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Abstract. In recent years many methods for statistical down-
scaling of the precipitation climate model outputs have been
developed. Statistical downscaling is performed under gen-
eral and method-specific (structural) assumptions but those
are rarely evaluated simultaneously. This paper illustrates
the verification and evaluation of the downscaling assump-
tions for a weather typing method. Using the observations
and outputs of a global climate model ensemble, the skill of
the method is evaluated for precipitation downscaling in cen-
tral Belgium during the winter season (December to Febru-
ary). Shortcomings of the studied method have been uncov-
ered and are identified as biases and a time-variant predictor–
predictand relationship. The predictor–predictand relation-
ship is found to be informative for historical observations
but becomes inaccurate for the projected climate model out-
put. The latter inaccuracy is explained by the increased im-
portance of the thermodynamic processes in the precipita-
tion changes. The results therefore question the applicabil-
ity of the weather typing method for the case study location.
Besides the shortcomings, the results also demonstrate the
added value of the Clausius–Clapeyron relationship for pre-
cipitation amount scaling. The verification and evaluation of
the downscaling assumptions are a tool to design a statistical
downscaling ensemble tailored to end-user needs.

1 Introduction

For a 1.5 ◦C temperature rise, the worldwide direct flood
damage is estimated to increase by 160 %–240 % (Dottori
et al., 2018). To minimise that potential impact, our soci-
ety opts for two complementary strategies, namely climate
mitigation and climate adaptation (Stocker et al., 2013).
Consequently, vulnerability, impact and adaptation studies

find ground in our society (Alfieri et al., 2016; Åström
et al., 2016; Brekke et al., 2009; Termonia et al., 2018;
Vansteenkiste et al., 2014; Willems, 2013b). These studies
require projected hydrometeorological time series and use
the output of global climate models as primary informa-
tion. However, the direct application of this output for im-
pact modelling is hindered by climate model biases (Kot-
larski et al., 2014; Tabari et al., 2016), the mismatch in tem-
poral and spatial resolutions between the climate model out-
put, and the time series required for impact modelling (Cris-
tiano et al., 2018; Salvadore et al., 2015). Therefore, statis-
tical downscaling or dynamical downscaling is applied. The
statistical downscaling approach bridges the resolution gap
through statistical relationships between the predictors and
predictand, whereas in the dynamical downscaling approach
regional climate models (RCMs) and limited area climate
models (LAMs) are developed. Despite the refined resolution
of RCMs and LAMs, their climate model output remains bi-
ased and requires bias correction (Ehret et al., 2012; Maraun,
2016; Teutschbein and Seibert, 2012). Both downscaling ap-
proaches have strengths and shortcomings arising from their
underlying assumptions (Casanueva et al., 2016; Flaounas
et al., 2013; Le Roux et al., 2018; Maraun et al., 2010; Vait-
tinada Ayar et al., 2016).

The statistical downscaling approach builds on four gen-
eral assumptions (Benestad et al., 2008; Maraun et al., 2010;
Maraun and Widmann, 2018; Schoof, 2013) as follows:

– The relationship between the predictors and the pre-
dictand is relevant (referred to as the informative
assumption). This is of importance in the develop-
ment of new statistical downscaling methods (SDMs),
which requires the selection of predictors (Fu et al.,
2018; Sachindra et al., 2018; Wilby and Wigley, 2000;
Yang et al., 2017). The selected predictors should re-
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late to the physical processes explaining the predic-
tand changes. Precipitation, more specially, responds to
large-scale atmospheric circulation and thermodynamic
laws (Emori and Brown, 2005; Kröner et al., 2017; San-
tos et al., 2016) and, hence, sea level pressure, geopo-
tential height, relative humidity, and/or (dew point) tem-
perature are common predictors (Maraun and Widmann,
2018).

– The predictors are adequately and accurately simulated
by the climate model runs (referred to as the perfect
prognosis assumption). The evaluation of this assump-
tion is foremost performed under the name bias analy-
sis. The bias in the predictors depends on, among oth-
ers, the model resolution, parameterisation schemes, in-
ternal variability, and the choice of the reference period
(Anstey et al., 2013; Arakawa, 2004; Davini et al., 2017;
Deser et al., 2012; Fadhel et al., 2017; Hartung et al.,
2017; Prein et al., 2015; Rybka and Tost, 2014; Tabari
et al., 2016; Vanden Broucke et al., 2018; Watterson
et al., 2014).

– The relationship between the predictors and the pre-
dictand remains time-invariant (referred to as the the
stationarity assumption). This means that the relation-
ship between the predictors and the predictand, which
has been established by using historical observations,
remains applicable under climatic changes. Of all the
assumptions, this assumption is the most difficult one
to validate as no future observations are available yet
(Dixon et al., 2016; Lanzante et al., 2018; Salvi et al.,
2016; Wang et al., 2018).

– The predictand is sensitive to the greenhouse gas sce-
narios. Schoof (2013) has pointed out that one predictor
variable could strongly respond to the greenhouse gas
scenarios while another variable would not. This obser-
vation is, for instance, applicable to changes in tempera-
ture and mean sea level pressure respectively. Moreover,
due to the internal variability of the climate system and
the climate-model-related uncertainties, the response of
the predictor to the greenhouse gas scenarios is often
masked (Van Uytven and Willems, 2018). Hence, the
response of the predictand to the greenhouse gas sce-
narios is governed by a smart choice of predictors.

Alongside the general statistical downscaling assump-
tions, each SDM has method specific or structural assump-
tions. They are encapsulated in the downscaling methodol-
ogy, create the method strengths and limitations, and are re-
sponsible for the statistical downscaling uncertainty contri-
bution. An overview of commonly applied SDMs for pre-
cipitation downscaling and their strengths and limitations is
provided by Hewitson et al. (2014), Maraun et al. (2010),
Maraun and Widmann (2018), and Sunyer et al. (2015).

The main objective of this paper is to simultaneously ver-
ify and evaluate the general and structural statistical down-
scaling assumptions. Most studies address the general and
structural statistical downscaling assumptions independently.
Hence, there are studies addressing one or some of the gen-
eral statistical downscaling assumptions (Dixon et al., 2016;
Fu et al., 2018; Haberlandt et al., 2015; Hertig et al., 2017;
Mendoza et al., 2016; Merkenschlager et al., 2017; Salvi
et al., 2016; Tabari et al., 2016), and there are other stud-
ies addressing the structural assumptions by the statistical
downscaling of surrogate climate model runs (Bürger et al.,
2012; Gutmann et al., 2014; Hertig et al., 2018; Maraun et al.,
2018; Roberts et al., 2019; Werner and Cannon, 2016; Wid-
mann et al., 2019; Yang et al., 2019), or by the statistical
downscaling of the projected climate model output (Li et al.,
2017; Sørup et al., 2018; Sunyer et al., 2015; Vaittinada Ayar
et al., 2016; Wang et al., 2016; Wootten et al., 2017). To ob-
jectively identify the shortcomings of statistical downscaling
methods, the verification and evaluation of the general and
structural assumptions should, however, be performed simul-
taneously. To the authors’ knowledge, there are no papers yet
which simultaneously address the verification of both types
of assumptions.

In this paper, the verification and evaluation of the gen-
eral and structural assumptions are illustrated for a weather
typing (WT) SDM for the purpose of climate change impact
modelling on precipitation in Belgium during winter (De-
cember to February). The studied WT SDM is the method
labelled SD-B-7 by Willems and Vrac (2011). Downscaling
is performed in three steps. In the first step, weather types
are identified based on the mean sea level pressure patterns.
In the second step, the relationship between the predictors
(weather types) and predictand (point precipitation) is es-
tablished by using analogues. In the last step, the precipi-
tation amounts are scaled following the Clausius–Clapeyron
(CC) relationship. Overall strengths emerge from the physi-
cal background of the SDM (Shepherd et al., 2018).

This paper is organised into the following sections. Sec-
tion 2 introduces the studied SDM and the hydrometeorolog-
ical data. Section 3 outlines the verification of the downscal-
ing assumptions, and the corresponding results and discus-
sions are included in Sect. 4. Section 5 summarises the main
findings and makes suggestions for future research.

2 Statistical downscaling methods, case study and data

2.1 The weather typing method

The considered WT method is the method referred to as SD-
B-7 by Willems and Vrac (2011). This method has been se-
lected over the other WT methods as it accounts for both the
changes in atmospheric circulation and the potential intensi-
fication of extreme precipitation due to temperature rise. The
method downscales the daily gridded climate model output to
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a point time series with a time step equal to the observed time
series by using a three-step approach. In the first step, the
Jenkinson–Collison automated Lamb WT classification sys-
tem is applied and the WTs are identified. In the second step,
downscaled precipitation time series are produced by using
WT analogues. In the last step, the precipitation amounts are
scaled by using the Clausius–Clapeyron (CC) relationship.

2.1.1 Step 1: Jenkinson–Collison automated Lamb WT
classification scheme

As shown in Fig. 1, a 16-point grid is centred around the
study area. Assuming pi is the mean sea level pressure
(MSLP) in point i of the 16-point grid and ψ the latitude
of the study area, then the southerly flow (SF), westerly flow
(WF), total flow (F ), southerly shear vorticity (ZS), westerly
shear vorticity (ZW), and total shear vorticity (Z) are calcu-
lated as follows (Jenkinson and Collison, 1977; Jones et al.,
1993; Philipp et al., 2016):

SF=
1

cos(ψ)
(0.25(p5+ 2p9+p13))

−
1

cos(ψ)
(0.25(p4+ 2p8+p12)) ,

WF= 0.5(p12+p13)− 0.5(p4+p5) ,

F =
(

SF2
+WF 2

)1/2
,

ZS =
sin(ψ)

sin(ψ − 5)
(0.25(p6+ 2p10+p14))

−
sin(ψ)

sin(ψ − 5)
(0.25(p5+ 2p9+p13))

−
sin(ψ)

sin(ψ − 5)
(0.25(p4+ 2p8+p12))

+
sin(ψ)

sin(ψ − 5)
(0.25(p3+ 2p7+p11)) ,

ZW =
sin(ψ)

sin(ψ + 5)
(0.50(p15+p16)− 0.50(p8+p9))

− 0.50× cos2(ψ)

× (0.50(p8+p9)− 0.50(p1+p2)) ,

Z = ZS+ZW. (1)

The flow direction is based on an eight-direction compass
(N – north; NE – northeast; E – east; SE – southeast; S –
south; SW – southwest; W – west; and NW – northwest) and
is calculated as follows:

1
tan(WF/SF)

. (2)

If the outcome of Eq. (2) is positive, then 180◦ is added.
Based on a comparison of the flow indices and the flow

direction, 27 different WTs are identified. The comparison
of the flow indices considers the following criteria:

Figure 1. Spacing and numbering in the 16-point grid for the
Jenkinson–Collison automated Lamb weather typing classification
scheme.

– |Z|< F : pure directional WTs (W, NW, N, NE, E, SE,
S, SW);

– |Z|> 2F and Z > 0: pure cyclonic WT (C);

– |Z|> 2F and Z < 0: pure anticyclonic WT (A);

– F < |Z|< 2F and Z > 0: hybrid cyclonic WTs (HCW,
HCNW, HCN, HCNE, HCE, HCSE, HCS, HCSW);

– F < |Z|< 2F and Z < 0: hybrid anticyclonic WTs
(HAW, HANW, HAN, HANE, HAE, HASE, HAS,
HASW);

– F < 6 and Z < 6: undefined WT (U ).

These 27 WTs are regrouped to 11 WTs by equally divid-
ing the hybrid WTs over the corresponding non-directional
WTs (cyclonic or anticyclonic) and directional WTs. Al-
though this might lead to information loss (Schiemann and
Frei, 2010), it leads to larger sample sizes per WT and thus
more accurate SDM relationships. The use of a reduced num-
ber of WTs is also in line with previous case studies for Bel-
gium (Brisson et al., 2011; De Niel et al., 2017; Demuzere
et al., 2009; Willems and Vrac, 2011).

2.1.2 Step 2: statistical downscaling by analogues

Downscaled time series are produced by finding analogues
for the projected climate model output. In the first step,
the bias in the number of wet days is removed by using a
climate-model-dependent and a seasonally dependent wet-
day threshold. In the next step, the downscaled precipitation
time series are constructed by WT analogues.

The first criteria for defining an analogue wet day are the
season and WT. Consider the day d of the projected climate
model output, corresponding with the season s, WT wt and
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a daily precipitation amount p. Then, the search for an ana-
logue day is conducted among the observed wet days in sea-
son s for which the WT equals wt. Besides the season and
the WT, the exceedance probability of the daily precipita-
tion amount p is considered. More precisely, the exceedance
probability is calculated by using the total daily precipitation
amounts of the wet days occurring in the season s and corre-
sponding with the WT wt. As such, the analogue precipita-
tion amount for day d equals the daily precipitation amount
of the observed time series with the closest exceedance prob-
ability.

In case the observed precipitation time series has a sub-
daily time step, the sub-daily precipitation amounts are ag-
gregated to daily precipitation amounts. Next, for each sea-
son and WT, the exceedance probabilities for the observed
daily precipitation amounts of wet days are calculated based
on the total daily precipitation amount. After determining the
analogue day, the sub-daily precipitation amounts of the ana-
logue day are resampled to produce the downscaled time se-
ries.

2.1.3 Step 3: precipitation scaling by the
Clausius–Clapeyron relationship

Besides large-scale circulation patterns, precipitation also re-
sponds to thermodynamic processes. The latter processes are
accounted for by precipitation scaling following the CC re-
lationship. The CC relationship describes the water-holding
capacity in air masses, which more specifically increases by
7 % per degree of warming. Application of this scaling rate
to precipitation intensities is valid assuming that extreme pre-
cipitation amounts are controlled by the local moisture avail-
ability and are not influenced by the large-scale atmospheric
circulation patterns. In reality, however, physical processes
interact and higher scaling rates are also found (Barbero
et al., 2018; Blenkinsop et al., 2018; Manola et al., 2018;
Lenderink et al., 2017; Zhang et al., 2017). The CC relation-
ship is determined by the annual timescale. The temperature
rise, to be applied for the CC scaling, is computed by using a
seasonal quantile-based approach.

Although several studies have pointed out that dew point
temperature is a better predictor for extreme precipitation
amounts than the average daily temperature (Van de Vyver
et al., 2019; Wasko et al., 2018), average daily temperatures
were considered in this study due to their availability.

2.2 Meteorological data

For the main station of the Royal Meteorological Institute of
Belgium (RMI) in Uccle, the precipitation and average tem-
perature time series are available for the period 1901–2000
with a 10 min and daily time step respectively. The historical
WTs are identified by using the daily gridded MSLP out-
put for the EMULATE, ERA40 and NCEP/NCAR reanalysis
data sets (Table 1). Hence, this study accounts for the re-

Table 1. Overview of the reanalysis data set ensemble employed in
this study.

Reanalysis Resolution Time range Reference
data set Long (◦)×Lat (◦)

EMULATE 5.0× 5.0 1881–2000 Ansell et al. (2006)
ERA40 2.0× 2.0 1948–2019 Uppala et al. (2005)
NCEP/NCAR 2.5× 2.5 1957–2002 Kalnay et al. (1996)

cent findings of Horton and Brönnimann (2018) and Stryhal
and Huth (2017). Both studies indicate that reanalysis data
sets introduce uncertainties in the classification of WTs and
the statistical downscaling step. By using daily WTs, rapidly
occurring changes in the large-scale atmospheric circulation
might be neglected (Åström et al., 2016). However, the win-
ter season is of interest and for this season no rapidly evolv-
ing circulation changes, i.e. within 1 d, are expected.

The climate model ensemble, presented in Table 2, in-
cludes 93 CMIP5 climate model runs of which 33 are control
runs. For the climate change impact analysis, all four rep-
resentative concentration pathways (RCPs) are considered,
where the RCP 2.6, 4.5, 6.0, and 8.5 sub-ensembles include
20, 28, 15, and 30 climate model runs respectively. For each
climate model run, daily MSLP, precipitation and average
temperature output are extracted for 1961–1990 (control pe-
riod) and 2071–2100 (scenario period). The precipitation and
temperature data are extracted for the grid cell covering Uc-
cle, whereas MSLP, required for the WT identification, is ex-
tracted for a larger area covering Uccle by using the 16-point
grid of the WT classification system (Fig. 1).

3 Verification of the statistical downscaling
assumptions

The verifications of following assumptions are performed for
the winter season, including the months of December, Jan-
uary and February.

3.1 Informative assumption

The informative assumption defines the existence of an in-
formative and physically based relationship between the pre-
dictors and predictand. The predictors of the WT method are
the average daily temperatures and WTs.

In order to examine the informative assumption for the
WTs, the WT occurrences and the precipitation statistics
related to the individual WTs are determined for the pe-
riod 1961–1990. The studied precipitation statistics involve
the precipitation accumulation, the number of wet days and
the empirical distribution of independent extreme precipi-
tation amounts. The independent 10 min, hourly and daily
precipitation amounts are determined by using a peak-over-
threshold method, setting the threshold at 0.1 mm h−1, and
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Table 2. Overview of the climate model ensemble employed in this study.

Model Resolution RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6
Long (◦)×Lat (◦)

ACCESS1-0 1.9× 1.3 1
bcc-csm1-1-m 1.1× 1.1 1 1 1 1
BNU-ESM 2.8× 2.8 1 1 1
CanESM2 2.8× 2.8 5 5 5
CMCC-CESM 3.8× 3.7 1
CMCC-CMS 1.9× 1.8 1 1
CNRM-CM5 1.4× 1.4 1 1 1
CSIRO-Mk3-6-0 1.9× 1.9 10 10 10 10
GFDL-CM3 2.5× 2.0 1 1 1 1
GFDL-ESM2G 2.5× 1.5 1 1 1 1
GFDL-ESM2M 2.5× 1.5 1 1 1
GISS-E2-R 2.5× 2.0 2
HadGEM2-AO 1.9× 1.3 1 1 1 1
IPSL-CM5A-LR 3.8× 1.9 4 1 4 1
IPSL-CM5A-MR 2.5× 1.3 1 1 1 1
IPSL-CM5B-LR 3.8× 1.9 1 1
MIROC-ESM-CHEM 2.8× 2.8 1 1 1 1
MIROC-ESM 2.8× 2.8 1 1 1 1
MIROC5 1.4× 1.4 3 3 2 3
MPI-ESM-LR 1.9× 1.8 1 1 1
MPI-ESM-MR 1.9× 1.8 1 1 1
MRI-CGCM3 1.1× 1.1 1 1 1 1
NorESM1-M 2.5× 1.9 1 1 1 1

Total number of runs: 30 15 28 20

defining at least 12 h between successive events (Willems,
2000).

In order to examine the informative assumption for the av-
erage daily temperatures, the existence of the CC relationship
is verified. The independent precipitation amounts are deter-
mined by using the 10 min precipitation amount time series
and the daily average temperature time series between 1901
and 2000. First, the 10 min precipitation events in the time
series are identified by using a peak-over-threshold method
(threshold= 0.1 mm h−1 and time between successive events
> 12 h). Next, the precipitation events and corresponding
temperatures are classified in moving temperature bins and
each bin is sorted from low to high (Manola et al., 2018). Fi-
nally, the magnification of the 90th, 95th and 99th percentile
precipitation amount for increasing temperature bins is in-
vestigated.

3.2 Perfect prognosis assumption

The verification of the perfect prognosis assumption is espe-
cially of importance for the WT method. More specifically,
the application of the WT analogues follows the principle of
perfect prognosis methods. This means that a statistical re-
lationship is first defined between observed predictors and
observed predictand. Thereafter, the statistical relationship is
applied to the projected climate model output. Consequently,

the calibrated statistical relationship is not tailored to biases
in the climate model output. The scaling of the precipitation
amounts by the CC relationship, on the contrary, follows the
principles of model output statistical methods. Those meth-
ods implicitly assume that the climate model biases are time-
invariant and that through the application of changes the bi-
ases in the projected climate model output are cancelled by
the biases in the historical climate model output.

The verification of the perfect prognosis assumption in-
volves a comparison between the observed and simulated cli-
mate model WT occurrences. The verification is conducted
over the period 1961–1990 by using the historical output of
33 global climate model runs (Table 2).

3.3 Stationarity assumption

To verify the stationarity assumption, the contributions of the
dynamical and thermodynamic processes governing precip-
itation changes are studied over time. To this end, the ob-
served period (1901–2000) is split into different sub-periods.
The sub-periods are 20 years long and range between 1901
and 1920, 1921 and 1940, 1941 and 1960, 1961 and 1981,
and 1981 and 2000. Each sub-period is thereafter consid-
ered as the scenario period for surrogate climate model runs.
For instance, when 1901–1920 is selected as the scenario pe-
riod, then the periods 1921–1940, 1941–1960, 1961–1981,
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and 1981–2000 act as control periods. When 1981–2000 is
selected as the scenario period, then the periods 1901–1920,
1921–1940, 1941–1960, and 1961–1980 act as control peri-
ods. The combination of the different sub-periods yields an
ensemble of 20 surrogate climate model runs. For each surro-
gate climate model run, the change in the average daily pre-
cipitation amounts of wet days is decomposed. More specif-
ically, the precipitation amount changes 1P are governed
by the changes in the WT occurrence changes, i.e. the con-
tribution by the dynamical processes 1Pdynamical, and ther-
modynamic, local, and/or mesoscale feedback changes, i.e.
1Pother (Souverijns et al., 2016). The contributions are cal-
culated as follows:

1P =1Pdynamical+1Pother

1Pdynamical =

11∑
j=1

(
Nj,scen−Nj,contr

)
Pj,contr

1Pother =

11∑
j=1

(
Pj,scen−Pj,contr

)
Nj,scen, (3)

with

– Nj,contr the absolute occurrence frequency of wet days
with WT j in the climate model output for the control
period,

– Nj,scen the absolute occurrence frequency of wet days
with WT j in the climate model output for the scenario
period,

– Pj,contr the average daily precipitation amount of the
wet days with WT j in the climate model output for
the control period, and

– Pj,scen the average daily precipitation amount of the wet
days with WT j in the climate model output for the sce-
nario period.

The decomposition is also performed by using the histor-
ical and projected output of the 93-member global climate
model ensemble (Table 2).

3.4 Response to greenhouse gas scenarios

In order to verify the response of the predictand to the green-
house gas scenarios, the WT method is applied to the out-
put of 93 global climate model runs (Table 2). Next, the
daily precipitation amounts for the downscaled time series
are compared against the observed precipitation amounts and
the intensification of the extreme precipitation amounts for
increasing greenhouse gas scenarios is investigated. The in-
tensification is visually inspected, and the focus is put on the
magnification of the changes for increasing greenhouse gas
scenarios. Furthermore, a comparison is made between the
coarse global climate model changes and the changes for the
downscaled time series. For sake of brevity, the changes in

Figure 2. Relative WT occurrence in the winter season for different
reanalysis data sets. The results are obtained for the reference period
1961–1990.

the 30-year return period and the average winter precipita-
tion accumulation are investigated.

3.5 Structural downscaling assumptions

To investigate the added value of the CC relationship, the
original SDM (with CC scaling) and the SDM without CC
scaling are applied to the projected output of 93 global cli-
mate models (Table 2). The control period and the range of
observations are defined as 1961–1990, and the scenario pe-
riod is defined as 2071–2100. A comparison is made between
the projected changes for the SDM with CC scaling and the
SDM without CC scaling. The added value of the CC rela-
tionship is discussed in combination with the predictand re-
sponse.

4 Results and discussions

4.1 The informative assumption

Figure 2 presents the relative WT occurrence frequencies
during the winter season. The results show that the A WTs
occur most frequently and represent approximately 30 % of
the winter days. Also the W, SW, and C WTs are identified
as frequently occurring. The occurrence frequency of each
of these WTs is approximately 12 %. Despite some details,
there are no differences between the different reanalysis data
sets. The WT occurrence patterns are generally in agreement
with the recent findings of Otero et al. (2018). They identi-
fied theAWTs as the overall dominant winter WT in Europe.
The A WTs, more specifically, represent on average 25 %
of the winter days. The average occurrence frequency of the
C WTs in Europe is estimated at approximately 15 %, the
W WTs at approximately 8 %, and the SW at approximately
5 %. Note that the WT occurrences presented by Otero et al.
(2018) have been averaged out over the European domain.
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Figure 3. Daily winter precipitation amounts per weather type for
the NCEP/NCAR reanalysis data set. The blue lines indicate the
results for the W, NW, SW, and C WTs, the green line for the A
WT, the grey lines for the N and S WTs, the orange lines for the
NE, E, SE WTs, and the black line for the U WTs. The results are
obtained for the reference period 1961–1990.

Apart from the A WTs, the W, SW, and C WTs are asso-
ciated with a high precipitation accumulation and together
explain up to 71 % of the total winter precipitation accu-
mulation (Appendix, Figs. A1 and A2). Additionally, these
WTs are associated with higher precipitation amounts, as
for instance shown for the NCEP/NCAR reanalysis data set
in Fig. 3. More specifically, the 1-year daily precipitation
amount for the W WTs measures 0.51 mm h−1 and is twice
as large as the corresponding amount for the A WTs, which
measures 0.19 mm h−1. Also the NW WTs are characterised
by higher precipitation amounts and a higher wet-day fre-
quency. However, compared to the W, SW, and C WTs, their
occurrence is rather low and contributes less to the precipita-
tion accumulation.

The relationship between precipitation and temperature is
presented in Fig. 4. This figure demonstrates the intensifica-
tion of the independent precipitation amounts with increas-
ing temperature. For instance, the 90th percentile precipi-
tation amount increases by 7 % (1 ◦C)−1, and this increase
follows the CC relationship. For temperatures higher than
10 ◦C, the scaling rate increases up to 14 % (1 ◦C)−1. Sim-
ilar scaling rates are obtained for the higher precipitation
percentiles. For percentiles smaller than 90 %, the scaling
rate of 7 % (1 ◦C)−1 is not identified. The identified CC re-
lationship is similar to other studies for Belgium (De Troch,
2016; Van de Vyver et al., 2019) and for neighbouring re-
gions (Lenderink and van Meijgaard, 2008). Although the
CC relationship in those other studies has been established
by using the dew point temperature, similar scaling rates are
obtained. Considering the findings of recent studies, the ap-
plication of dew point temperature is expected to better esti-

Figure 4. The relationship between daily average temperature and
independent 10 min precipitation amounts. The relationship is de-
fined by annual timescale, and this is done by using the entire Uc-
cle time series (1901–2000). The CC relationship (+7 % ◦C−1) is
indicated by the grey dotted lines, whereas the 2× CC relationship
(+14 % ◦C−1) is indicated by the grey dashed lines. The black lines
show the magnification of the 90th, 95th, 99th and 99.9th percentile
precipitation amount for increasing temperatures.

mate the increases in the atmospheric moisture capacity and,
thus, the precipitation changes (Van de Vyver et al., 2019;
Wasko et al., 2018).

4.2 The perfect prognosis assumption

Figure 5 compares the WT occurrences for the historical cli-
mate model outputs with those for the reanalysis data sets.
The comparison reveals large biases, particularly for the W
andAWTs. More precisely, the climate models overestimate
the occurrence of W WTs by approximately 11 %, whereas
the A WTs are underestimated by 14 %. Moreover, in con-
trast to the reanalysis data sets, the W WTs are the most
prominently occurring WTs in the climate model outputs.
These findings are in agreement with the recent study by
Stryhal and Huth (2018). Using different atmospheric clas-
sification patterns, they found an overall overestimation of
the westerly circulation, which is estimated to be approxi-
mately 7 % for the British Isles and increases towards central
Europe by up to 21 %. Otero et al. (2018) and Stryhal and
Huth (2018) also indicate that climate models have a poor
performance in reproducing the occurrence of A WTs.

The overestimation of the W WTs is explained by the ori-
entation of the North Atlantic storm track in the climate mod-
els. It has, more specifically, a zonal orientation instead of
a SW–NE tilt (Pithan et al., 2016; Zappa et al., 2014). The
zonal orientation results in a pronounced meridional pressure
gradient, creating zonal westerly flows, which in turn impede
the occurrences of anticyclones (Stryhal and Huth, 2019).
Biases in the blocking frequency are also arising from the
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Figure 5. Relative WT occurrence in the winter season for different
reanalysis data sets (dots) and climate model runs (box plots). The
results are obtained for the reference period 1961–1990.

climate model resolution (Anstey et al., 2013; Scaife et al.,
2011; Woollings et al., 2018).

Although it would be possible to remove the bias in WT
occurrences, for instance through resampling (Mehrotra and
Sharma, 2019), the studied WT method does not do that.
Note that such bias correction would require a technique that
simultaneously accounts for the bias in the WT occurrences,
the WT persistence, and the relationship between the WTs
and other hydrometeorological variables.

4.3 The stationarity assumption

The contribution of the dynamical processes to the precipi-
tation amount changes for the surrogate climate model runs
is presented in Fig. 6. Based on the median results, the dy-
namical processes are responsible for 35 % to 55 % of the
changes. The high contributions are most likely explained
by the findings of Ntegeka and Willems (2008) and Willems
(2013a). These authors identified multidecadal oscillations
in the 100-year precipitation time series for Uccle. Some pe-
riods are characterised by higher precipitation amounts and
are referred to as positive anomalies. The periods charac-
terised by smaller precipitation amounts are referred to as
negative anomalies. Willems (2013a) observed that the pre-
cipitation anomalies coincide with anomalies in the num-
ber of W WTs and with anomalies in the pressure differ-
ence between the Azores and Scandinavia. The coincidence
of large-scale atmospheric circulation patterns and precipi-
tation amounts has also been studied for other locations in
Europe. In this context, Tabari and Willems (2018) identi-
fied the North Atlantic Oscillation (NAO) and the El Niño–
Southern Oscillation (ENSO) signal as dominant drivers for
the extreme winter precipitation amounts. Hence, the find-
ings of Tabari and Willems (2018) and Willems (2013a) im-
ply that large-scale atmospheric circulation influences winter
precipitation in Europe. At the end of the 20th century, the
dynamical processes explained only 20 % of the precipitation

Figure 6. Contribution of the dynamical processes to the change in
the average precipitation amount of wet days in the function of the
choice of the scenario period.

amount changes. This lower contribution is compensated for
by a higher contribution from the thermodynamic processes.
More specifically, Ntegeka and Willems (2008) point out that
the higher precipitation amounts are governed by an inten-
sification of the positive anomaly. The intensification arises
from the increasing temperatures, which are in turn attributed
to climatic changes.

Figure 7 shows the contributions by the dynamical and
the thermodynamical processes to the long-term projected
changes. The changes in the WTs account for 18 % of the
total change and, hence, they are primarily driven by the ther-
modynamic processes. This is in agreement with the findings
of Kröner (2016), who investigated the drivers for precipita-
tion changes in Europe. As the thermodynamic processes are
only included to some extent in the downscaling methodol-
ogy, the applicability of the SDM is questioned. Note that the
application of the CC relationship is limited to the extreme
precipitation amounts, while the thermodynamic processes
also influence the average precipitation amounts.

4.4 Response to the greenhouse gas scenarios and the
added value of the CC relationship

Climate models project a poleward shift of the Northern
Hemisphere jet streams and storm tracks, resulting in the in-
creased occurrence of zonal flows and fewer blocking occur-
rences (Barnes and Screen, 2015; Santos et al., 2016; Stryhal
and Huth, 2019; Woollings et al., 2018). As a consequence,
an increasing occurrence of W and SW WTs and a decreas-
ing occurrence of A WTs are projected (Appendix, Fig. A3).
More specifically, under the total uncertainty range, i.e. all
RCPs combined, the occurrence of W WTs is projected to in-
crease by 7 %. For the RCP sub-ensembles, the increase in W
WTs is magnified from 6 % for RCP 4.5 to 11 % for RCP 8.5.
The A WTs, on the contrary, decrease in 10 % for RCP 4.5
and 12 % for RCP 8.5. Using the same climate model en-
semble, the median change in the average temperature is es-
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Figure 7. Contribution of the dynamical processes, i.e. changes in
the WT occurrence frequencies and other effects, for instance, due
to the thermodynamic processes, to the change in the average daily
precipitation amount of wet winter days. The results are based on
the climate model output for the scenario (2071–2100) and control
period (1961–1990).

timated at 1.6 ◦C for RCP 2.6, 2.1 ◦C for RCP 4.5, 2.6 ◦C for
RCP 6.0, and 3.7 ◦C for RCP 8.5 (Termonia et al., 2018).

The changes in the 30-year daily winter precipitation
amounts are shown in Fig. 8. While the studied SDM with-
out CC scaling does not project any changes in the 30-year
daily precipitation amount, the coarse global climate model
(GCM) projections do. This indicates that the reliance of the
projections on analogues involves significant shortcomings.
Those shortcomings can, however, be overcome by the ap-
plication of the CC relationship. As a result, an intensifica-
tion of the extreme precipitation amounts is obtained for the
studied SDM. The intensification is, moreover, in agreement
with the theoretical estimations. The projected changes for
RCP 8.5 are, for instance, estimated at 25.8 % and equal the
theoretical change values (3.7 ◦C× 7 %). Note that the CC
relationship is applied at the daily timescale and that at the
daily timescale the super CC scaling rate (14 % (1 ◦C)−1) is
not observed. To some extent, the estimated median change
values for the studied SDM differ from the coarse climate
model projections. More specifically, the differences in the
median change values range between 3 % and 5 %. Besides
differences in the change values, there are differences in
the monotonicity of the change intensification for increas-
ing greenhouse gas scenarios (GHSs). For the statistically
downscaled changes, the intensification of the change values
is monotonic due the monotonic increase in the temperature
predictor. For the coarse global climate model changes, on
the contrary, the monotonicity is masked by random uncer-
tainties, climate model uncertainties and the stochastic un-
certainty arising from the internal variability of the climate
system (Van Uytven and Willems, 2018).

Figure 8. Changes in the 30-year daily precipitation winter amount
in the function of the different RCPs. The changes are obtained by
using the climate model output for 2071–2100 with respect to the
output for 1961–1990.

The changes in average winter precipitation accumula-
tion are shown in Fig. 9. The comparison between the
coarse climate model changes and the statistically down-
scaled changes indicates that the statistical downscaling step
increases the changes. More specifically, under the total un-
certainty range, the statistically downscaled changes are ap-
proximately 15 % larger. The latter is explained by the ab-
sence of bias correction schemes, the overestimation of the
W WTs (Fig. 5), which have been identified as one of the
wetter WTs (Sect. 4.1), and the projected increase in these
WTs (Fig. A3). Figure 9 furthermore shows that the statis-
tically downscaled changes for the winter precipitation ac-
cumulation are not monotonic for increasing greenhouse gas
scenarios. The latter is due to the applicability of the CC re-
lationship to extreme precipitation only. For that reason, the
monotonicity of the temperature changes is not transferred to
the changes in the average winter precipitation accumulation.

5 Conclusions

The studied SDM does not meet all assumptions. It is shown
that the SDM has limitations and its skill could be improved.
The WT method fails, among other assumptions, the perfect
prognosis assumption. As the method is applied in a per-
fect prognosis context, improvements should involve the bias
correction of the WT occurrences. Since the simulation of
large-scale atmospheric circulation patterns remains biased
in RCMs (Addor et al., 2016; Jury et al., 2018), the appli-
cation of a statistical bias correction method is suggested.
A potential method would be the recently developed resam-
pling approach of Mehrotra and Sharma (2019). Further ex-
tensions to the latter approach are, however, required to also
address the biases in the WT persistence and the biases in
the relationship between WTs and other hydrometeorolog-
ical variables. Although the implementation of bias correc-
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Figure 9. Changes in the average winter precipitation accumulation
in function of the different RCPs. The changes are obtained by using
the climate model output for 2071–2100 with respect to the output
for 1961–1990.

tion methods is possible, it remains questionable whether the
WT method may lead to accurate precipitation downscaling.
The observations in this study confirm an informative rela-
tionship between the predictors and the predictand, but this
relationship is time-variant. The WT occurrences explain be-
tween 35 % and 55 % of the historical precipitation amount
changes, but their contribution decreases to less than 20 % at
the end of the 21st century. This means that the precipitation
changes for the case study location are controlled by ther-
modynamic processes rather than dynamical processes (i.e.
changes in WT occurrences). As the extreme precipitation
amounts are scaled following the CC relationship, the ther-
modynamic processes are accounted for to some extent in
the downscaling methodology but it is not done sufficiently.
The CC relationship produces extreme precipitation amounts
outside the range of historical observations and thus antic-
ipates the intensification of extreme events. The latter in-
dicates the potential of the CC relationship for improving
non-parametric precipitation models. The stand-alone appli-
cation of the CC relationship as an SDM has recently been
demonstrated by Manola et al. (2018) and Van de Vyver et al.
(2019), but those SDMs also involve shortcomings (Zhang
et al., 2017).

Uncovering the shortcomings of SDMs does not mean that
their use is discouraged. One should not forget that other
SDMs may also fail assumptions and, thus, also have short-
comings. By considering an ensemble of SDMs, the uncer-
tainties introduced by those shortcomings can be taken into
account. When SDM ensembles are considered, ensemble
members could be weighted based on their skill. The lat-
ter would be similar to the existing climate model weighing
techniques (Sanderson et al., 2017). The first step towards a
weighted SDM ensemble is still to be made by the statistical
downscaling community.
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Appendix A

Figure A1. Relative winter precipitation accumulation per WT for different reanalysis data sets (lines) and climate model runs (box plots).
The results are obtained for the reference period 1961–1990.

Figure A2. Percentage of wet days per WT in the winter season for different reanalysis data sets (lines) and climate model runs (box plots).
The results are obtained for the reference period 1961–1990.

Figure A3. Changes in the winter WT occurrences for RCP 4.5 and RCP 8.5. The changes are obtained by using the climate model outputs
for 2071–2100 with respect to the output for 1961–1990.
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(Taylor et al., 2012). The ERA40 reanalysis data set is available
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through https://www.metoffice.gov.uk/hadobs/emslp/ (Ansell et al.,
2006) and the NCEP/NCAR data set through https://psl.noaa.gov/
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