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Abstract. The use of Poisson cluster processes to model
rainfall time series at a range of scales now has a history
of more than 30 years. Among them, the randomised (also
called modified) Bartlett–Lewis model (RBL1) is particu-
larly popular, while a refinement of this model was proposed
recently (RBL2; Kaczmarska et al., 2014). Fitting such mod-
els essentially relies upon minimising the difference between
theoretical statistics of the rainfall signal and their observed
estimates. The first statistics are obtained using closed form
analytical expressions for statistics of the orders 1 to 3 of the
rainfall depths, as well as useful approximations of the wet–
dry structure properties. The second are standard estimates
of these statistics for each month of the data. This paper dis-
cusses two issues that are important for the optimal model
fitting of RBL1 and RBL2. The first issue is that, when revis-
iting the derivation of the analytical expressions for the rain-
fall depth moments, it appears that the space of possible pa-
rameters is wider than has been assumed in past papers. The
second issue is that care must be exerted in the way monthly
statistics are estimated from the data. The impact of these two
issues upon both models, in particular upon the estimation of
extreme rainfall depths at hourly and sub-hourly timescales,
is examined using 69 years of 5 min and 105 years of 10 min
rainfall data from Bochum (Germany) and Uccle (Belgium),
respectively.

1 Background

Rainfall is the main input to a range of models in geophysics
such as hydrological catchment models, sewerage discharge
models and erosion models. Therefore, to understand the be-
haviour of catchment runoff, sewer flows or soil erosion, it is
necessary to have access to precipitation data sets at the char-

acteristic response scales of these variables. There are also
other non-geophysical applications which require such data
sets, for instance the investigation of the frequency of out-
ages in telecommunications data. For all such applications,
hourly and sub-hourly rainfall data are required. The avail-
ability of data sets that are long enough to represent the range
of variability of precipitation at such scales is however lim-
ited, even in developed countries. This is why the availability
of a stochastic model able to generate realistic time series of
rainfall depths at a range of scales is very useful. There is
already a considerable amount of literature in this area (Con-
nolly et al., 1998; Arnbjerg-Nielsen, 2012; Arnbjerg-Nielsen
et al., 2013; Onof and Arnbjerg-Nielsen, 2009; Wang et al.,
2010): the present paper is a contribution to the improvement
of the performance of a particular type of stochastic rainfall
models.

Depending upon the application, “realistic” will mean dif-
ferent things. For applications that are related to design,
realistic will involve the reproduction of the observed ex-
treme behaviour of the precipitation process at a range of
timescales. Onof and Arnbjerg-Nielsen (2009) and Arnbjerg-
Nielsen (2012), for example, integrated two stochastic mod-
els to eventually generate 5 min point rainfall time series
from 1 h 10 km RCM (regional climate model) output. This
method enables the consideration of the impact of climate
change in urban sewer system design.

In this paper, we focus upon one approach to rainfall
modelling, that which is based upon the use of point pro-
cesses as defining the times at which the building blocks of
the model, i.e. rainfall cells, arrive. These cells are concep-
tual ones, although their typical characteristics are those of
small mesoscale areas (SMSAs) which are embedded in large
mesoscale areas (Burlando and Rosso, 1993). The presence
of clustering means that a homogeneous Poisson point pro-
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cess is not an appropriate choice for the underlying process
of cell arrivals. Two options are available. The first intro-
duces randomness by having the Poisson rates behave as a
continuous-time Markov chain: this defines a Cox (doubly
stochastic) process (see Ramesh, 1995; Ramesh et al., 2018).

The second explicitly models the clustering process. This
can be by defining the number cells in a storm as a ran-
dom variable, with another random variable modelling the
delays from the storm to the cell arrival time. This defines
a Neyman–Scott process (see Cowpertwait, 1998; Evin and
Favre, 2008; Paschalis et al., 2014). Alternatively, a second
homogeneous Poisson process defines the cell arrival times
over a duration of storm activity that defines a random vari-
able (see Onof and Wheater, 1993; Khaliq and Cunnane,
1996; Verhoest et al., 1997; Kossieris et al., 2018). For both
Poisson cluster processes, the SMSAs are then represented
by rectangular pulses corresponding to a random constant
rainfall intensity over a random duration. In this paper, the
Bartlett–Lewis process is the chosen point process model.

Two issues have been flagged in the literature which limit
the applicability of a number of variants of the basic model
type published in 1987 (Rodriguez-Iturbe et al., 1987). The
first one is well-known (e.g. Verhoest et al., 2010). Many
studies have shown that rectangular pulse models underes-
timate hourly extremes (Verhoest et al., 2010, and references
therein). This is often accompanied by an overestimation
of daily extremes. The other, less well known problem was
identified by Marani (2003). While one of the strengths of
models based upon Poisson cluster processes is their ability
to capture rainfall variability over a range of scales (hence
its use in disaggregation; see Koutsoyiannis and Mamassis,
2001), they underestimate this variability for scales equal to
or larger than a few days.

Both issues are closely connected to fundamental features
of these models and of the way they are fitted. The first arises
partly due to the fact that the model is calibrated in such a
way as to reproduce the mean behaviour of the precipita-
tion process. That is, statistics like the mean, variance and
autocovariance of rainfall totals at timescales varying from
1 to 24 h are used to fit the models. As far as the cell in-
tensity parameters are concerned, these statistics are func-
tions of their first- and second-order moments only. The rest
of this distribution is not thereby determined, although the
choice of distribution has a clear impact upon the extremes
(Onof and Wheater, 1994). This situation can be partially ad-
dressed by including the coefficients of skewness (hereafter,
“skewness”) of the rainfall depths at relevant timescales as
additional statistics in the calibration of the model (Cowpert-
wait, 1998). Kaczmarska et al. (2014) similarly find that the
inclusion of the skewness yields reasonable performance and
extend the range of timescales to include sub-hourly scales
which are of key importance in urban hydrology, erosion
studies and telecommunications applications. There remains
however the option of using a fat-tailed distribution for the
cell intensity to achieve further improvement. To see whether

this is advisable or useful, we need to get a better picture of
what produces the extremes at different timescales. Is it pre-
dominantly the superposition of several cells, or is it mostly
the rainfall produced by a single cell? In the latter case, the
choice of a different distribution of rainfall intensities is a key
decision.

The other issue, namely that of the reproduction of the
variability of rainfall depths across scales, had not so far re-
ceived much attention, although it is in fact of clear prac-
tical importance. If we want the model to be able to cap-
ture longer-term variability (as would certainly be required
to reproduce climate variability for instance), then this is-
sue must be addressed. The most promising ways forward in
this respect come from combining the Poisson cluster model
with a coarse-scale model that captures much of the longer-
term variability (Park et al., 2019) or from letting climato-
logical information guide the weighting to be assigned to
different months in the data in calibrating the model (Kacz-
marska et al., 2015; Cross et al., 2020). Both approaches rep-
resent important developments. The first approach involving
the combination of two models has the advantage of enabling
a much improved reproduction of extreme rainfall depths.
The second approach, which incorporates climatological in-
formation, enables this model to be used as a weather gener-
ator in climate impact studies.

While the use of extraneous (e.g. climatological) infor-
mation and the combination with another (e.g. coarse-scale)
model are the most promising ways in which this area of
stochastic rainfall modelling is developing, the issue of how
the Poisson cluster model is fitted to rainfall statistics needs
to be revisited. In this paper, we address two hitherto un-
noticed issues with random-parameter Bartlett–Lewis rain-
fall models. First, we draw attention to a claim made in the
original publication of the randomised Bartlett–Lewis model
(Rodriguez-Iturbe et al., 1988) which involves an erroneous
assessment of the mathematically feasible limits of a key
model parameter. Correcting this misspecification of the con-
straints on this parameter allows us to consider a broader pa-
rameter space, thereby potentially including parameter val-
ues that will improve model performance. Second, we show
the importance of the choice of estimators for the statistics
used in model fits to individual months. We shall show that,
by taking both issues into account, it is possible to improve
the reproduction of extreme rainfall depths over a range of
scales. A detailed examination of the impact upon the vari-
ance function will be carried out in another paper.

This paper starts with a presentation of the data and a
reminder of the structure of three versions of the Bartlett–
Lewis Rectangular Pulse model, as well as of how these mod-
els are fitted. The revised equations for the statistics of the
orders 1 to 3 of the rainfall depths at aggregation scale h h
are then presented. In the following section, we discuss the
estimation of standard monthly statistics and show the bias
that can be introduced through the use of a commonly used
type of estimator. In the final section, we consider the im-
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Figure 1. Illustration of the conceptualisation of the Bartlett–Lewis
Rectangular Pulse model.

pact of the new equations and unbiased estimation method
upon the reproduction of standard statistics and extremes of
rainfall depths.

2 Data

Rain gauge rainfall data of 5 min from a rain gauge in Ger-
many (North Rhine-Westphalia) and one in Belgium (Flan-
ders, Brussels region) are used to demonstrate the new de-
velopments in model (population) and data (sample) statis-
tics for model fitting described in this paper. These are:

– Bochum for 69 years of 5 min data from January 1981
to December 1999

– Uccle for 105 years of 10 min data from January 1898
to December 2002.

Because of constraints on the length of the paper, the results
for Uccle are shown only in the Supplement of this paper.

Additionally, for the purpose of the numerical investiga-
tion of estimators, Greenwich (14.5 years of 5 min data from
February 1987 to July 2001) data are used.

3 Model structure

In the original Bartlett–Lewis Rectangular Pulse (OBL)
model (as illustrated in Fig. 1), storms arrive according to
a Poisson process at rate λ. Another process generates cells
associated with each storm: this is also a Poisson process,
triggered by the storm arrival (rate β) and active over a dura-
tion that is exponentially distributed with parameter γ . These
cells have an exponential duration (parameter η) and a ran-
dom depth (described by its first three – non-centred – mo-
ments: µx , µx2 and µx3).

Further development of the original model proposed by
Rodriguez-Iturbe et al. (1987) involved has in particular
focused upon the randomisation of the temporal structure
of storms for the Bartlett–Lewis process (Rodriguez-Iturbe

et al., 1988; Onof and Wheater, 1993). The temporal struc-
ture of precipitation is allowed to vary from storm to storm
by randomising parameter η. This can be chosen as a gamma-
distributed Gamma(α,1/ν) random variable that varies be-
tween storms. The cell arrival rate and storm duration param-
eter are scaled accordingly: β = κη and γ = φη. This will be
referred to as the randomised Bartlett–Lewis model version 1
(RBL1).

Recently, this randomisation strategy was extended to in-
clude all the parameters describing the internal structure of
the storm, i.e. to include parameter µx (Kaczmarska et al.,
2014). µx is now a random variable that takes on different
values for different storms, proportionally to η:µx = ιη. This
is the randomised Bartlett–Lewis model version 2 (RBL2).
This model was shown to outperform OBL and RBL1 by
Kaczmarska et al. (2014), but

– only one data set was examined in that study, so this
conclusion cannot be generalised;

– RBL1 was excluded from the comparison because the
authors “concluded that the improvement in the fit to
proportion dry that had previously been found by ran-
domising η was at the expense of a deterioration in the
fit to the skewness” (Kaczmarska et al., 2014); but given
the popularity and successful application of this model
to a range of types of rainfall (e.g. see Onof et al., 2000),
we decided to include it here for further analysis.

4 Model calibration and the revised equations

4.1 Calibration

The OBL, RBL1 and RBL2 models generate rainfall as
a continuous-time process, {Y (t)}t∈R, where Y (t) is the
continuous-time rainfall intensity at time t resulting from the
superposition of the intensities of all the cells active at time
t . Rainfall records are, however, available in aggregated form
for discrete timescales. The rainfall depth Y (h)i for a level of
aggregation h h is given by

Y
(h)
i =

ih∫
(i−1)h

Y (t)dt. (1)

Analytical expressions of the moments of the aggregated pro-
cess Y (h)i have been derived as functions of the model param-
eters. Expressions for other statistical descriptors, such as the
proportion of dry periods at timescale h, have also been de-
rived (see Onof et al., 2000). In Sect. S3 in the Supplement
to this paper, we provide more efficient approximations of
the proportion dry than in earlier papers (see Wheater et al.,
2006).

The models are generally calibrated using a generalised
method of moments. That is, the model parameters are cho-
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sen so that the model values calculated with the available an-
alytical expressions are as close as possible to the empirical
values of these statistics obtained from observed data. This is
achieved by minimising an objective function:

∑
M∈�

ω(M)
{
M−M̂

}2
, (2)

where � is a set of statistical descriptors, ω(M) is a weight
assigned to that property in the objective function and M̂
is the estimate of that property from the sample of available
data. For details about the optimal choices of the weights, see
Kaczmarska et al. (2014).

In this paper, following the best practise suggested in
Kaczmarska et al. (2014), we choose mean 1 h rainfall depth
and coefficient of variation, lag-1 autocorrelation and the
coefficient of skewness at 5 or 10 min (5 min for Bochum;
10 min for Uccle), 1, 6 and 24 h timescales as statistical
descriptors for the model calibration. In addition, inspired
by the optimisation method proposed in Efstratiadis et al.
(2002), we used the simulated annealing algorithm to search
a promising region and then the downhill simplex Nelder–
Mead algorithm to identify the optimum to minimise Eq. (2).
The minimum objective function values for all RBL mod-
els under consideration in this paper using Bochum data are
summarised in Table 5. It is worth noting that the minimum
objective function values of RBL2-bM (block) model are
comparable with those of the BLRPRx (random-parameter
Bartlett–Lewis Rectangular Pulse Model with dependent in-
tensity duration) model given in Table 2 in Kaczmarska et al.
(2014), which indicates that there is consistency between the
calibration procedures in these two papers.

Below, we present the methodology used to derive the new
equations for the two randomised versions of the Bartlett–
Lewis model.

4.2 Derivation of the new equations

As explained in Rodriguez-Iturbe et al. (1988), the mean
and variance of RBL1 – and this also applies to RBL2
– are obtained by taking means over η of these moments
for OBL. This is the case because the expressions of these
moments only contain terms corresponding to contributions
from single storms, i.e. λqηp terms with q = 1 only, as can be
seen from the equations obtained by Rodriguez-Iturbe et al.
(1987). The same goes for the derivation of the third-order
centred moment.

In this section, we focus upon the derivation of the vari-
ance of RBL1. The complete sets of new equations for RBL1
and RBL2 are presented in Appendix A.

The starting point for the derivation is the equation for the
variance of the OBL model. Here, rather than use the original
OBL model parameters (Rodriguez-Iturbe et al., 1987), i.e.{
λ,γ,β,η,µx,µx2 ,µx3

}
,

we replace the second and third parameters by dimensionless
parameters φ and κ that are also used in RBL1 and RBL2 so
that the parameterisation of OBL is now in terms of{
λ,φ,κ,η,µx,µx2 ,µx3

}
,

where γ = φη and β = κη.
In the analytical expression for the OBL variance, we

make the dependence upon parameter η explicit by referring
to it as V (h,η), This distinguishes it from the corresponding
variances for RBL models denoted V (h). The OBL variance
is

V (h,η)=
2λµc
η

[(
µx2 + κµ2

x/φ
)
h

η

+
µ2
xκ
(
1− e−φηh

)
φ2η2

(
φ2− 1

)
−

(
µx2 +

κφµ2
x

φ2− 1

)
1− e−ηh

η2

]
= 2λµcµ2

x

{(
f1+

κ

φ

)
h

η2

+

(
κ

φ2
(
φ2− 1

)) 1− e−φηh

η3

+

(
f1+

κφ

φ2− 1

)
1− e−ηh

η3

}
, (3)

where f1 = µX2/µ2
X and f2 = µX3/µ3

X. For more on the
choice of these parameters, see Sect. S1 in the Supplement.

When deriving the expression for a moment M in the RBL
models, we multiply the corresponding moment M(η) for
the OBL model by the density function f of the gamma dis-
tribution Gamma(α,1/ν) of η and integrate over all possible
values of η:

M= Eη [M(η)]=

∞∫
0

M(η)f (η)dη, (4)

where the density function of the gamma distribution is given
by

f (η)=
ηα−1ναe−νη

0(α)
dη if η ≥ 0

f (η)= 0 if η < 0.

The issue of the convergence of these integrals has, however,
not been addressed explicitly in the literature (aside from
a mention in Kaczmarska et al., 2014). The integration in-
volves integrals of the following general type evaluated at
l = 0:

T (k,u, l)=

+∞∫
l

η−ke−uη
ηα−1ναe−νη

0(α)
dη

=
να

(ν+ u)α−k

0(α− k, l(ν+ u))

0(α)
, (5)
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where 0(s) is the (complete) gamma function and 0(s,x) is
the incomplete gamma function, defined as

0(s,x)=

∞∫
x

t s−1e−tdt.

When l = 0, the integration in Eq. (5) is possible (i.e. the in-
tegral is finite) if and only if the integrand is integrable in the
neighbourhood of 0, since there are no problems of conver-
gence at∞. And if the integration is possible for l = 0, the
expression in Eq. (5) can be simplified using the properties
of the gamma function. This will however not be of use here,
since we are not considering such integrals separately, as we
shall see below.

If we look at the terms the integrand comprises for the
statistics that are used to fit the model, we find that they be-
have in the neighbourhood of 0 as ηα−n with n= 2 for the
mean rainfall intensity, n≤ 4 for its variance and covariance
and n≤ 5 for its third-order central moment. The integrals of
such terms converge as long as α− n >−1, i.e. α > n− 1.

It therefore seems that, for RBL1, V (h) is finite as long as
α > 3. Similarly, as the expressions in Appendix A2 show,
the mean M(h) is finite as long as α > 1, the lag-k covari-
ance C(k,h) is finite when α > 3 and the third-order centred
moment S(h) is finite when α > 4.

This conclusion is however too hasty. Indeed, it involves
considering separately the integration of each additive term
in Eq. (3). It is with such separate integration that the ex-
pressions for the variance and covariance used in Rodriguez-
Iturbe et al. (1988) are obtained, and these expressions were
used in subsequent research.

Insofar as only moments of orders less than 3 were used
in past studies (the third-order moment for RBL1 was only
published in a report by Onof et al., 2013, and therefore not
used in most of the literature), the constraint α > 3 applied
to the fits found in these past papers (e.g. Rodriguez-Iturbe
et al., 1988; Khaliq and Cunnane, 1996; Verhoest et al., 1997,
2010; Onof et al., 2000; Kim et al., 2017). However, since the
issue of the convergence of these integrals was not examined,
it is not surprising to find, in most of these studies, that values
of α below 3, i.e. outside the domain of feasibility of the op-
timisation, are obtained for some months. The parameter sets
for these months are thus not feasible and a fortiori not opti-
mal. Note that this issue would not easily have been picked
up during model calibration because it would not typically
have led to unrealistic values of these statistics. In particular,
we found that, as long as we keep α < 2 (as is the case in the
literature), the variance remains positive for typical values of
the other parameters.

But aside from this consequence, we now need to check
whether, when proceeding without separating the integration
into the sum of integrals of the additive terms in the inte-
grand, the domain of convergence of the integral is still de-
fined by α ∈ (3,+∞) for the variance (and for the covari-
ance and α ∈ (4,+∞) for the third-order moment). That is,

are any values of α for which the individuals integrals di-
verge but the integral of the whole integrand does not? That
would be the case for instance if, in the neighbourhood of
0, the terms leading to a divergence for certain values of α
were to cancel out (for a simple example of individual inte-
grals diverging while, when summed, the total integral does
not diverge, see Sect. S2 in the Supplement). Insofar as this is
the case, as we shall see below, this will lead to a broadening
of the space of feasible parameters as compared with what
has been assumed in many studies, with new equations for
the extended part of the parameter space. The consequence is
that we cannot be certain that the parameters found in these
previous studies are optimal.

In line with Eq. (4), the variance V (h) of the RBL1 model
is obtained as

V (h)=

∞∫
0

V (h,η)f (η)dη, (6)

and if we choose a small value η0 of η, this integral is the
sum

V (h)=

η0∫
0

V (h,η)f (η)dη+

∞∫
η0

V (h,η)f (η)dη, (7)

whereby only the first integral has a limited domain of con-
vergence. Let us call this first term V1(h).

From Eq. (3), we have

V1(h)=
2λµcµ2

x

0(α)

η0∫
0

[
ηα−3ναe−νη

(
f1+

κ

φ

)
h

+ ηα−4ναe−νη

(
κ
(
1−φ3)

φ2
(
φ2− 1

) − f1

)

− ηα−4ναe−(ν+φh)η

(
κ

φ2
(
φ2− 1

))

+ ηα−4ναe−(ν+h)η
(
f1+

κφ

φ2− 1

)]
dη.

By doing first- and second-order expansions of the exponen-
tial terms, we find that the ηα−4 and ηα−3 terms cancel so
that after some algebra, we get

V1(h)=
2λµcµ2

x

0(α)

η0∫
0

[
ηα−2να

h2

2

(
κ

φ+ 1
+ f1

)

+o
(
ηα−2

)]
dη,

which yields

V1(h)≈
λµcν

αh2µ2
xη
α−1
0

(α− 1)0(α)

(
κ

φ+ 1
+ f1

)
(8)
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as long as α−2>−1, i.e. α > 1. Otherwise, V1(h) is infinite.
This second term V2(h) is thus calculated as

V2(h)=

∞∫
η0

V (h,η)f (η)dη

= 2λµcµ2
x

[(
f1+

κ

φ

)
hT (2,0,η0)

+

(
κ
(
1−φ3)

φ2
(
φ2− 1

) − f1

)
T (3,0,η0)

−

(
κ

φ2
(
φ2− 1

))T (3,φh,η0)

+

(
f1+

κφ

φ2− 1

)
T (3,h,η0)

]
so that the total variance is

V (h)= 2λµcµ2
x

[(
f1+

κ

φ

)
hT (2,0,0)

+

(
κ
(
1−φ3)

φ2
(
φ2− 1

) − f1

)
T (3,0,0)

−
κ

φ2
(
φ2− 1

)T (3,φh,0)
+

(
f1+

κφ

φ2− 1

)
T (3,h,0)

]
for α > 3

V (h)≈ 2λµcµ2
x

[
ναh2ηα−1

0
2(α− 1)0(α)

(
κ

φ+ 1
+ f1

)
+

(
f1+

κ

φ

)
hT (2,0,η0)

+

(
κ
(
1−φ3)

φ2
(
φ2− 1

) − f1

)
T (3,0,η0)

−

(
κ

φ2
(
φ2− 1

))T (3,φh,η0)

+

(
f1+

κφ

φ2− 1

)
T (3,h,η0)

]
for 1< α ≤ 3

V (h)=∞

for α ≤ 1. (9)

In practice, η0 should be chosen as small as is computa-
tionally possible, since it is the term V1(h) that involves the
approximation. Figure 2 shows, for some typical parameter
values, how sensitive the expressions of V (h) (blue line), as
well as C(1,h) and S(h) (grey and orange lines; see deriva-
tions below), are to the choice of η0. As can be seen, val-
ues start to be much less insensitive to the change of η0 as
η0 < 0.01. In this paper, η0 = 0.001 is chosen.

Figure 2. Changes of variance (V (h)), lag-1 autocovariance
(C(1,h)) and the third-order centred-moment (S(h)) approxima-
tions at a 1 h timescale (h= 1) for η0 ∈ (0.0001,1). Parameters
used are λ= 0.025, µx = 1.3, α = 2.5, ν = 0.28, κ = 0.65 and
φ = 0.04.

As indicated, similar derivations yield the expressions for
the lag-k covariance C(k,h) and the centred third-order mo-
ment S(h) of RBL1.

For RBL2, µx is now random and chosen to be propor-
tional to η as µx = ιη so that shorter cells will tend to have
greater intensity. The model equations for RBL2 are there-
fore obtained from those of OBL by, first, substituting ιη for
µx in the expressions for the OBL model moments and then
proceeding as for RBL1, i.e. integrating these moments mul-
tiplied by the density function of the gamma distribution of
η. For this model, the constraint upon α obtained when car-
rying out separate integrations of the additive terms for the
moments of the rainfall depth is less stringent than for RBL1.
If we look at terms the integrands comprise, we find that, for
RBL2, they behave in the neighbourhood of 0 as ηα−n with
n= 1 for the mean and n≤ 2 for the variance, covariance and
the third-order moment. The integrals of such terms converge
as long as α− n >−1, i.e. α > n− 1.

Analogously to RBL1, it therefore seems that M(h) is fi-
nite as long as α > 0 and V (h), C(k,h) and S(k,h) are finite
as long as α > 1. But this conclusion is only warranted for
the mean. For the other statistics, Taylor expansions of the
exponential terms in the neighbourhood of 0 yield approxi-
mations for which the integrals are finite for certain values of
α for which the individual additive terms are not integrable.
The results are shown in Appendix A3.
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5 Model calibration and the estimation of standard
statistics

5.1 Standard or block estimation?

In fitting Poisson cluster models, it is standard to consider
parts of the year separately, e.g. seasons or generally months,
and to estimate parameter sets for each of these parts. These
parts define blocks of data in the full time series of observed
rainfall. The question then arises as to how to deal with data
presenting this block structure. The approach used in many
papers and certainly that which was implemented in the early
papers that used data from the whole year (e.g. Onof and
Wheater, 1993) consisted in treating the data between the
blocks of interest (e.g. those corresponding to a given cal-
endar month) as missing data. The standard estimators were
then used for the moments of the orders 1 to 3 and the pro-
portions of wet periods at the timescales of interest.

Work on the representation of the uncertainty in the model
parameters (Wheater et al., 2006) and on the optimal weights
to be used in the generalised method of moments imple-
mented in the fitting (Jesus and Chandler, 2011) involved
calculating statistics for each block of data of interest (e.g.
each month of a given calendar month). This led to the use
of other estimators, which we refer to as block estimators
of the rainfall statistics. These are obtained by calculating
the standard statistic of interest for each block and averaging
over the blocks (e.g. each month of a given calendar month).
The purpose of this section is to investigate the impact this
might have upon the type of statistics used in Poisson clus-
ter rectangular pulse model calibration and not to make any
more general points about these two approaches to estimat-
ing statistics.

Note that, in the analytical developments below, we used
biased but asymptotically unbiased estimates of the variance
(i.e. the sum of squares is divided by the sample size without
subtracting 1), which considerably simplifies the algebra in
comparing the standard and block estimators. Because of the
large sample sizes, the bias introduced is negligible, in partic-
ular in comparison with the difference we identify between
standard and block estimators. To confirm this, the numerical
results we provide use the unbiased estimators.

There is no difference between the two methods as far as
the estimate M̂m,h of the mean rainfall intensity for calendar
month m and timescale h is concerned:

M̂m,h =
1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

Y
(h)
i,j,m,

where Ny is the number of years; Nm,h is the number of
timesteps at scale h in a month of calendar month m (for all
months except February for which leap years would lead to a
more complicated formula); and Y (h)i,j,m extends the notation

introduced at the start of the paper: it is the rainfall depth in
the ith interval of the j th month of calendar month m.

This is however no longer the case with the variance Vm,h
of the rainfall intensity for calendar month m and timescale
h for which the standard and block (biased) estimates are
respectively

V̂
[1]
m,h =

1
NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(
Y
(h)
i,j,m− M̂m,h

)2
,

V̂
[2]
m,h =

1
NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(
Y
(h)
i,j,m−Y

(h)

j,m

)2
,

where Y
(h)

j,m =

∑i=Nm,h
i=1 Y

(h)
i,j,m

Nm,h
for j = 1, . . .,Nm,h are the (sam-

ple) mean depths at timescale h of the j th month of calendar
month m.

A little algebra shows a result that is also familiar from an
ANalysis Of VAriance (ANOVA), i.e. that the two estimators
are related by

V̂
[1]
m,h = V̂

[2]
m,h+ V̂ar

(
Y
(h)

j,m

)
, (10)

where the added term is the (biased) sample variance of the
above averages.

With the third-order centred moments, we also have two
distinct expressions for their estimators

T̂
[1]
m,h =

1
NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(
Y
(h)
i,j,m− M̂m,h

)3
,

T̂
[2]
m,h =

1
NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(
Y
(h)
i,j,m−Y

(h)

j,m

)3
,

which are related by the following equation

T̂
[1]
m,h = T̂

[2]
m,h+ T̂

(
Y
(h)

j,m

)
+

3
NyNm,h

j=Ny∑
j=1

(
Y
(h)

j,m− M̂m,h

) i=Nm,h∑
i=1

(
Y
(h)
i,j,m−Y

(h)

j,m

)2
, (11)

where T̂ is the third-order centred moment.

5.2 A brief analytical and numerical investigation: are
the estimators significantly different?

5.2.1 Block estimation of moments

To estimate the differences between estimators, we can first
look at simple examples of independent realisations in which
we sample a number of zeroes that corresponds to what is re-
alistic for the proportion dry p at the scale of interest and a
simple distribution for the rainfall depths of non-zero rain-
falls is assumed, e.g. a gamma or generalised Pareto (here-
after GP) distribution (see Menabde and Sivapalan, 2000;
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Figure 3. Coefficient of skewness by month at Bochum: the observed coefficient of skewness calculated with block (Obs-bM, orange circle
markers) vs. standard (Obs-sM, blue cross markers) methods, the same with the RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue
line) models and the same with RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models.

Montfort and Witter, 1986), assuming Ny = 50 and Nm,h =
30× 24 (for hourly data).

We found the differences to be less than 1 % in the case
of either the variances or third-order moments as the addi-
tive terms in the equations relating them were found to be
very small, for all the relevant timescales of interest (5 min to
24 h). In the case of the variance, this can be seen by noting
that Y

(h)

j,m has a population variance that is that of the rain-

fall depths divided by Nm,h. So the sample variance Y
(h)

j,m is

of the same order of magnitude as 1
Nm,h

V̂
[1]
m,h, which means

that the added term in Eq. (10) will be very small. Similar
considerations apply to the added terms in Eq. (11).

We also checked that these two methods provide an
unbiased estimation of the population second- and third-
order centred moments, i.e. V = Var(X) and M3= E[(X−
E(X))3]. These are easily obtained in terms of the corre-
sponding moments (V>0 and M3>0) of the distribution of
non-zero rainfalls (i.e. of a gamma or GP distribution) using
the following easily derivable relations (where M and M>0
are the means of the full and the non-zero only distributions):

V = (1−p)(V>0+pM>0) (12)

M3= (1−p)
(
M3>0+ 3pM>0V>0

+p(2p− 1)M3
>0

)
. (13)

5.2.2 Block estimation of ratios

However, some authors apply the block estimation approach
not to the moments themselves but to their ratios, i.e. the
coefficient of variation instead of the variance and the co-
efficient of skewness instead of the third-order moment (e.g.
Kaczmarska et al., 2014). That means that the block estima-
tor of such ratios is obtained by averaging the estimates of
these ratios from the relevant block from each of the years in
the data set.

Here, there are no interesting relations to derive between
the estimators from the standard and block methods, so we
move directly to the simple numerical testing introduced in
Sect. 5.2. For h= 1 and a proportion of dry periods of 0.9, we
fitted a gamma and a GP distribution to the non-zero rainfalls
at Greenwich (UK). This yielded a Gamma(1.1629,0.692)
distribution and a GPD(0.1795,0.654,0) (GP distribution),
respectively (with the first providing a better fit), with the
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Figure 4. Coefficient of variation (CV) by month at Bochum: the observed calculated CV with block (Obs-bM, orange circle markers) vs.
standard (Obs-sM, blue cross markers) methods, CV fitted with the RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line) models,
and CV fitted with the RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models.

parameters given, in order as shape, scale and, for the GP,
location.

By generating 100 samples of 50 years of hourly data, we
find that there is a non-negligible difference between the two
estimation methods. Focusing upon the skewnesses, we find
95 % simulation bands of [5.68,6.65] and [5.50,6.15] for the
gamma samples, i.e. differences that are still small but no
longer negligible (of the order of 4 %). The block estimates
clearly underestimate the population skewness of 6.40. Fur-
ther, if we look at rainfall from a summer month, e.g. the
month of August, these differences are more marked. For the
gamma distribution (Gamma(0.848,1.4)) the bands are now
[6.48,7.62] and [6.26,6.92], respectively, a difference that is
twice as large for the upper bounds. Again, the population
skewness of 7.05 is underestimated by the block method.

When using the GP distribution (GPD(0.1795,0.654,0)),
the differences between the two methods and the under-
estimation are starker. The bands are [7.94,13.97] and
[7.21,8.55] for the standard and block method, respectively.
The latter underestimates the population skewness of 10.58
by quite a margin (these results are for the whole year; for

August, the GP fit was poor and the population skewness in-
finite).

These results now need to be confirmed by looking at the
case of a time series with an appropriate correlation struc-
ture. This will enable us to ascertain to what extent intro-
ducing correlation impacts the performance of the estimators
(which are, of course, theoretically designed for samples of
independent realisations).

To do this, we use an RBL2 model calibrated to the same
data used for the above sampling, namely Greenwich, UK.
The idea is that this rainfall model provides us with a corre-
lation structure that is close enough to the observed correla-
tion to enable us to conclude as to how one would expect the
block estimates to perform with such a correlation structure.
We generate 100 samples of 50 years of hourly data with two
sets of parameters, obtained from January (winter) and Au-
gust (summer), respectively. The associated theoretical skew-
nesses calculated from these two parameter sets are 7.69 and
21.73. The 95 % simulation bands obtained from the sampled
hourly time series are [6.80,7.65] and [12.67,14.65] using
the block method and [7.11,8.44] and [16.70,28.40] using
the standard method. In line with the numerical investigation
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Figure 5. Lag-1 autocorrelation by month at Bochum: the observed lag-1 autocorrelation calculated with block (Obs-bM, orange circle
markers) vs. standard (Obs-sM, blue cross markers) methods, the same with the RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue
line) models and the same with the RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models.

above, we find that, for both months, the theoretical skew-
nesses provided by the model equation are underestimated by
the block estimate (the underestimation is particularly signif-
icant during summer months), while no significant deviation
is obtained for the standard estimates.

The results we have obtained are indicative of a problem
of underestimation of the skewness with the block estimation
method, which is likely to have a significant impact upon the
model’s ability to reproduce the statistics of extreme rainfall.

6 Results and discussion

6.1 Block vs. standard estimates

Models RBL1 and RBL2 are fitted using the original equa-
tions for these models. Although these equations are not
shown in this paper, they are contained in the new sets of
equations given above: for each statistic, the first equation
given is that found in the past papers, with its domain of va-
lidity for α. We note that, for RBL2, this is α > 1 for all
statistics, but we imposed α > 2 for this model, in line with
the work carried out by Kaczmarska et al. (2014). By using

statistical estimators of the observed statistics based upon the
standard and the block estimates as described in Sect. 5 (i.e.
the block method takes the averages of ratios), we define two
different fitting methods, the standard (sM) and block (bM)
fitting methods, respectively.

Below, we consider the following:

– some standard theoretical statistics obtained when the
two models are fitted with both methods and how these
compare with the estimates derived from the observa-
tions using the standard and block methods

– the extreme rainfall depths produced by simulating time
series of identical lengths to the observations, with 250
simulations being carried out and the median shown be-
cause of sampling variability

– the values of the parameters obtained in fitting these
models with these two methods.

While the mean rainfall depth (which has identical stan-
dard and block estimators) is nearly perfectly reproduced by
both methods and models, Fig. 3 shows the differences in the
skewness standard and block estimators (crosses and circles,
respectively).
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Figure 6. Observed (round markers) and simulated (lines) return levels of rainfall at different timescales at Bochum. The simulated return
level is sampled from the RBL1 and RBL2 models fitted with selected statistical properties calculated using bM and sM methods, respectively.
The median return levels obtained from 250 simulations, each of 69 years, are illustrated.

https://doi.org/10.5194/hess-24-2791-2020 Hydrol. Earth Syst. Sci., 24, 2791–2815, 2020



2802 C. Onof and L.-P. Wang: Bartlett–Lewis rainfall modelling: new developments

Consequently, the models fitted to each also yield signif-
icantly different skewnesses. Since we know from the pre-
liminary investigation in Sect. 5 that the standard estima-
tor is much less biased, this means that the block fitting
method significantly underestimates the skewness of the ob-
servations. This is an important conclusion with respect to
the validity of previous work which has used the block fit-
ting method.

We also note some interesting features of the two models’
performance:

– Good fits are obtained for RBL1 and RBL2 with sM for
all but the sub-hourly timescales.

– At the finest timescale under consideration (i.e. 5 and
10 min for Bochum and Uccle, respectively), there is a
considerable underestimation of the skewness for bM
and sM, in particular by the RBL1 model. This con-
firms the superiority of RBL2 for fine timescales noted
by Kaczmarska et al. (2014).

While these results confirm the importance of using the
standard estimation of observation statistics, this message is
not as clear when we consider the reproduction of the coeffi-
cient of variation and lag-1 autocorrelation, as Figs. 4 and 5
show.

Due to space constraints, the examination of the effect of
changing between bM and sM upon the variances at coarser
timescales will be presented together with the effect of using
the new equations in Sect. 6.3.

From the figures above, we note the following:

– The sub-hourly coefficients of variation estimated with
the standard method are poorly reproduced by sM as
compared with bM.

– The same is true of the sub-hourly and hourly autocor-
relations.

These results might seem a little surprising, so it is impor-
tant to spell out exactly what they mean: the models fitted to
the block estimates provide in some cases a better reproduc-
tion of the statistics than the models fitted to the standard es-
timates. This at the very least suggests that the improved re-
production of the skewness by sM comes at the cost of other
statistics being less well reproduced.

The benefit of an improved reproduction of the skewness
upon the models’ ability to reproduce the frequency of rain-
fall extremes at a range of scales is clear, as Fig. 6 shows.

Here, we observe the following:

– sM significantly improves the reproduction of the ex-
tremes.

– RBL2 is superior to RBL1, in terms of reproducing the
largest extremes in particular at the sub-hourly scales
but also, for instance, at the daily scale.

Figure 7. Mean 1 h rainfall depths by month at Bochum: the ob-
served vs. the fitted rainfall depths using the RBL2 models with
the original and the new solution spaces of α (RBL1-sM, light blue
lines and boxplots; RBL2-sM-NC, black lines and boxplots).

Table 1. Parameters for the RBL2-sM model using Bochum gauge
data; constraint: α > 2.

Month λ ι α α/ν κ φ

(h−1) (mm) (–) (h−1) (–) (–)

Jan 0.013 0.214 2.000 5.944 0.752 0.025
Feb 0.012 0.232 2.000 4.624 0.919 0.034
Mar 0.015 0.220 2.000 6.989 0.531 0.026
Apr 0.013 0.224 2.000 11.140 0.451 0.017
May 0.014 0.473 2.000 10.202 0.317 0.027
Jun 0.015 1.304 2.000 8.369 0.089 0.018
Jul 0.017 1.389 2.000 8.938 0.082 0.023
Aug 0.013 1.819 2.000 6.997 0.035 0.012
Sep 0.013 1.212 2.000 7.386 0.092 0.018
Oct 0.011 0.291 2.000 7.100 0.508 0.022
Nov 0.010 0.279 2.000 4.456 0.907 0.028
Dec 0.013 0.239 2.002 5.669 0.686 0.023

The importance of the reproduction of extreme values for
the typical applications of such rainfall models means that
even taking into account the problems with the mean, coef-
ficient of variation and autocorrelation, sM is preferred. But
this leaves us with an important question: are the shortcom-
ings of sM in reproducing some of these other statistics down
to the model or the way it is fitted?

A clue to addressing this question can be obtained by
looking at the parameters obtained when fitting with the sM
method. Focusing for instance upon RBL2 and recalling the
constraint α > 2, Table 1 shows that the model calibration
has yielded values of α on the boundary (as in Kaczmarska
et al., 2014).

Recalling that α is the shape parameter of the distribution
of η, a smaller α leads to a more skewed distribution for
this parameter and thereby also for those which scale with
it, such as the storm mean cell intensity in the case of RBL2.
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Figure 8. Coefficient of variation (CV) by month at Bochum: the observed vs. the fitted CV using the RBL2 models with the original and
the new solution spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).

This enables RBL2 to generate some much more intense cells
and thereby yields higher values of the skewness of rainfall
depths as we saw above, thereby explaining its superiority
over RBL1.

For model RBL1, the constraint upon α is defined by the
limit of validity of the expression for the skewness (e.g. Onof
et al., 2013), i.e. α > 4. The parameters that are obtained (Ta-
ble 2) similarly show that the optimisation algorithm finds
the optimum to be near this boundary for most months of the
year.

For both models, the fact that the lower limit of parameter
α is selected as optimal suggests that a re-examination of the
domain of feasibility of the non-linear optimisation carried
out when fitting the models is required. This is exactly what
the use of the new equations allows us to do as we shall see
below. Note that all the above results are confirmed by the
Uccle data (see Sect. S4 in the Supplement).

6.2 New vs. old equations

We now consider the performance of models RBL1 and
RBL2 fitted using the new equations for these models pre-
sented in this paper. The impact of the use of these equa-
tions, if there is any, will be that of an extension of the

Table 2. Parameters for the RBL1-sM model using Bochum gauge
data; constraint: α > 4.

Month λ µX α α/ν κ φ

(h−1) (mm h−1) (–) (h−1) (–) (–)

Jan 0.021 1.304 4.000 8.713 0.622 0.032
Feb 0.020 1.238 4.000 8.095 0.655 0.036
Mar 0.024 1.479 4.027 10.822 0.445 0.028
Apr 0.020 2.465 4.000 15.463 0.369 0.022
May 0.025 4.626 4.314 17.488 0.257 0.029
Jun 0.026 10.216 4.445 19.809 0.120 0.023
Jul 0.023 13.224 7.506 15.680 0.084 0.021
Aug 0.018 14.314 4.532 20.000 0.056 0.011
Sep 0.020 9.312 4.487 17.912 0.088 0.015
Oct 0.018 2.120 4.000 13.361 0.459 0.023
Nov 0.020 1.469 4.000 8.597 0.859 0.044
Dec 0.021 1.356 4.000 8.296 0.603 0.031

domain of feasibility of parameter α. Since the results pre-
sented above have concluded the superiority of the standard
estimates of observation statistics, we shall use this method
in what follows. As in the previous section, we examine
(i) model parameters, (ii) the reproduction of standard statis-
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Figure 9. Lag-1 autocorrelation by month at Bochum: the observed vs. the fitted lag-1 autocorrelation using the RBL2 models with the
original and the new solution spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).

Table 3. Parameters for the RBL1-sM-NC model using Bochum
gauge data; constraint: α > 2.

Month λ µX α α/ν κ φ

(h−1) (mm h−1) (–) (h−1) (–) (–)

Jan 0.025 1.251 2.789 11.450 0.498 0.026
Feb 0.023 1.189 3.166 9.330 0.592 0.034
Mar 0.025 1.567 3.751 13.443 0.439 0.025
Apr 0.025 2.098 3.109 18.763 0.371 0.021
May 0.025 4.626 4.314 17.488 0.257 0.029
Jun 0.027 9.752 4.330 20.000 0.120 0.023
Jul 0.023 13.224 7.506 15.680 0.084 0.021
Aug 0.019 8.332 4.284 20.000 0.060 0.011
Sep 0.020 9.312 4.487 17.912 0.088 0.015
Oct 0.020 2.059 3.529 14.629 0.450 0.023
Nov 0.027 1.333 2.425 12.468 0.634 0.036
Dec 0.027 1.342 2.719 15.385 0.588 0.024

tics and (iii) the reproduction of the statistics of extreme rain-
fall depth.

Here it is useful to start with the parameters shown in Ta-
bles 3 and 4.

We see that for most months in the case of RBL1 and for
all but a single month in the case of RBL2, the optimal value

Table 4. Parameters for the RBL2-sM-NC model using Bochum
gauge data; constraint: α > 0.

Month λ ι α α/ν κ φ

(h−1) (mm) (–) (h−1) (–) (–)

Jan 0.013 0.237 0.741 4.182 0.768 0.028
Feb 0.013 0.199 0.975 4.228 1.005 0.033
Mar 0.015 0.218 0.981 6.183 0.571 0.027
Apr 0.012 0.314 0.719 5.685 0.409 0.021
May 0.014 0.528 0.641 6.873 0.372 0.035
Jun 0.013 1.180 0.463 7.671 0.131 0.022
Jul 0.018 1.443 0.614 6.574 0.106 0.032
Aug 0.011 1.858 0.444 4.926 0.066 0.016
Sep 0.013 1.147 0.483 5.421 0.161 0.031
Oct 0.011 0.304 1.047 5.824 0.513 0.023
Nov 0.009 0.234 0.835 4.212 1.039 0.024
Dec 0.013 0.258 0.712 4.443 0.670 0.024

of α was found outside the domain of feasibility imposed by
the equations used in previous research, i.e. α > 4 for RBL1
and α > 1 for RBL2. For RBL1, we can check that for the
months where the new values of α remain inside the old do-
main of feasibility, the optimal values of α are very similar to
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Figure 10. Coefficient of skewness by month at Bochum: the observed vs. the fitted coefficient of skewness using the RBL2 models with the
original and the new solution spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).

those in Table 2. The fact that they are not identical is down
to the randomness in the numerical tool used to optimise the
objective function.

Looking now at the standard statistics, Figs. 7–10 illus-
trate the impact of relaxing the constraint upon α in terms of
the reproduction of the mean, coefficient of variation, lag-1
autocorrelation and skewness of the rainfall depths.

In these figures, aside from the theoretical estimates of the
statistics, we show box plots of their sample estimates based
upon 250 simulations of 5 min (and 10 min for Uccle; see
Sect. S4 in Supplement) time series of length equal to that of
the observations (69 and 105 years for Bochum and Uccle,
respectively). This is for two reasons. First it is important
to check that the equations derived above are correct, which
we can do by comparing estimates from these simulations
with the theoretical values. Second, by including information
about the simulation bands, we show the sampling variability
which is useful to judge by how much a model statistic over-
or underestimates the corresponding observation statistic.

What the figures show very clearly is a general improve-
ment of the reproduction of all these statistics through the use
of new equations. The broadening of parameter space thus
enables the model to overcome the problem flagged earlier,
namely that the attempt to reproduce fine-scale skewnesses

led to a deterioration in the reproduction of the other depth
statistics.

In particular, we want to draw the reader’s attention to
RBL2’s ability to reproduce the skewness at all scales of
interest. This bodes well for its extreme value performance
which is shown in Fig. 11.

The improvement brought about by the broader parameter
space is particularly clear at the finest scale of interest (i.e. 5
and 10 min for Bochum and Uccle, respectively). But we also
note an improved reproduction of the extremes of lower re-
turn periods for the sub-hourly and hourly timescales. These
are however rather overestimated by both versions of the
RBL2 model for coarser timescales.

Without looking into the detail of the RBL1 model, the
question of its performance as compared to RBL2, with the
new sets of equations in both cases, is illustrated in Fig. 12.

While noting that the above findings are broadly confirmed
by the analysis of the Uccle data (see Sect. S4 in Supple-
ment), we can conclude that RBL2 outperforms RBL1 for
sub-hourly and hourly timescales (the 20 min results at Uc-
cle excepted). Aside from a somewhat better reproduction of
low return period extremes by RBL1 at the 6-hourly scale
for Bochum, and since both models provide an equivalent
satisfactory reproduction of the daily extreme rainfall depths
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Figure 11. Observed (round markers) and simulated (lines) return levels of rainfall at multiple timescales at Bochum. The simulated return
level is sampled from the RBL2 models fitted with the original (blue lines) and the new (black lines) solution spaces of α. The median, 95th
and 5th percentile return levels obtained from 250 simulations, each of 69 years, are plotted with solid and dashed lines, respectively.
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Figure 12. Observed (round markers) and simulated (lines) return levels of rainfall at multiple timescales at Bochum. The simulated return
level is sampled from the RBL1 (grey lines) and RBL2 (black lines) models fitted with the new solution spaces of α. The median, 95th and
5th percentile return levels obtained from 250 simulations, each of 69 years, are plotted with solid and dashed lines, respectively.
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Table 5. Comparison minimum objective function values for different RBL models using Bochum gauge data.

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RBL1-bM 85.6 66.8 89.4 93.3 127.9 105.8 107.6 126.6 114.2 92.1 102.9 83.8
RBL2-bM 39.5 30.1 52.1 56.2 73.0 65.2 65.6 72.8 60.4 47.0 41.0 36.6

RBL1-sM 227.5 176.7 192.1 169.1 221.9 328.5 180.3 620.3 323.9 110.1 280.4 410.0
RBL2-sM 145.0 76.7 117.6 173.6 174.3 315.6 96.5 478.4 241.6 61.2 244.6 280.5
RBL1-sM-NC 186.5 169.9 192.0 149.4 221.9 328.5 180.3 620.3 323.9 107.5 104.0 348.8
RBL2-sM-NC 37.4 23.7 75.7 60.9 43.7 59.1 8.2 32.9 8.5 32.4 109.2 142.6

Figure 13. Daily variances by month at Bochum: the observed daily variances calculated with standard (Obs-sM, blue cross markers)
methods, those fitted with the RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line; RBL1-sM-NC, grey line) models and those
fitted with the RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines; RBL2-sM-NC, black line) models.

(RBL2 is better for Uccle), RBL2 is therefore overall to be
preferred for the reproduction of observed extremes.

6.3 Reproduction of coarse-scale variances

We briefly look at the impacts of the change of the estimator
of observational statistics and the use of the new equations
upon the reproduction of coarse-scale variability.

Figure 13 shows the following:

– As expected, the sM parameter estimates clearly outper-
form the bM estimates.

– Unlike at finer timescales, there is no clear improvement
of the reproduction of the variance for scales longer than
1 d using new equations.

– Beyond 7 d, many, and particularly the largest, of the
variances are underestimated in line with the observa-
tions made by Marani (2003). This is even clearer in the
case of the Uccle data (see Fig. S11 in Supplement).

This suggests that the issue of large-scale variability is
probably best addressed by combining Poisson cluster mod-
els with a coarse-scale model that constrain them so that
large-scale variances are reproduced.
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7 Conclusions

This paper has both corroborated certain observations made
in previous studies and identified two important issues about
how randomised Bartlett–Lewis models are fitted. The work
presented in this paper can be summarised in the following
five points. First, the importance of the inclusion of the co-
efficient of skewness among the fitting properties (Cowpert-
wait, 1998) has indirectly been confirmed: it plays a key role
in enabling a good reproduction of rainfall extremes. Sec-
ond, the new randomised model (RBL2) introduced by Kacz-
marska et al. (2014) has an overall better performance than
the earlier version originally presented by Rodriguez-Iturbe
et al. (1988), in particular in terms of its ability to repro-
duce extreme values and at hourly and sub-hourly timescales.
Third, we have shown that, while the weights used in the ob-
jective function require that estimates of the statistical prop-
erties used in the fitting to be derived for each single month
of the data set (to obtain their variance), in particular in the
case of ratios such as the coefficients of variation or of skew-
ness, these estimates should not be used to derive the overall
estimates of the relevant statistical property. Rather, the esti-
mates of rainfall statistics for each calendar month are best
derived by pooling together all data from the relevant cal-
endar month (with due attention to the separation between
years in the case of the autocovariance) and using the stan-
dard sample statistics. Fourth, we have shown that the param-
eter spaces assumed in previous studies could be extended by
relaxing the constraints imposed upon a parameter common
to both randomised models (α). This improves in particu-
lar the RBL2 model’s performance in reproducing both stan-
dard and extreme value statistics at sub-hourly and hourly
timescales. Fifth, the reproduction of coarse-scale variances
(of a few days and more) is improved by using the standard
method of estimating observation statistics, but the broader
parameter space does not add much. As a result, we find that
these Bartlett–Lewis models still tend rather to underestimate
the variability at scales coarser than a week, which provides
a confirmation of the wisdom of developing combinations of
Bartlett–Lewis models with simple coarse-scale models to
capture long-term variability (e.g. see Park et al., 2019, and
Kim and Onof, 2020).
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Appendix A: Formulae for fitting properties

The complete formulae are given here for the selected statis-
tical moments based upon different parameter ranges. These
include mean, variance, lag-k autocovariance and the third
central moment of the discrete time aggregated process of
the OBL, RBL1 and RBL2 models.

The definitions of the model parameters used are given be-
low, with parameters that are only valid in some of the mod-
els indicated in square brackets:

– h: timescale

– λ: storm arrival rate

– η: cell duration parameter [OBL]

– α: shape parameter for the gamma distribution of the
cell duration parameter (η) [RBL1, RBL2]

– ν: scale parameter for the gamma distribution of η
[RBL1, RBL2]

– β: cell arrival rate [OBL]

– κ: ratio of the cell arrival rate to η (i.e. β/η)

– γ : storm termination rate [OBL]

– φ: ratio of the storm termination rate to η (i.e. γ /η)

– µX = E[X]: mean cell intensity [OBL, RBL1]

– µX2 = E[X2
]: mean of squares of cell intensities [OBL,

RBL1]

– µX3 = E[X3
]: mean of cubes of cell intensities [OBL,

RBL1]

– ι: ratio of mean cell intensity to η (i.e. µX/η) [RBL2]

– f1 = µX2/µ2
X

– f2 = µX3/µ3
X

– µc = 1+ κ/φ: mean number of cells per storm.

A1 Bartlett–Lewis Rectangular Pulse model (OBL)

The mean is

M(h,η)=
λhµxµc

η
. (A1)

The variance is

V (h,η)= 2λµcµ2
x

{(
f1+

κ

φ

)
h

η2

+

(
κ

φ2
(
φ2− 1

)) 1− e−φηh

η3

+

(
f1+

κφ

φ2− 1

)
1− e−ηh

η3

}
. (A2)

The covariance at lag k ≥ 1 is

C(k,h)=
λµcµ

2
x

η3

{(
f1+

κφ

φ2− 1

)[
e−η(k−1)h

−2e−ηkh+ e−η(k+1)h
]

−

(
κ

φ2
(
φ2− 1

))[e−ηφ(k−1)h

−2e−ηφkh+ e−ηφ(k+1)h
]}
. (A3)

The third central moment is

S(h,η)= E

[(
Y
(h)
i −E(Y

h
i )
)3
]

=
λµcµ

3
x

∑k=8
k=1Pk (φ,κ,η,f1,f2)(

1+ 2φ+φ2
)(
φ4− 2φ3− 3φ2+ 8φ− 4

)
φ3
, (A4)

where the quantities Pk {φ,κ,η,f1,f2} are given by the fol-
lowing equations:

P1 (φ,κ,η,f1,f2)= 6η−4e−ηhφ2
[
φκ2

(
2φ4
− 7φ2

− 3φ

+2
)
+ 2φf2

(
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)]
,
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)

(
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.
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A2 Randomised Bartlett–Lewis Rectangular Pulse
model (RBL1)

The mean is

M(h)=
λhµxµcν

α− 1
. (A5)

The variance is

V (h)= 2λµcµ2
x
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The covariance at lag k ≥ 1 is
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The third central moment is
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and the quantitiesQk {φ,κ,f1,f2, l} are given by the follow-
ing equations:

Q1 (φ,κ,f1,f2, l)= 6T (4,h, l)φ2
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,
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,
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.

A3 Randomised Bartlett–Lewis Rectangular Pulse
model with dependent intensity duration (RBL2)

The mean is

M(h)= λhιµc. (A9)

The variance is
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The covariance at lag k ≥ 1 is

C(k,h)= λµcι
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The third central moment is
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with
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