marcotty, 2011; Secchi and Bab-
cock, 2007). It is estimated that when corn prices rise by
USD 1.00, 10 %–15 % of CRP land in Iowa is converted back
to production (Secchi and Babcock, 2007). Equation (4) cap-
tures this transition between adding and removing conserva-
tion land based on crop price change, and it allows for vari-
ation in the decision-making between farmer agents as vari-
ables such as crop production costs vary from farm to farm.

The total amount of agricultural land that a farmer converts
to conservation in any given year based on their conservation
goal (δCcons) is defined by the Bernoulli distribution:

P(n)= pn(1−p)1−n n ∈ {0,1}. (5)

Here, p indicates the probability of fully implementing con-
servation land, and 1−p indicates the probability of not im-
plementing any conservation land. The variable n is simply
the support of the distribution that labels a success of full im-
plementation as 1 and a failure of full implementation as 0.
The probability p of fully implementing conservation land is
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a function of the agent’s Consmax parameter and is computed
by

p = 10 ·Consmax. (6)

The probability p scales from 0 at a Consmax of 0, to 1 at
a Consmax of 0.1. Therefore, farmer agents with a Consmax
of 0.05 and 0.1 will have a 50 % and 100 % probability of
fully implementing (10 % of total agricultural land) conser-
vation land in any given year based on their conservation de-
cision variable.

2.8 City agent module

At the end of each year, the city agent collects discharge
data and calculates the damage (Sect. S7) associated with the
peak annual discharge at the watershed outlet for that year. In
February of the next year, the flood damage for the previous
year t−1 is used to compute the conservation goal of the city
agent for the current year t .

The conservation goal of the city agent is calculated as
follows:

Gt =Gt−1+ (Atot−Ctot) ·P (7)
P = Pnew ·FDam (8)

Pnew =
ConsGoalmax

FDmax
, (9)

where Gt is the conservation goal for the new year t (Ta-
ble 1), Gt−1 is the unfulfilled hectares in conservation from
the previous conservation goal for year t−1, Atot is the total
land area owned by the farmer agents,Ctot is the total number
of hectares currently in conservation, P is the percentage of
new production land added into conservation, Pnew indicates
how much land to add into conservation based on the flood
damage FDam for year t−1, and ConsGoalmax is a parameter
that indicates the new percentage of conservation land to be
added if maximum flood damage occurs (Table 2). Currently,
ConsGoalmax is set to 5 % of total land area in the watershed
when maximum damage occurs.

3 Scenario analysis

The study watershed is modeled after the Squaw Creek basin
(∼ 56200 ha) located in central Iowa, USA (Fig. 5). This
basin is characterized by relatively flat hummocky topogra-
phy and poorly drained soils with a high silt and clay con-
tent (∼ 30 %–40 % silt and clay) (Prior, 1991; USDA-NRCS,
2015). The predominant land use is row crop agriculture
(∼ 70 % of the total watershed area) with one major urban
center at the outlet (Ames, Iowa) and several small commu-
nities upstream. Average annual precipitation is 32 inches
(812 mm), with the heaviest precipitation falling during the
months of May and June. The watershed is divided into
14 subbasins.

In this model application, 100 farmer agents are imple-
mented (∼ 7 farmers per subbasin) with 121 ha total for each
farmer. The total acreage per farmer compares reasonably
well with the average farm size for the state of Iowa in 2017,
which was 140 ha (USDA, 2018). Soil types and the area of
land associated with each soil type are randomly assigned
to each farmer agent upon model initialization. Assigning
different soil types creates heterogeneous conditions under
which farmer agents must operate (Sect. S2) and affects the
profitability of each farmer agent differently.

Six scenarios are run: high and low yield (±11 % from his-
torical yield), high and low corn prices (±19 % from histori-
cal prices), and high and low conservation subsidies (±27 %
from historical cash rent). The watershed was also simu-
lated under historical conditions, in which no economic vari-
ables were changed, for comparison purposes. The 90th per-
centile discharge is analyzed, which represents the 0.1 ex-
ceedance probability level, to examine changes in large dis-
charge events. The above percentages were computed us-
ing trends and mean absolute deviations of historical eco-
nomic data. For instance, based on the crop regression model
(Sect. 2.6), crop yields display a relatively linear increase
with time. The mean absolute deviation of the crop yield was
then computed using the linear time trend as a central ten-
dency. The mean absolute deviation was determined to be
11 %; thus, the yield scenarios are ±11 % from the histor-
ical yield. The same approach was used for the crop price
and conservation subsidy scenarios. A linear and cubic func-
tion were found to provide a good estimate of the central ten-
dency of historical cash rent and crop prices, respectively, for
those calculations. In addition, four different farmer decision
schemes were created in which an 80 % weight was assigned
to one decision variable, with all other variable weights set
to 5 % (Table 3). Each scenario is tested with each decision
scheme, and system outcomes under different farmer behav-
iors are assessed.

To test the sensitivity of the hydrologic system to farmer
types, the conservation parameter (Consmax) of the farmer
agents is varied using a stratified sampling approach. Each
farmer agent is randomly assigned a Consmax value from
a predefined normal distribution: (Consmax, σConsmax ). The
lowest distribution is defined as N (0.01, 0.01) and the high-
est distribution is defined asN (0.09, 0.01). Any farmer agent
that is assigned a parameter value less than 0 or greater
than 0.1 is modified to have a value of 0 or 0.1, respectively.
A total of 12 simulations are performed for each conserva-
tion parameter distribution, with a total of 17 conservation
parameter distributions. Thus, the first 12 simulations consist
of farmer agents with Consmax chosen from N (0.01, 0.01).
For the next 12 simulations, the mean Consmax is shifted up
by 0.05, with Consmax chosen from N (0.015, 0.01). A total
of 204 simulations are conducted for each decision scheme
under each scenario (Table 3).

Each simulation is run using 47 years of historical climate
and market data, with the exception of federal crop subsi-
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Figure 5. Squaw Creek watershed and subbasin division used in the hydrology module. Land cover data shown are from the National Land
Cover Database (Dewitz, 2019).

Table 3. Decision weighting scheme tested with each scenario. Bold numbers indicate the decision variable assigned 80 % weight for each
decision scheme.

Decision scheme Decision weight

Conservation Futures Past Risk Neighbor
goal profit aversion

Conservation 0.8 0.05 0.05 0.05 0.05
Future price 0.05 0.8 0.05 0.05 0.05
Past profit 0.05 0.05 0.8 0.05 0.05
Risk averse 0.05 0.05 0.05 0.8 0.05
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Table 4. Model inputs.

Model inputs Years Unit

Historical cash rent 1970–2016 (USD ha−1)
Federal subsidies 2000–2016 (USD ha−1)
Historical production costs 1970–2016 (USD ha−1)
Historical corn prices 1970–2016 (USD MT−1)
Precipitation 1970–2016 (mm h−1)

dies, which are based on 16 years of historical estimates pro-
duced by Iowa State University Agricultural Extension (Hof-
strand, 2018; Table 4). It is assumed that federal crop sub-
sidy payments from 1970 to 2000 are similar to levels seen
from 2000 to 2005 due to relative stability of long-term crop
prices and production costs. The hourly 47-year precipita-
tion time series data were obtained from the Des Moines,
Iowa airport Automated Surface Observing System. Histori-
cal 47-year time series of corn prices, crop production costs,
and land rental values are used as economic inputs into the
model and were obtained from Iowa State University Agri-
cultural Extension and Illinois farmdoc (Table 4).

4 Model calibration and validation

Calibrating and validating the social part of social–
hydrologic models is difficult due to the lack of suffi-
ciently detailed empirical data or system complexity at var-
ious scales, among other reasons (An, 2012; Ormerod and
Rosewell, 2009; Troy et al., 2015). Validation of agent-based
models is usually performed on what term the micro and
macro levels. The micro level involves comparing individ-
ual agent behaviors to real-world empirical data, whereas
the macro level involves comparing the model’s aggregate
response to system-wide empirical data (An et al., 2005;
Berger, 2001; Troy et al., 2015; Xiang et al., 2005). Troy et
al. (2015) suggests that one or a few model simulations out
of an ensemble of simulations should match the real-world
observed data.

We conduct an indirect macro-level model calibration for
determining an appropriate range of farmer agent decision
weights (Windrum et al., 2007). As the subsidy program of-
fered by the city agent is similar to the federal Conserva-
tion Reserve Program (CRP), the model was developed and
calibrated to attempt to reproduce the range and variability
of conservation land seen in the CRP program. CRP data
from 1986 to 2016 for the central Iowa agricultural district
were used in the calibration process, and two main objectives
functions were used:

MAE=

n∑
i=1
|yi − xi |

n
(10)

Pearson’s r =

n∑
i=1
(xi − x)(yi − y)√

n∑
i=1
(xi − x)

2

√
n∑
i=1
(yi − y)

2

. (11)

In the first step of calibration, the focus was to determine an
appropriate range of mean ConsMax of the farmer agent pop-
ulation to match the magnitude of CRP land seen for central
Iowa. The model was simulated 360 times using 20 random
sets of farmer agent decision weights. Output from the first
calibration step was filtered using a criteria of r > 0.6 and
MAE< 25 %, and the optimal ConsMax range was reduced
to 0.05–0.07. In the second step of calibration, the focus was
to determine a singular optimal mean ConsMax value and
to narrow the range for each decision weight. ConsMax was
incremented by 0.001 within the range derived from step 1,
and 20 simulations were performed for each increment us-
ing decision weights stochastically drawn from the uniform
distribution U (0.05, 0.95) for a total of 400 simulations.
Output was filtered using a stricter criteria of r > 0.7 and
MAE< 25 %. The final calibration step involved 400 simu-
lations with the optimal mean ConsMax value and stochas-
tic sampling from the reduced range of decision weights
derived in step 2. Filtering with a criteria of r > 0.75 and
MAE< 12.5 % was performed to determine the final optimal
decision weight ranges.

The optimal mean ConsMax value was determined to
be 0.06, and the final optimal decision weight ranges
were determined to be Wrisk-averse = (0.1, 0.43), Wfutures =

(0.07, 0.24), Wprofit = (0.07, 0.34), Wcons = (0.18, 0.37),
and Wneighbor = (0.05, 0.35). The median r and MAE values
of the simulations after filtering with the criteria in step 3
(r > 0.75, MAE< 12.5 %) were 0.79 % and 11 %, respec-
tively. A total of 66 of the 400 simulations matched this cri-
teria in step 3, whereas only 7 matched this criteria in step 1
and 26 matched this criteria in step 2.

The model-simulated conservation land generally aligns
with trends in the observed conservation land (Fig. 6). Simu-
lated conservation land is not maintained following a rise in
crop prices in the mid-1990s and from 2006 to 2013, which
is similar to the observed data (red). The drop in conserva-
tion land during these time periods occurs because the sub-
sidy rate is not modified rapidly enough in comparison to
market forces to incentivize the farmer (Newton, 2017). The
model does capture the smaller decrease in conservation land
between 2007 and 2014, even though crop prices rose more
dramatically than in the mid-1990s.

The onset of significant land conversion in the model is
offset from the observations. Conservation land is imple-
mented in the mid-1970s, while conservation land in the ob-
servation is implemented in the late 1980s. The CRP program
did not come into existence until 1985, which partly explains
this difference. A large rise in conservation land to roughly
4 % occurs from 1975 to 1978, most likely due to a combina-
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Figure 6. Simulated conservation land from four model simulations
with Pearson’s r > 0.8 and MAE< 12.5 % compared with observed
conservation land.

tion of decreasing crop prices from 1974 to 1977 and model
spin-up. This is similar to the rate of rise in conservation land
that occurred under the CRP programs from 1985 to 1987
under a comparable period of decreasing crop prices.

Overall, calibration does provide evidence that the model
captures changes in CRP land during the appropriate time
periods. However, the calibration technique does have lim-
itations. The technique followed here was an indirect cal-
ibration approach, whereby the parameters are determined
based on the simulations that replicate the empirical data
best (Fagiolo et al., 2006). This technique can lead to equi-
finality as different parameter sets may reproduce the his-
torical observations with similar degrees of accuracy. Fur-
ther, this calibration approach does not provide evidence that
any individual agent’s decisions are valid. The stochastic
nature of human behavior coupled with path dependencies
makes it difficult to predict individual agent outcomes ac-
curately (Berglund, 2015). A dominating problem with cal-
ibrating ABMs is that it may be difficult to find sufficient
data sets to support a robust validation at the micro level. For
modeling land use decisions, data are typically available at
a larger scale, such as county or state level, rather than at
the individual agent level, such as a single farm (An, 2012;
Parker et al., 2008). This introduces difficulty in trying to val-
idate farm-level decisions with respect to farm-level finances
(Sect. 2.7.2). Adding in additional factors, such as Federal
Market Loss Assistance and Loan Deficiency Payments, as
well as trying to characterize some of the other model pa-
rameters that were not a focus of this calibration, may further
improve results.

In light of the paper by Windrum et al. (2007), there has
been much debate as to the proper methodology and tech-
niques to follow for ABM validation (Bharathy and Sil-

verman, 2013; Hahn, 2013). To fully validate the current
model, a more extensive process may be necessary. Macal
and North (2005) introduced a framework for ABM valida-
tion that may provide for a more comprehensive evaluation.
This framework includes subject matter expert evaluation,
participatory simulation, model-to-model comparison, com-
parison against critical test cases, invalidation tests, and com-
prehensive testing of the entire agent strategy and parameter
space. However, following this framework is very time inten-
sive; thus, most recent studies have focused on empirical val-
idation against real-world macro-level data, with some stud-
ies validating at the individual agent level if data are available
(Fagiolo et al., 2019; Guerini and Moneta, 2017; Langevin et
al., 2015; Schwarz and Ernst, 2009).

5 Results

5.1 Crop price scenarios

The 90th percentile peak discharge is 296.4 m3 s−1 when
no conservation is occurring in the watershed (Fig. 7). The
90th percentile peak discharge decreases for all four decision
schemes and under all scenarios as the average conservation-
mindedness (Consmax) of the population increases (Fig. 7).
The low crop price scenario produces a larger decline in peak
discharge compared with the high crop price scenario, with
the exception of the conservation decision scheme (80 %
weight on conservation) in which both low and high crop
price scenarios produce a similar ensemble pattern (Fig. 7a).

Under low crop prices, peak discharge reaches an aver-
age reduction of 8.18 % (24.27 m3 s−1) when the average
Consmax is 0.08–0.09 (conservation-minded population) and
4.67 % (13.85 m3 s−1) when the average Consmax is 0.04–
0.06 (mixed population). The decrease in peak discharge
corresponds to the 800–1000 and 400–600 ha converted to
conservation by the conservation-minded and mixed farmer
populations, respectively (Fig. 8a, c, e, g). The production-
minded populations (Consmax ∼ 0.01–0.02) implement less
than 200 ha during the entire simulation period. These
acreage values represent 6.5 %–8.2 %, 3.3 %–5.0 %, and less
than 2.0 % of the entire watershed for the conservation-
minded, mixed, and production-minded groups, respectively.
Given that 10 % of the watershed would be under conser-
vation if native prairie strips were fully implemented, about
65 %–80 % of a conservation-minded population fully imple-
ments the practice over the simulation period under low crop
prices.

Under the high crop prices, mean peak discharge de-
creases by 5.6 % (16.6 m3 s−1) under the future price weight-
ing scheme and 2.9 % (8.6 m3 s−1) under the past profit
weighting schemes for the highly conservation-minded pop-
ulation (Fig. 7b and c, respectively), with an even smaller
reduction seen for the risk averse scenario. This represents
approximately a 61 % smaller decrease in the peak dis-
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Figure 7. Mean 90th percentile discharge for high and low crop price scenarios with (a) 80 % weight on conservation goal, (b) 80 % weight
on future price, (c) 80 % weight on past profit, and (d) 80 % weight on risk aversion. The circles indicate the median values and the bars
show the 5th and 95th percentiles of discharge for all simulations at a specific Consmax.

Figure 8. Range of simulated conservation land within the watershed with low (a, c, e, g) and high (b, d, f, h) crop prices for conservation-
minded populations (green), mixed populations (blue), and production-minded populations (red). Crop prices are plotted as bars for each
crop price scenario. Results are for decision schemes of 80 % weight on conservation behavior (a, b), 80 % weight on future price (c, d),
80 % weight on past profit (e, f), and 80 % weight on risk aversion (g, h).
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Figure 9. Mean 90th percentile discharge for high and low crop yield scenarios with (a) 80 % weight on conservation goal, (b) 80 % weight
on future price, (c) 80 % weight on past profit, and (d) 80 % weight on risk aversion. The circles indicate the median values and the bars
show the 5th and 95th percentiles of discharge for all simulations at a specific Consmax.

charge when crop prices are high and the population is
conservation-minded compared with the low crop price sce-
nario. Discharge remains largely unchanged for these de-
cision schemes because generally less than 300 ha of land
is allocated for conservation when corn prices are high
(Fig. 8d, f, h). The small amount of conservation land imple-
mented is due to farmer agents receiving significantly more
revenue from crops than conservation subsidies. However,
in the case of low crop prices, conservation subsidies al-
low the farmer agents to approach breakeven because they
are guaranteed a subsidy that covers the cash rent for that
land, whereas crop production leads to potential losses due
to corn prices being low relative to production costs. Even
in these scenarios where farmer agents are heavily con-
sidering profit-related variables, populations dominated by
production-minded farmer agents are still inclined to leave
land in production (Fig. 8c, e).

5.2 Crop yield scenarios

Under high and low crop yield scenarios, the 90th per-
centile peak discharge decreases by an average of 5.9 %
(17.4 m3 s−1) and 7.6 % (22.7 m3 s−1), respectively, for the
conservation-minded populations (Fig. 9). Thus, a smaller
decrease in peak discharge occurs with low crop yields rel-
ative to low crop prices (Fig. 7). In the low crop yield
scenario, conservation land was approximately 200 ha less
than in the low crop price scenario, particularly for the past
profit and future price decision schemes (Figs. 8a, c, e, g

and 10a, c, e, g). Conversely, more conservation land is es-
tablished under the high yield scenario compared with the
high crop price scenario (Figs. 8b, d, f, h and 10b, d, f, h).
As a result, mean peak discharge decreases in the high yield
scenario by 15.6 % more than in the high crop price scenario
for the conservation-minded population.

5.3 Conservation subsidy scenarios

Under the low and high subsidies scenarios (not shown),
the 90th percentile peak discharge decreases by an average
of 5.8 % (17.3 m3 s−1) and 7.6 % (22.5 m3 s−1), respectively,
for conservation-minded populations. Similar to the low crop
yield scenario, high subsidies do not produce as much of
a decrease in the mean peak discharge as low crop prices
(Fig. 7). In the high subsidies scenario, conservation land was
approximately 200–300 ha less than in the low crop price sce-
nario, specifically for the future price and past profit decision
scheme. In comparison, low subsides generate more conser-
vation land than high crop prices (Fig. 8b, d, f and h). As
a result, mean peak discharge decreases in the low subsidy
scenario by 14.8 % more than in the high crop price scenario
for the conservation-minded population. Differences in peak
discharge reduction between the high subsidy and low yield
scenarios were insignificant, with less than a 1 % difference
between these two scenarios.
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Figure 10. Range of simulated conservation land within the watershed with low (a, c, e, g) and high (b, d, f, h) crop yields for conservation-
minded populations (green), mixed populations (blue), and production-minded populations (red). Yearly crop yields are plotted as bars for
the crop yield scenario. Results are for decision schemes of 80 % weight on conservation behavior (a, b), 80 % weight on future price (c, d),
80 % weight on past profit (e, f), and 80 % weight on risk aversion (g, h).

5.4 Decision schemes

The future price and past profit decision schemes display
the largest spread in discharge outcomes between scenar-
ios (Figs. 7, 9). Mean peak discharge decreases by 9 % (∼
27.2 m3 s−1) on average relative to when no conservation oc-
curs for both decision schemes under all scenarios that en-
courage more conservation land, i.e., low crop prices, low
yields, and high subsidies (Figs. 7b, c and 9b, c). Under sce-
narios that encourage less conservation land, mean peak dis-
charge decreases by 5 % (∼ 15.4 m3 s−1). This spread in the
peak discharge results is not present in the risk averse and
conservation decision schemes.

The spread between the mean peak discharge under the
different scenarios is smaller for the future price decision
scheme (Figs. 7b, 9b) compared with the past profit decision
schemes (Figs. 7c, 9c). This smaller spread may be due to un-
certainty in future crop price projections. For instance, future
crop price projections may underestimate high crop prices,
but overestimate low crop prices, as is observed in previ-
ous USDA crop price forecasts (Sect. S5). Thus, the farmer
agents may be making decisions based on a smaller range
of crop prices when under the future price decisions com-
pared with the past profit decision scheme where they use
realized crop prices. In addition, the future crop price deci-
sion scheme results in greater variability in conservation land

over short periods of time under all scenarios (Figs. 8c, d
and 10c, d). This result is evident under the low crop price
scenario, with several short periods showing changes in con-
servation land of 200–400 ha compared with the past profit
scenario where conservation land remains relatively steady.
However, this result does not lead to a larger spread (i.e., red
and blue bars) within the mean peak discharge results.

The risk averse decision scheme produces the smallest
changes in peak discharge under all scenarios, with an aver-
age decrease of less than 2 % (6 m3 s−1) and 3 % (9 m3 s−1)
for mixed and conservation-minded populations, respectively
(Figs. 7d, 9d). Because the farmer’s past practices are the pri-
mary factor in determining land conversion in this scheme,
the farmer agents implement a limited number of conserva-
tion acres (≤ 200 ha), regardless of the scenario. Therefore,
changes in the economic variables do not have as much of
an impact on the farmer agents when they are strongly risk
averse.

Overall, the current city agent conservation goal of 5 %
new conservation land at maximum flood damage did not
have a significant impact on the total amount of land im-
plemented. Following two major flooding events, the con-
servation goal of the city agent increases from less than
20 ha in 1975 to 620 ha in 1976. A similar event in 1977
increases the conservation goal by another 500 ha for a to-
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tal goal of approximately 1100 ha. These increases corre-
spond to the large and rapid onset of conservation land seen
during those years (Figs. 8a, c, e and 10a, c, e). After the
1977 flood event, several smaller flood events do occur that
are generally less than 15 %–30 % of maximum, which fur-
ther increases the conservation goal by ∼ 200–300 ha. When
the population has a high average Consmax, the conservation
goal of the city agent is nearly fulfilled during this period,
particularly in the low crop price scenario. In these cases,
900 ha of the conservation goal is implemented, and 200 ha
remains unimplemented. This results in the largest reduction
in 90th percentile discharge under all scenarios and deci-
sion schemes (Figs. 7a, 9a). When the population has a low
average Consmax, the majority of the city agent’s conserva-
tion goal remains unimplemented. Thus, the goal remains at
a constant 1000–1400 ha and discharge remains unchanged.
The only case where the city agent conservation goal limits
the amount of land implemented is under the conservation
weighting scenario as conservation-minded farmers are in-
clined to add conservation land on a yearly basis.

5.5 Historical comparison

To gain an understanding of how each of the scenarios dif-
fers from the historical 1970–2016 period, the mean peak dis-
charge is compared against the historical scenario (Fig. 11).
Recall that under the historical scenario, farmer agents make
annual land use decisions as in the other scenarios, but corn
prices, conservation subsidies, and crop prices are unchanged
from historical observed values. Overall, crop prices had the
largest impact on mean peak discharge, while changes in sub-
sidies had the smallest overall impact. When crop prices were
low, mean peak discharge decreased by 1 %–2 % for mixed
populations and 2 %–3 % for conservation-minded popula-
tions under the future price and past profit schemes compared
with the historical scenario (Fig. 11a). High crop prices result
in an increase in peak discharge from the historical scenario,
with an increase of 1 %–3 % for mixed populations and 3 %–
5 % for conservation-minded populations. This indicates that
the farmer agents are more likely to convert land back to crop
production under high crop prices than convert land to con-
servation under low crop prices, which is a similar conclusion
to Claassen and Tegene (1999).

The subsidy scenarios produced a similar pattern to the
crop price scenarios, where a larger change (increase) in
mean peak discharge occurs under low subsidies than under
high subsidies (Fig. 11b). This pattern was not as clearly evi-
dent under the yield scenarios, with similar changes resulting
from high and low yields (Fig. 11c).

Figure 11. Percent change in median 90th percentile discharge from
the historical scenario for (a) high and low crop prices, (b) high and
low subsidies, and (c) high and low yields for the conservation, risk,
future price, and past profit weighting schemes.

6 Conclusions

Scenarios of historical and low crop yields, as well as high
and low corn prices and conservation subsidies, were simu-
lated for an agricultural watershed in the Midwest US Corn
Belt using an agent-based model of farmer decision-making
and a simple rainfall–runoff model. The influence of different
farmer agent decision components on model outcomes was
also explored. Model results demonstrate causations and cor-
relations between human systems and hydrologic outcomes,
uncertainties, and sensitivities (specifically focused on high
flows).

The primary findings of this study are as follows:

– Crop prices had the largest impact on mean peak dis-
charge, with a 61 % larger reduction in mean peak dis-
charge under low crop prices compared with high crop
prices.

– Changes in subsidy rates and crop yields produced a
smaller impact on mean peak discharge. Only a 25 %–
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30 % difference in mean peak discharge was realized be-
tween high and low subsidies, and high and low yields.

– Farmer agents more often made decisions to eliminate
conservation land than to enter into conservation con-
tracts: a 3 %–5 % increase in mean peak discharge oc-
curred under high crop prices, while only a 2 %–3 % de-
crease in mean peak discharge occurred under low crop
prices compared with the historical simulation. Thus,
even under low crop prices, the effectiveness of the con-
servation program is limited either due to economic or
behavioral factors.

– Hydrologic outcomes were most sensitive when farmer
agents placed more weight on their future price or past
profit decision variables and least sensitive when farmer
agents were highly risk averse. For instance, under fu-
ture price and past profit weighting scenarios, a 4 % and
7 % difference in mean peak discharge is seen between
high and low crop prices as opposed to a 0 %–1 % dif-
ference under the risk averse weighting scenario.

The ABM modeling approach demonstrated here can be
used to advance the fundamental understanding of the in-
teractions of water resources systems and human societies,
particularly focusing on human adaptation under future cli-
mate change. Our model indicates that external factors can
influence local streamflow, albeit in a complex and unpre-
dictable way as the information gets filtered through the com-
plex decision-making of local farmers. Social factors, both
local and external, introduce significant uncertainty in local
hydrology outcomes, and by ignoring them, water manage-
ment plans will be inherently incomplete. Thus, multi-scale
human factors need to be explicitly considered when assess-
ing the sustainability of long-term management plans.

This study additionally demonstrates some of the advan-
tages of the ABM approach. One of the primary advantages
of ABMs is the ability to capture emergent phenomenon
(Bonabeau, 2002). For instance, in the model, the change in
conservation area seen in the mid-1990s is larger than dur-
ing the period after 2007, despite the much larger volatility
in crop prices after 2007. While the primary reason behind
this phenomenon may not be clear, the ABM captures this
change. The ABM also allows for the specification of small-
scale differences between farmer agents such as variations in
conservation-mindedness, production costs, yields, and cash
rents. Thus, using ABMs allows for a very flexible modeling
approach.

The current model design contains limitations in both the
hydrologic and agent-based models that should be addressed
in future model development. The curve number values that
were used to represent the conservation option were derived
for small agricultural plots of approximately 0.5–3 ha in size.
The question remains regarding whether these CN values can
be scaled up to the size of a several hundred hectare farm plot
and still produce reasonable discharge results. In addition,

there is no explicit spatial representation of farmer agents
within each subbasin. Coupling the agent-based model to a
more robust hydrologic model may reduce some of these hy-
drologic limitations. The Agro-IBIS model, which includes
dynamic crop growth and a crop management module, would
be particularly well suited to further investigating various
farm-level decisions within an ABM on hydrologic outcomes
(Kucharik, 2003).

From the agent-based modeling standpoint, the decision-
making of the farmer and city agent could be made more
sophisticated by introducing certain state variables, further
decision components, and longer planning horizons. Stud-
ies have identified variables such as farm size, type of farm,
age of farmer, off-farm income, land tenure agreement, and
education from local experts, among others, to be signifi-
cant in determining the adoption of conservation practices
(Arbuckle, 2017; Daloǧlu et al., 2014; Davis and Gillespie,
2007; Lambert et al., 2007; McGuire et al., 2015; Ryan et al.,
2003; Saltiel et al., 1994; Schaible et al., 2015). The function-
ality of the city agent could be expanded by introducing cost-
benefit analysis capabilities. Cost-benefit capabilities would
allow the city agent to make more advanced decisions such
as choosing among a variety of flood-reducing investments
(Shreve and Kelman, 2014; Tesfatsion et al., 2017). The
model is capable of replicating historical trends in observed
conservation land in Iowa with a Pearson’s r value of over
0.75 and a MAE of less than 12.5 % for a select number of
simulations; however, more work is needed to try to validate
the model at a micro-level (farm-level) scale. Finally, future
work should more fully explore the feedbacks from the hy-
drologic system to the human system, which is one of the
strengths of the agent-based modeling approach (An, 2012).
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