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S1 Relation between cell intensity parameters 

In the model equations, parameters 𝜇𝑥, 𝑓1 and 𝑓2 for the RBL1 and 𝜄, 𝑓1 and 𝑓2 for the RBL2 are 

three unrelated model parameters only if a three-parameter distribution is chosen for the cell 

intensity. If a two-parameter distribution is chosen, there will effectively be two unrelated 

parameters, if a one-parameter distribution is chosen, there will only be one. 

 

Starting with the last case first, the standard choice is the exponential distribution: 

 

𝑓𝑋(𝑥) = 𝑎𝑒−𝑎𝑥 for 𝑥 > 0 

 

for which: 

 

𝜇𝑥 = 1/𝑎  

 

 𝑓1 = 2  

 

 𝑓2 = 6  

 

So, for the exponential distribution, the only free parameter is 𝜇𝑥 for the RBL1 and 𝜄 for the RBL2. 

 

Next, we can seek to have more flexibility by using the Gamma distribution: 

 

𝑓𝑋(𝑥) =
𝑥𝑎−1𝑒−𝑥/𝑏

𝑏𝑎Γ(𝑎)
 for 𝑥 > 0 

 

for which: 

 

 𝜇𝑥 = 𝑎𝑏  

 

 𝑓1 =
𝑎+1

𝑎
  

 

 𝑓2 =
𝑎2+3𝑎+2

𝑎2     

 

So, for the Gamma distribution there would be two free parameters 𝜇𝑥 or ι, and 𝑓1, with 𝑓2 

obtained as the following function of 𝑓1: 

 

𝑓2 = 2𝑓1
2 − 𝑓1. 

 

The Pareto distribution is a thick-tailed distribution that will produce larger extremes: 

 

𝑓𝑋(𝑥) =
𝑎𝑏𝑎

𝑥𝑎+1 for 𝑥 ≥ 𝑏 

 

and for the distribution, we have: 

 

𝜇𝑥 =
𝑎𝑏

𝑎−1
  (if 𝑎 > 1) 

 

 𝑓1 =
(𝑎−1)2

𝑎(𝑎−2)
  (if 𝑎 > 2 i.e. 𝑓1 > 1) 

 

 𝑓2 =
(𝑎−1)3

𝑎2(𝑎−3)
 (if 𝑎 > 3 i.e. 𝑓2 > 1) 

 



For the Pareto distribution there would also be two free parameters 𝜇𝑥 or ι, and 𝑓1, with 𝑓2 

obtained as the following function of 𝑓1: 

 

𝑓2 =
𝑓1

3/2

𝑓1
1/2(3−2𝑓1)−2(𝑓1−1)3/2

  

 

where we have to have 𝑓1 < 4/3 to fulfil the condition 𝑎 > 3. 

 

Finally, a mixed distribution could be chosen, e.g. one which is a mixture of Gamma and Pareto, 

with weight 𝜔 representing the probability of sampling from a Gamma rather than a Pareto. This 

would be defined by the following pdf: 

 

𝑓𝑋(𝑥) = 𝜔
𝑥𝑎−1𝑒−𝑥/𝑏

𝑏𝑎Γ(𝑎)
+ (1 − 𝜔)

𝑐𝑑𝑐

𝑥𝑐+1 for 𝑥 ≥ 𝑑 

 

for which the moments are just weighted combinations of those of the Gamma and Pareto 

distributions: 

 

𝜇𝑥 = 𝜔𝑎𝑏 + (1 − 𝜔)
𝑐𝑑

𝑐−1
  (if 𝑐 > 1) 

 

𝑓1 =
𝜔(𝑎+1)𝑎𝑏2+(1−𝜔)

𝑐𝑑2

𝑐−2

(𝜔𝑎𝑏+(1−𝜔)
𝑐𝑑

𝑐−1
)
2   (if 𝑐 > 2) 

 

 𝑓2 =
𝜔(𝑎2+3𝑎+2)𝑎𝑏3+(1−𝜔)

𝑐𝑑3

𝑐−3

(𝜔𝑎𝑏+(1−𝜔)
𝑐𝑑

𝑐−1
)
3   (if 𝑐 > 3) 

 

Here, we would have three free parameters, 𝜇𝑥, 𝑓1 and 𝑓2 and for the purposes of simulation, we 

would seek parameters 𝜔, 𝑎, 𝑏, 𝑐 and 𝑑 for which the three right-hand sides of the above equations 

would be equal to 𝜇𝑥, 𝑓1 and 𝑓2, for instance by minimising a sum of squares. This optimisation 

problem is underdetermined, but it would make sense to choose at least for the Gamma parameters 

𝑎 and 𝑏 values close to values obtained when fitting a Gamma distribution as starting values, or 

indeed to fix these two parameters to these values. 

 

  



S2 Example of integral divergence 

The integral of a sum of terms is only equal to the sum of the integrals of each additive term when 

the latter are finite. When the latter are infinite, this is not necessarily the case. That is, it is 

possible that the integral of the sum should be finite while the integrals of the additive terms are 

infinite. This section shows an example to illustrate this. 

 

Consider the following integrals: 

 

𝐼(𝑥) = ∫
𝑒𝜔𝑡 − 𝑒−𝜎𝑡

𝑡

𝑥

0

𝑑𝑡 

 

𝐼1(𝑥) = ∫
𝑒𝜔𝑡

𝑡

𝑥

0

𝑑𝑡 

 

𝐼2(𝑥) = ∫ −
𝑒−𝜎𝑡

𝑡

𝑥

0

𝑑𝑡 

 

The integrals 𝐼1(𝑥) and 𝐼2(𝑥) are divergent integrals because the integrands behave as 1/𝑡 and 

−1/𝑡 respectively, in the vicinity of zero. So 𝐼1(𝑥) = +∞ and 𝐼2(𝑥) = −∞. 

 

However, using Taylor expansions, we can see that 𝐼(𝑥) is finite: 

 

 

𝐼(𝑥) = ∫
1 + 𝜔𝑡 − 1 + 𝜎𝑡 + Ο(𝑡)

𝑡

𝑥

0

𝑑𝑡 

 

= ∫ 𝜔 + 𝜎 + Ο(1)
𝑥

0

𝑑𝑡 

 

Therefore: 

 

𝐼(𝑥) = (𝜔 + 𝜎)𝑥 + Ο(𝑥) 

 

and  

 

𝐼(𝑥) ≠ 𝐼1(𝑥) + 𝐼2(𝑥) 

 

 

  



S3 Proportion dry 

S3.1 Theoretical constraint 

Based upon the theoretical form of the proportion of dry periods (or proportion dry) given as in 

Rodriguez-Iturbe et al (1988) (see equation (2.5)) and taking expectations over the term which is 

exponentiated, one can obtain the following expression for the proportion dry (Onof and Wheater, 

1993): 

 

Pd(ℎ) = exp

[
 
 
 

−𝜆(ℎ + 𝜇𝑇) +
𝜆𝜈𝑒−𝜅

𝛼 − 1
×

𝜙 + 𝜅 (
𝜈

𝜈 + (𝜅 + 𝜙)ℎ
)
𝛼−1

𝜙 + 𝜅
∫ 𝑡𝜙−1(1 − 𝑡)𝑒𝜅𝑡𝑑𝑡

1

0

]
 
 
 

 

 

This equation can be further approximated as follows: 

 

 

Pd(ℎ) ≈ exp

[
 
 
 

−𝜆(ℎ +  �̂�𝑇M) +
𝜆𝜈𝑒−𝜅

𝛼 − 1
×

𝜙 + 𝜅 (
𝜈

𝜈 + (𝜅 + 𝜙)ℎ
)
𝛼−1

𝜙 + 𝜅
𝐼
M′

]
 
 
 

 

 

where �̂�𝑇M (the approximation of the mean storm duration, 𝜇𝑇) and 𝐼
M′

are computed using the 

following formulae: 

 

�̂�𝑇M =
𝜈

𝛼 − 1
(1 + 𝜙 ∑

(−𝜅)𝑗−1(𝜅 − 𝑗2 − 𝑗)

𝑗(𝑗 + 1)!
B(𝑗 + 1, 𝜙)

M

𝑗=1

+ 𝜙−1) 

and  

𝐼
M′

= ∑
𝜅𝑗

𝑗!
B(𝑗 + 𝜙, 2)

M′

𝑗=0

+
δ

M′
(𝜅)

(M′ + 𝜙 + 1) (M′ + 𝜙 + 2)
 

with  

δ
M′

(𝜅) = 𝑒𝜅 − ∑
𝜅𝑗

𝑗!

M′

𝑗=0

 

 

where B(⋅) is Beta function, and M and M′are to be chosen large enough to obtain satisfactory 

approximation. For details about the derivations and an investigation into the magnitude of the 

errors incurred in using these approximations, see Wheater et al. (2006, equations (B.80) and 

(B.89)). 

 

We note that the constraint for 𝛼 is 𝛼 >1. The constraint for 𝛼 in the new RBL2-sM-NC model is 

however 𝛼 > 0, and, as summarised in Table 4 in the main paper, the obtained values of 𝛼 are 

mostly smaller than or very close to 1. Therefore, the theoretical proportion dry can hardly be 

derived using the approximate equation given above.  

 

S3.2 Sampling strategy 

This issue can however be addressed through sampling. We had found that the underestimation of 

proportion dry is due to the generation of many tiny amounts of rainfall which are not significant 

for any hydrological application. If we therefore look rather at the proportion of near-dry periods 

(with rainfall below a small threshold of 0.01 mm per 5-min) the problem disappears at hourly and 



sub-hourly scales. A comparison is given in Figure S1 of proportion dry statistics derived from 

250 simulations of RBL2-sM-NC, RBL2-sM and RBL2-bM models, respectively. As can be seen, 

the new RBL2-sM-NC can better reproduce proportion dry statistics at 5-min and 1-h timescales 

than RBL2-sM and RBL2-bM models. However, the RBL2-bM model starts to outperform the 

other two models at supra-hourly timescales. 

 

  

  
Fig. S1: Proportion dry (pDry) by month at Bochum: the observed (Obs-sM, cross markers), and the 

simulated ones sampled with RBL2-bM (light orange boxplots), RBL2-sM (light blue boxplots), and RBL2-

sM-NC (black boxplots) models. 
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S4 Fitted parameters and simulation results obtained from Uccle rain gauge records 

 

S4.1 Fitted parameters 

Table S1: Parameters for RBL1-sM model using Uccle gauge data; constraint: α > 4. 

Month λ μX α α/ν κ φ 

Jan  0.031 1.433 4.000 11.227 0.622 0.038 

Feb  0.029 1.259 4.372 11.757 0.682 0.036 

Mar  0.026 1.724 4.406 13.614 0.503 0.028 

Apr  0.028 2.166 4.421 14.305 0.350 0.026 

May  0.022 5.655 4.929 12.541 0.150 0.026 

Jun  0.023 6.375 4.017 13.474 0.127 0.025 

Jul  0.019 11.810 7.092 10.514 0.047 0.015 

Aug  0.022 8.009 4.693 17.593 0.185 0.028 

Sep  0.020 6.303 5.836 12.917 0.131 0.020 

Oct  0.021 2.767 4.000 12.702 0.351 0.024 

Nov  0.029 1.522 4.000 11.921 0.631 0.032 

Dec  0.032 1.437 4.000 11.308 0.797 0.044 

 

Table S2: Parameters for RBL1-sM-NC model using Uccle gauge data; constraint: α > 1. 

Month λ μX α α/ν κ φ 

Jan  0.034 1.411 3.388 12.673 0.578 0.036 

Feb  0.029 1.259 4.372 11.757 0.682 0.036 

Mar  0.026 1.724 4.406 13.614 0.503 0.028 

Apr  0.028 2.166 4.421 14.305 0.350 0.026 

May  0.022 5.655 4.929 12.541 0.150 0.026 

Jun  0.024 7.119 3.846 17.031 0.132 0.023 

Jul  0.019 11.810 7.092 10.514 0.047 0.015 

Aug  0.022 8.009 4.693 17.593 0.185 0.028 

Sep  0.020 6.303 5.836 12.917 0.131 0.020 

Oct  0.021 2.764 3.887 12.970 0.347 0.024 

Nov  0.029 1.551 4.013 12.305 0.638 0.031 

Dec  0.036 1.411 3.094 11.457 0.623 0.042 

 

  



Table S3: Parameters for RBL2-sM model using Uccle gauge data; constraint: α > 2. 

Month λ ι α α/ν κ φ 

Jan  0.019 0.172 2.000 7.809 0.859 0.032 

Feb  0.019 0.231 2.000 4.766 0.699 0.040 

Mar  0.017 0.216 2.000 7.528 0.592 0.029 

Apr  0.019 0.212 2.000 11.093 0.451 0.024 

May  0.014 0.942 2.000 6.016 0.170 0.032 

Jun  0.013 1.277 2.000 4.588 0.098 0.023 

Jul  0.015 1.905 2.000 5.790 0.039 0.014 

Aug  0.013 1.031 2.000 7.673 0.168 0.027 

Sep  0.014 0.854 2.000 7.043 0.144 0.024 

Oct  0.013 0.410 2.000 6.893 0.427 0.026 

Nov  0.019 0.198 2.000 7.375 0.798 0.030 

Dec  0.019 0.206 2.001 6.227 0.968 0.038 

 

Table S4: Parameters for RBL2-sM-NC model using Uccle gauge data; constraint: α > 0. 

Month λ ι α α/ν κ φ 

Jan  0.018 0.167 0.892 7.043 0.876 0.030 

Feb  0.019 0.142 1.175 7.731 0.891 0.031 

Mar  0.017 0.181 1.040 8.387 0.650 0.026 

Apr  0.018 0.266 1.026 7.444 0.414 0.026 

May  0.014 0.718 0.542 5.831 0.331 0.045 

Jun  0.011 0.980 0.502 5.585 0.211 0.028 

Jul  0.016 1.874 0.595 4.546 0.072 0.029 

Aug  0.012 0.867 0.682 8.448 0.214 0.025 

Sep  0.015 0.807 0.560 5.960 0.210 0.034 

Oct  0.013 0.425 0.865 5.514 0.431 0.027 

Nov  0.018 0.183 1.125 7.446 0.837 0.028 

Dec  0.018 0.094 0.789 13.487 1.157 0.020 

 

 

  



S4.2 Simulation results 

S4.2.1 Standard statistics 

 

Fig. S2: Coefficient of variation (CV) by month at Uccle: the observed calculated with block (Obs-bM, 

orange circle markers) vs. standard (Obs-sM, blue cross markers) methods, the fitted one with RBL1 

(RBL1-bM, light orange line; RBL1-sM, light blue line) models, and the fitted one with RBL2 (RBL2-bM, 

orange lines; RBL2-sM, blue lines) models. 

 

 

Fig. S3: Autocorrelation lag-1 by month at Uccle: the observed calculated with block (Obs-bM, orange 

circle markers) vs. standard (Obs-sM, blue cross markers) methods, the fitted one with RBL1 (RBL1-bM, 

light orange line; RBL1-sM, light blue line) models, and the fitted one with RBL2 (RBL2-bM, orange lines; 

RBL2-sM, blue lines) models. 



 

 
Fig. S4: Coefficient of skewness by month at Uccle: the observed calculated with block (Obs-bM, orange 

circle markers) vs. standard (Obs-sM, blue cross markers) methods, the fitted one with RBL1 (RBL1-bM, 

light orange line; RBL1-sM, light blue line) models, and the fitted one with RBL2 (RBL2-bM, orange lines; 

RBL2-sM, blue lines) models. 

 

 
Fig. S5: Coefficient of variation (CV) by month at Uccle: the observed vs. the fitted one using RBL2 models 

with the original and the new extended parameter spaces for α (RBL2-sM, light blue lines and boxplots; 

RBL2-sM-NC, black lines and boxplots). 

 



 
Fig. S6: Autocorrelation lag-1 by month at Uccle: the observed vs. the fitted one using RBL2 models with 

the original and the new extended parameter spaces for α (RBL2-sM, light blue lines and boxplots; RBL2-

sM-NC, black lines and boxplots). 

 

 

Fig. S7: Coefficient of skewness by month at Uccle: the observed vs. the fitted one using RBL2 models with 

the original and the new extended parameter spaces for α (RBL2-sM, light blue lines and boxplots; RBL2-

sM-NC, black lines and boxplots). 

 

 

 

 

 



S4.2.2 Extreme value statistics 

 

Fig. S8: Observed (round markers) and simulated (lines) return levels of rainfall at different timescales at 

Uccle. The simulated is sampled from the RBL1 and RBL2 models fitted with selected statistical properties 

calculated using bM and sM methods, respectively; and the median return levels obtained from 250 

simulations, each of 105 years, are illustrated. 

 



 
Fig. S9: Observed (round markers) and simulated (lines) return levels of rainfall at multiple time-scales at 

Uccle. The simulated is sampled from the RBL2 models fitted with the original (blue lines) and the new 

(black lines) solution spaces of α. The median and the 95- and 5-percentile return levels obtained from 250 

simulations, each of 105 years, are plotted with solid and dashed lines, respectively. 

 



 
Fig. S10: Observed (round markers) and simulated (lines) return levels of rainfall at multiple time-scales at 

Uccle. The simulated is sampled from the RBL1 (grey lines) and RBL2 (black lines) models fitted with the 

new solution spaces of α. The median and the 95- and 5-percentile return levels obtained from 250 

simulations, each of 105 years, are plotted with solid and dashed lines, respectively. 

 

  



S4.3 Coarse-scale variances 

 

Fig. S11: Daily Variances by month at Uccle: the observed calculated with standard (Obs-sM, blue cross 

markers) methods, the fitted with RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line; RBL1-sM-

NC, grey line) models, and the fitted with RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines; RBL2-sM-

NC, black line) models. 
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