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Abstract. The European Centre for Medium-Range Weather
Forecasts (ECMWF) recently released its most advanced re-
analysis product, the ERAS dataset. It was designed and gen-
erated with methods giving it multiple advantages over the
previous release, the ERA-Interim reanalysis product. No-
tably, it has a finer spatial resolution, is archived at the hourly
time step, uses a more advanced assimilation system and in-
cludes more sources of data. This paper aims to evaluate the
ERADS reanalysis as a potential reference dataset for hydro-
logical modelling by considering the ERAS precipitation and
temperatures as proxies for observations in the hydrological
modelling process, using two lumped hydrological models
over 3138 North American catchments. This study shows
that ERAS5-based hydrological modelling performance is
equivalent to using observations over most of North Amer-
ica, with the exception of the eastern half of the US, where
observations lead to consistently better performance. ERAS5
temperature and precipitation biases are consistently reduced
compared to ERA-Interim and systematically more accu-
rate for hydrological modelling. Differences between ERAS,
ERA-Interim and observation datasets are mostly linked to
precipitation, as temperature only marginally influences the
hydrological simulation outcomes.

1 Introduction

Hydrological science knowledge has long been anchored in
the need for observations (Wood, 1998). Observations and
measurements of all components of the hydrological cycle
have been used to gain a better understanding of the physics
and thermodynamics of water and energy exchange between
the land and the atmosphere (e.g. Luo et al., 2018; McCabe

et al., 2017; Siegert et al., 2016; Zhang et al., 2016; Stearns
and Wendler, 1988). In particular, measurement of precipi-
tation and temperature at the earth’s surface has been a crit-
ical part of the development of various models describing
the vertical and horizontal movements of water. Hydrologi-
cal models, for example, are routinely used to transform lig-
uid and solid precipitation into streamflows, using other vari-
ables such as temperature, wind speed and relative humidity
to increase their predictive skill (Singh and Woolhiser, 2002).
Throughout the last several decades, such data have essen-
tially been provided by surface weather stations (Citterio et
al., 2015). However, and despite the utmost importance of
observed data for hydrological sciences, a net decline in the
number of stations in the historical climatology network of
monthly temperature datasets has been observed since the be-
ginning of the 21st century (Menne et al., 2018; Lins, 2008).
Perhaps more importantly, data from the NASA-GISS sur-
face temperature analysis show a particularly large decrease
in the number of stations with a long record, a decline starting
in 1980. Stations with long records are critical for monitor-
ing trends in hydroclimatic variables (Whitfield et al., 2012;
Burn et al., 2012). In addition, the GISS data document a
slow but consistent decrease in the percent of hemispheric
area located within 1200 km of a reporting station since the
middle of the 20th century (GISS, 2019).

On the upside, other sources of data have steadily appeared
to compensate for this worrisome diminishing trend in sur-
face weather stations (e.g. Beck et al., 2017a, b, 2019b; Sun
etal., 2018; Lespinas, 2015). Interpolated gridded datasets of
precipitation and temperature are now common. They allow
some information from regions with good network coverage
to be extended, to some extent, towards areas with less infor-
mation. Interpolated datasets, however, do not create new in-
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formation, no matter how complex and how much additional
information is used in the interpolation schemes (Essou et
al., 2016a; Newman et al., 2015). Remotely sensed datasets
have long carried the hope of bringing relevant hydromete-
orological information over large swaths of land, up to the
global scale, and over regions with absent or low-density ob-
servational networks (Lettenmaier et al., 2015). There are
now several global or near-global precipitation datasets de-
rived from various satellites, with spatial resolutions varying
between 0.125 and 1° (Sun et al., 2018). Ground-radar-based
products are also becoming more common and are available
at an even higher resolution (Beck et al., 2019a). All remotely
sensed precipitation datasets do however only provide indi-
rect measurements of the target variable. They typically pro-
vide biased estimates, and ground stations are often needed
to correct the remotely sensed estimates (Fortin et al., 2015).

Atmospheric reanalysis is another product that has gen-
erated interest increasingly in the recent decade. Reanaly-
ses combine a wide array of measured and remotely sensed
information within a dynamical-physical coupled numeri-
cal model. They use the analysis part of a weather forecast-
ing model, in which data assimilation forces the model to-
ward the closest possible current state of the atmosphere. A
reanalysis is a retrospective analysis of past historical data
making use of the ever-increasing computational resources
and more recent versions of numerical models and assimila-
tion schemes. Reanalyses have the advantage of generating
a large number of variables not only at the land surface, but
also at various vertical atmospheric levels. Data assimilated
in a reanalysis consist mostly of atmospheric and ocean data
and do not typically rely on surface data, such as measured
by weather stations. Reanalysis outputs are therefore not di-
rectly dependent on the density of surface observational net-
works and have the potential to provide surface variables in
areas with little to no surface coverage. Several modelling
centres now provide reanalyses with varying spatial and tem-
poral scales (Lindsay et al., 2014; Chaudhuri et al., 2013).
Reanalyses and observations share similarities and differ in
other aspects (Parker, 2016). Reanalyses have increasingly
been used in various environmental and hydrological appli-
cations (e.g. Chen et al., 2018; Ruffault et al., 2017; Emer-
ton et al., 2017; Di Giuseppe et al., 2016). They are com-
monly used in regional climate modelling, weather forecast-
ing and, more recently, as substitutes for surface precipita-
tion and temperature in various hydrological modelling stud-
ies (Chen et al., 2018; Essou et al., 2016b, 2017; Beck et al.,
2017a). They have been shown to provide good proxies to ob-
servations and even to be superior to interpolated (from sur-
face stations) datasets in regions with sparse network surface
coverage (Essou et al., 2017). Precipitation and temperature
outputs from reanalyses have, however, been shown to be in-
ferior to observations in regions with good weather station
spatial coverage (Essou et al., 2017). The relatively coarse
spatial resolution of reanalyses is thought to be partly respon-
sible for this. Amongst all available reanalyses, many stud-
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ies have shown ERA-Interim (European Centre for Medium-
Range Weather Forecasts (ECMWF) interim reanalysis) to
be the best or amongst the best performing reanalysis prod-
ucts (e.g. Sun et al., 2018; Beck et al., 2017a; Essou et al.,
2017, 2016b), arguably the result of its sophisticated assimi-
lation scheme, and despite a spatial resolution inferior to that
of most other modern reanalyses. In March 2019, ECMWF
released the fifth generation of its reanalysis (ERAS) over the
1979-2018 period (Hersbach and Dee, 2016). ERAS incor-
porates several improvements over ERA-I (see Sect. 3 of this
paper).

Of particular interest to the hydrological community are
the largely improved spatial (30 km) and temporal (1 h) res-
olutions. The spatial resolution is now similar to or better
than that of most observational networks in the world, with
the exception of some parts of Europe and the United States.
The hourly temporal resolution matches that of the best ob-
servational networks. In the United States and Canada, for
example, there are currently no readily available observation-
derived precipitation and temperature datasets at the sub-
daily timescale, and sub-daily records are not consistently
available for weather stations. In particular, the hourly tem-
poral resolution, if proven accurate, could open the door to
many applications, and notably for modelling small water-
sheds for which a daily resolution is not adequate. Such
watersheds are expected to be especially impacted by pro-
jected increases in extreme convective events resulting from
a warmer troposphere in a changing climate. Some early
results from ERAS have shown that it outperforms other
reanalysis sets and its predecessor ERA-I (Albergel et al.,
2018; Olausen, 2018; Urraca et al., 2018).

2 Study objectives

This work aims at providing a first evaluation of the ERAS
reanalysis over the 1979-2018 period with an emphasis on
hydrological modelling at the daily scale. Even though the
hourly temporal scale brings many potential applications for
hydrological studies, a first step in the evaluation of ERAS
precipitation and temperature datasets is performed at the
daily scale. The daily scale allows for a comparison against
other North American datasets available at the same temporal
resolution, as well as against results from previous studies.
In addition, validation at the hourly scale over North Amer-
ica presents additional difficulties, as discussed above, due
to the absence of US or Canadian datasets at this resolu-
tion and to the absence of recorded hourly precipitation for
many weather stations. In Canada, for example, fewer than
15 % of weather stations have archived hourly variables, and
hourly precipitation records contain particularly large ratios
of missing data, thus complicating the validation at the re-
gional scale. Consequently, the objectives of this study are
to
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Figure 1. Watershed locations and their mean elevations over

Canada and the United States (each dot represents the watershed
centroid).

1. provide a first assessment of the potential of ERAS to
provide an accurate representation of precipitation and
temperature fields at the daily temporal scale;

2. evaluate the hydrological modelling potential of ERAS5
precipitation and temperature datasets over a large set
of hydrologically heterogeneous watersheds using two
lumped hydrological models; and,

3. based on the above results, document any spatial vari-
ability in dataset performance and quantify improve-
ments compared to ERA-IL

3 Methods and data
3.1 Data and study area

The goal of this study is to evaluate the ERAS reanalysis
product as a substitute for observed data and to compare
its properties to those of the older ERA-Interim reanaly-
sis for hydrological modelling uses. Therefore, the ERAS,
ERA-Interim and observed (weather station) meteorologi-
cal datasets were used and basin-averaged over 3138 catch-
ments over Canada and the United States, whose locations
and average elevations are shown in Fig. 1. It can be seen
that there is a good coverage of the entire domain, although
some sparsely populated areas in northern Canada and in the
United States Midwest have a lower density of hydrometric
gauges.

The hydrological models used in this study required min-
imum and maximum daily temperature as well as daily pre-
cipitation amounts. ERA-Interim and the observed datasets
were already on a daily time step; however, ERAS is an
hourly product and, as such, it was necessary to derive daily
values from the hourly data by summing precipitations and
taking the maximum and minimum 1h temperatures of the
day.
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3.1.1 ERA-Interim

ERA-Interim (ERA-I) is a global atmospheric reanalysis
which was released by the ECMWF in 2006 (Dee et al.,
2011) in replacement of ERA40. ERA-I introduced an ad-
vanced four-dimensional variational (4D-var) analysis assim-
ilation scheme with a 12 h time step. It computes 60 vertical
levels from the surface up to 0.1 hPa. Its horizontal resolu-
tion is approximately 80 km. Precipitation and temperature
are available at a 12 h time step and were aggregated to the
daily scale in this work. The production of ERA-I will cease
in August 2019, thus providing temporal coverage from 1
January 1999 until August 2019.

3.1.2 ERAS

ERAS5 is the fifth generation reanalysis from ECMWE. It pro-
vides several improvements compared to ERA-I, as detailed
by Hersbach and Dee (2016). The analysis is produced at a
1-hourly time step using a significantly more advanced 4D-
var assimilation scheme. Its horizontal resolution is approx-
imately 30 km and it computes atmospheric variables at 139
pressure levels. Data for the 1979-2018 period were released
in March 2019. The 1950-1978 period is expected to be re-
leased in the summer of 2019. This paper only looks at 1979—
2018 because outputs of reanalysis prior to 1979 have been
put into question due to the more limited availability of data
to be assimilated, and notably from earth-observing satel-
lites (e.g. Bengtsson et al., 2004). While ERAS may solve
some of these problems, it is believed that a careful evalua-
tion of inhomogeneity in ERAS time series would be needed
before using pre-1979 data. ERAS precipitation and temper-
ature were downloaded and aggregated to the daily time step
for this work.

3.1.3 Observed weather data

The observed weather data come from multiple sources due
to the transboundary component in this study. Climate data
for catchments in Canada were taken from the CANOPEX
database (Arsenault et al., 2016), which includes weather
stations from Environment Canada that were post-processed
and basin-averaged using Thiessen Polygon weighting. The
data cover the period 1950-2010. Any missing values were
replaced by the NRCan interpolated climate data product
(Hutchinson et al., 2009).

For the United States, historical weather data were taken
from the Santa Clara gridded data product (Maurer et al.,
2002), as it was shown to be as good as observations for hy-
drological modelling in a previous study (Essou et al., 2016b)
and covers a long time period (1949-2010). The data are in-
terpolated along a regular 0.125° x 0.125° grid and are then
averaged at the catchment scale.
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3.1.4 Observed streamflow data

Streamflow records from the United States Geological Sur-
vey (USGS) and Environment Canada were used to calibrate
the hydrological models at each of the 3138 catchments and
evaluate the hydrological modelling performance. The avail-
ability of streamflow data was the limiting factor for the sim-
ulation length of many catchments, as it varied from 20 years
(minimum amount used in these databases) to over 60 years
of streamflow records. Missing data were left as they were
and were simply not included in the computation of the eval-
uation metrics.

3.2 Hydrological models

In the course of this study, two lumped hydrological models
were implemented and calibrated over each of the available
catchments because the large-scale aspect of this study pre-
cluded the widespread implementation of distributed mod-
els. Although ERAS’s spatial resolution is more refined than
ERA-Interim (31 km vs. 79 km), it is still coarse enough that
a distributed model would not have changed the results dra-
matically in this regard. The two hydrological models se-
lected to evaluate the performance of the various climate
datasets, GR4J and HMETS, are flexible and adaptable and
have been shown to perform well in a wide range of climates
and hydrological regimes (Arsenault al., 2015, 2018; Martel
et al., 2017; Valery et al., 2014; Perrin et al., 2003). It was
decided to perform the study using two hydrological models
in order to assess the impacts of the climate data selection on
the overall uncertainty of the hydrological modelling simula-
tions.

3.2.1 The GR4J hydrological model

The GR4J hydrological model (Perrin et al., 2003) is a
lumped and conceptual model that is based on a cascading-
reservoir production and routing scheme. Water is routed
from these reservoirs to the outlet in parameterized unit hy-
drographs. While the original GR4J model includes four cal-
ibration parameters, the version used in this study had six
calibration parameters in order to include a snow-accounting
and snowmelt routine, namely CEMANEIGE (Valéry et al.,
2014). This GR4J-CEMANEIGE (GR4JCN) combination
has shown excellent results in studies across the globe (Huet,
2015; Raimonet et al., 2017, 2018; Youssef et al., 2018; Ri-
boust et al., 2019; Wang et al., 2019), including in Canada
and the United States. It requires daily precipitation, temper-
ature and potential evapotranspiration (PET) as inputs. The
PET was computed using the Oudin formulation (2005) as it
was shown to be simple yet efficient when used in GR4JCN.
Furthermore, the choice of PET is more sensitive than in
other simple hydrological models because GR4J does not
scale the input PET to adjust its overall mass balance. In-
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stead, a parameter is included that allows exchanges between
underground reservoirs of neighbouring catchments.

3.2.2 The HMETS hydrological model

The HMETS hydrological model (Martel et al., 2017) is
more complex than GR4JCN, and as such has more cal-
ibration parameters (21). While it is similar conceptually
to GR4JCN, it has four reservoirs instead of two (surface
runoff, hypodermic flow from the vadose zone reservoir, de-
layed runoff from infiltration and groundwater flow from the
phreatic zone reservoir), allowing for finer adjustments to the
runoff and routing schemes. Its snowmelt module requires
10 of the 21 parameters and was selected specifically to be
more robust in Nordic catchments with specific routines for
snow accounting, snowmelt, snowpack refreezing, ice forma-
tion and soil freezing and thawing. As for PET, it uses the
same Oudin formulation as GR4JCN, but HMETS includes
a scaling parameter on PET to control mass balance. It has
also been used in large-scale hydrological studies and has
shown overall good performance and robustness in a myriad
of climates and hydrological conditions.

3.3 Hydrological model calibration

As will be detailed in the following section, the three precip-
itation and three temperature datasets were combined in their
nine possible arrangements for analysis purposes. It follows
that the sheer number of calibrations to be performed (3 pre-
cipitation datasets x 3 temperature datasets x 2 hydrologi-
cal models x 3138 catchments) in this study required imple-
mentation of automatic model parameter calibration meth-
ods. For this study, the CMAES algorithm was implemented
because of its flexibility (Hansen, et al., 2003). Indeed, it per-
forms well for small and large parameter spaces such as the
6-parameter and 21-parameter spaces in this study. It was
also shown to be robust and is considered to be one of the
best auto-calibration algorithms for hydrological modelling
(Arsenault et al., 2013).

The hydrological model parameters were calibrated on the
entire available record of data for each catchment, foregoing
the usual model validation step. This method was chosen for
two reasons. First, calibrating on all years ensures that the
maximum amount of information from the climate data is
present in the parameter set and thus that there is no added
uncertainty from choosing calibration and validation years.
Second, Arsenault et al. (2018) have shown that the model
performance is statistically better when more years are added
to the dataset and that validation and calibration skills are not
necessarily correlated.

Finally, the calibration objective function was the Kling—
Gupta efficiency (KGE) metric, which is a modified version
of the Nash—Sutcliffe efficiency metric that was introduced
by Gupta et al. (2009) and Kling et al. (2012). KGE corrects
the fact that NSE underestimates variability in the goodness-
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of-fit function. It is defined as a combination of three ele-
ments:

KGE:1—\/(r—1)2+([3—1)2+()/—1)2, (1)

where r is the correlation component represented by Pear-
son’s correlation coefficient, g is the bias component repre-
sented by the ratio of estimated and observed means, and y
is the variability component represented by the ratio of the
estimated and observed coefficients of variation.

A perfect fit between observed and simulated flows will
return a KGE of 1. Using the mean hydrograph as a predic-
tor returns a KGE of 0, and a KGE lower than 0 implies that
the simulated streamflow is a worse predictor of the observed
flows than taking the mean of the observed values. KGE val-
ues above 0.6 are generally considered good; however, this is
a subjective quantification of the quality of the goodness of
fit.

3.4 Evaluation of the ERAS, ERA-I and observed
datasets

The next steps following the calibration of the hydrological
models on the 3138 catchments were to analyse the raw cli-
mate data (precipitation and temperature) at the catchment
scale. This analysis was performed by generating the nine
possible arrangements of three precipitation and three tem-
perature datasets and comparing their relative differences.
Then, after performing the model calibration and hydrolog-
ical simulation steps, the same type of comparison was per-
formed using the calibration KGE metric as a proxy to the
quality of the climate dataset. For example, if a certain com-
bination of precipitation and temperature datasets generates
higher KGE calibration scores, it is assumed that the climate
data are more likely to be accurate than another dataset that
returns lower KGE scores.

The various analyses were conducted on the yearly scale
as well as for the winter (December, January and February,
or DJF) and summer (June, July and August, or JJA) seasons.
The results were then analysed according to their respective
catchment locations, climates and sizes in an effort to explain
any relationships or differences between the dataset charac-
teristics (i.e. resolution, physics) and their performance (i.e.
KGE scores).

4 Results
4.1 Analysis of precipitation and temperature

The first part of the study was to compare precipitation and
temperature values averaged at the catchment scale. Figure 2
shows the mean annual temperatures for the observations
and the ERAS and ERA-Interim reanalysis products for the
catchments in this study (top row). It also shows the mean ab-
solute differences between the datasets for the winter (centre
row) and summer seasons (bottom row).
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The results in Fig. 2 are averaged at the catchment scale
in order to preserve the consistency between the climate
data and the hydrological modelling results presented fur-
ther in this paper. It can be seen that the ERA-Interim and
ERAS temperatures are generally similar to the observations,
although ERA-Interim displays a warm bias almost every-
where except for the south-eastern United States and a few
catchments in Canada, where it has a cold bias.

On the other hand, ERAS sees a strong reduction in biases
compared to those in the ERA-Interim dataset. The western
coast of North America clearly still shows some important bi-
ases of up to 3 °C in summer and —2 °C in summer, although
for most catchments the bias amplitude is smaller. It should
be noted that most of the large biases are observed in moun-
tainous areas, where observation networks are generally con-
sidered less robust. In the panels representing the differences
between ERAS and ERA-Interim in Fig. 2, it can be seen
that the ERAS product corrects the biases in ERA-Interim;
i.e. the areas that were too hot in ERA-Interim are colder in
ERAS and vice versa. The south-eastern USA was particu-
larly problematic for ERA-Interim in the context of hydro-
logical modelling (Essou et al., 2016b), and it will therefore
be explored further with ERAS in the rest of this study.

The precipitation time series from the three datasets in this
study were compared in a similar manner to the temperature
data, with Fig. 3 showing the mean annual precipitation for
the observations and the ERAS5 and ERA-Interim reanaly-
sis products for the catchments in this study (top row). Fig-
ure 3 also shows the mean absolute differences between the
datasets for the winter (centre row) and summer seasons (bot-
tom row).

From Fig. 3, it is clear that there is a good representa-
tion of mean seasonal and annual precipitation values across
the study domain. For winter, it seems that ERA-Interim
and ERAS are very similar, as the differences between those
datasets are small. One exception is the western coast, where
a dry bias persists although it has been reduced in ERAS as
compared to ERA-Interim. For the summer period, there is a
strong reduction in biases for the eastern half of the United
States, where ERA-Interim was problematic. The dry/wet
bias pattern of ERA-Interim is strongly reduced in ERAS.
However, both reanalysis products are wet in the north, al-
though as will be discussed in Sect. 5.1, this might be related
to the quality of the observation datasets in the remote north-
ern catchments.

4.2 Hydrological model simulations

The first results obtained in the hydrological modelling por-
tion of this study were the performance of the hydrological
models in calibration when driven by the various combina-
tions of precipitation and temperature data. Figure 4 shows
the calibration KGE scores for the HMETS (panel a) and
GR4JCN (panel b) for the nine combinations of precipita-
tion (three sets) and temperature (three sets). Each boxplot
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in Fig. 4 contains the KGE scores of all of the catchments in
this study.

From Fig. 4, it seems clear that the observations remain the
best source of precipitation data for hydrological modelling.
It is clear that for hydrological modelling, the ERAS dataset
is a net improvement over the ERA-Interim reanalysis, rank-
ing second after the observations. For the catchments in this
study, using ERAS precipitation allows reduction of the me-
dian gap between the older ERA-Interim reanalysis and the
observations by approximately 40 %. The precipitation data
are the main driver behind the differences observed between
the datasets, as it can also be seen that the variability linked
to the temperature dataset is minimal.

Regarding temperature, ERAS and the observations pro-
vide very similar results, whereas ERA-Interim temperature
lags slightly behind. In this sense, the temperature data from
ERAS are marginally more accurate for hydrological mod-
elling at the catchment scale than ERA-Interim and are sim-
ilar to that of the observed temperature dataset.

From Fig. 4, it is also interesting to note that the hydro-
logical models respond similarly to the various inputs, in-
dicating that the improvements seen with ERAS are due to
the dataset rather than the choice of hydrological model. In
general, it can also be seen that HMETS performs better
than GR4JCN when using the reanalysis datasets (with a me-
dian 0.04 KGE improvement), which is modest but statisti-
cally significant using a Kruskal-Wallis non-parametric test.

Hydrol. Earth Syst. Sci., 24, 2527-2544, 2020

HMETS and GR4JCN are statistically equivalent in terms of
KGE when using the observed meteorological data.

The hydrological modelling KGE metrics were next anal-
ysed with respect to the catchment locations, as seen in
Figs. 5 and 6. Figure 5 presents absolute values of KGE met-
rics for all three datasets and both hydrological models. The
differences between hydrological models (first vs. second
row) are generally small, although the better performance of
HMETS is particularly clear over the Rocky Mountains, and
especially in the case of both reanalyses. Both hydrological
models perform similarly when using observations as inputs
compared to reanalysis.

Focusing on the best performing hydrological model re-
sults (first row), two major observations can be made. First,
hydrological modelling with observations is clearly superior
to using both reanalysis datasets for the eastern part of the
US, but not so much for the western US and Canada. Second,
hydrological modelling performance using ERAS5 appears to
be consistently superior to ERA-I. To better emphasize these
conclusions, Fig. 6 presents differences in KGE metrics be-
tween all three datasets. The maps in Fig. 6 are therefore ob-
tained by subtracting the maps from Fig. 5, two at a time.
The middle (ERAS) and right (ERA-I) columns present dif-
ferences in hydrological modelling performance when using
reanalyses compared to observations. A blue colour indicates
that observations are superior for hydrological modelling, the
reverse being true for red colours. This figure provides a clear
view of the spatial patterns of hydrological modelling per-
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Figure 4. Distribution of calibration KGE scores for all water-
sheds as a function of meteorological inputs for HMETS (a) and
GR4JCN (b).

formance. Observations are clearly superior to reanalyses for
the eastern half of the US. This corresponds to the zone with
relatively large summer precipitation biases presented earlier
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in Fig. 3. Outside of this zone, both reanalyses perform sim-
ilarly to observations, and especially so for ERAS. The left-
hand side of Fig. 6 testifies to the uniform and significant
improvement in hydrological modelling performance when
using ERAS compared to its predecessor ERA-I.

To gain a better understanding of the reasons behind these
observations, hydrological modelling performance was anal-
ysed by looking at watershed size (Fig. 7), elevation (Fig. 8)
and climate zone (Figs. 9 and 10). In those three cases, the
results are only shown for the HMETS hydrological model,
since the results for GR4J are similar, albeit with a small
degradation in modelling performance, as shown in the pre-
ceding figures.

Since all three gridded datasets have different spatial res-
olutions, Fig. 7 looks at modelling performance for water-
sheds grouped under four different size classes. The patterns
are consistent across all four size classes and similar to those
of Fig. 4, with observations being best for all classes, fol-
lowed by ERAS and then ERA-I. However, it can be seen
that hydrological modelling performance gets progressively
better for larger watersheds for all three datasets. This is par-
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ticularly clear for both reanalyses. While observations per-
form better at all scales, the gap with reanalysis gets smaller
as catchment size increases. The interquartile range (defined
by the solid rectangle of the boxplot) is roughly constant for
observations, but consistently decreases for both reanalyses.
Therefore, a larger proportion of smaller-size watersheds is
challenging for hydrological modelling than for larger-size
watersheds. Differences between ERAS and ERA-I stay con-
stant across all size classes.

Figure 8 presents the same data but as a function of water-
shed elevation, separated once again into four classes. Mean
watershed elevation is mapped in Fig. 1. Figure 8 shows a
strong dependence of hydrological modelling results on wa-
tershed elevation. Observations clearly perform better for the
low-elevation (<500 m) watersheds, but differences rapidly
shrink, with ERAS actually performing as strongly and even
better than observations for the last two elevation classes. It

Hydrol. Earth Syst. Sci., 24, 2527-2544, 2020

is relevant to stress that over 60 % of all watersheds are in-
cluded in the first elevation class and that most of the east-
ern US watersheds are within the first two elevation classes.
Results from Fig. 7 could therefore be influenced by water-
shed location in addition to elevation. It is also clear that
ERA-Interim temperature gets progressively less competitive
as the elevation rises, being significantly less efficient than
ERAS and the observations in the high-elevation groups.

The data were finally analysed by climate zone groupings.
Figure 9 presents North America’s climate classes from the
Koppen—Geiger classification (Peel et al., 2007). It can be
seen that North America displays four of the five main cli-
mate zones, with the exception of the equatorial climate.
In total, 13 classes were kept for this analysis. Figure 10
presents hydrological modelling results for each of those 13
zones.
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Figure 8. Distribution of the Kling—Gupta efficiency metrics for various elevation bands, for hydrological model HMETS.

Results indicate that dataset performance and relative per-
formance strongly depend on the climate zone. This is not
surprising since performance was already shown to display
spatial patterns. From Figs. 9 and 10, it is apparent that the
ERAS dataset is systematically better than ERA-Interim for
all climate zones and that the observations are clearly supe-
rior to ERAS for the Cfa and Dfa climate zones. Elsewhere,
the differences are less pronounced. The Cfa and Dfa cli-
mate zones are the two main climate zones in the eastern
US, which were shown to be problematic for the reanalysis
datasets. Furthermore, ERAS fares better than the observa-
tions in the northern parts of Canada and in the mountainous
regions with climate zones Dfc and BSh, respectively. This
observation will be discussed further, in Sect. 5.2. Figure 11
summarizes these results with the use of the Kruskal-Wallis
statistical significance test to determine the best dataset for
each climate zone. The Kruskal-Wallis hypothesis test is a
non-parametric test to evaluate whether two samples origi-
nate from the same distribution. In Fig. 11, the green, yel-
low and red colours, respectively, indicate the best, second
best and worst datasets for each climate zone. If two datasets
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share a colour for the same climate zone, the distribution of
KGE values is considered to not be statistically different.
Results indicate that there are no differences in hydrologi-
cal modelling performance between ERAS and observations
over 9 of the 13 climate zones. For the other four regions
(all in the eastern United States — Bsk, Cfa, Dfa, Dfb), us-
ing observations will result in a statistically significantly bet-
ter hydrological modelling performance. ERA-I is the worst
performing dataset over eight climate zones. In the remaining
five zones, Bsh (3), Csa (53), Dsc (33), EF (3) and ET (15),
all three datasets perform identically from a statistical view-
point. These zones share in common the fewest watersheds
and the most extreme climates (arid and polar).

In order to better explore the differences related to the
watershed locations and properties, three catchments of dif-
ferent hydrological regimes were analysed in depth. Fig-
ure 12 presents the hydrological modelling KGE difference
for HMETS between ERAS and the observation dataset (first
column) along with the mean monthly precipitation (sec-
ond column), mean monthly temperature (third column) and
mean annual hydrograph (fourth column). Results are pre-
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Figure 9. Koppen—Geiger climate classification of the North American watersheds presented in this study.
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Figure 10. Distribution of the Kling—Gupta efficiency metrics for the 13 climate zones of Fig. 9, for hydrological model HMETS.
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Kruskal-Wallis statistical significance test
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Figure 11. Results of the Kruskal-Wallis statistical significance test
to determine the best dataset for hydrological modelling as observed
through the KGE metric, for each climate zone. The green, yel-
low and red colours, respectively, indicate the best, second best and
worst datasets for each climate zone.

sented for the Ouiska Chitto Creek near Oberlin, Louisiana,
USA (first row), the Grande Riviere a la Baleine in Quebec,
Canada (centre row) and the Cosumnes River at Michigan
Bar, California, USA (bottom row). Table 1 shows summa-
rized statistics for the three catchments.

The first row in Fig. 12 presents a catchment in the
south-eastern United States, which is a region in which the
reanalysis-driven hydrological models are unable to perform
as well as the observation-driven models. ERA-Interim has a
clear precipitation seasonality problem, being too dry except
for the summer months, where there is a large overestimation
of precipitation compared to the observations. This seasonal-
ity problem is mostly solved by ERAS, but a dry bias per-
sists all year, as shown in Fig. 3. The temperatures between
the three datasets are practically identical, which means that
evapotranspiration should be relatively constant between the
products. The lack of precipitation should therefore become
apparent in the simulated hydrograph; however, the stream-
flow is higher for ERAS than for the observations, when the
opposite would normally be expected. It is important to note
that the hydrological model can adapt its mass balance by ad-
justing the potential evapotranspiration scaling, which it has
clearly done in this case. The difference in hydrological mod-
elling then comes from the temporal distribution of precipi-
tation, and it can be seen that the ERAS winter precipitations
are relatively lower in winter than for the rest of the year.
The PET scaling therefore attempts to reduce evaporation for
the entire year, but does not compensate enough to account
for this difference in winter. Indeed, it can be seen that the
observed hydrograph is underestimated by ERAS and ERA-
Interim for that period in the south-eastern United States.

The second catchment is located in northern Quebec,
Canada, and as such is in a remote and sparsely gauged
region. In this case, it can be seen that the ERAS-driven
KGE metric is superior to that obtained using the obser-
vations. One key difference between the reanalysis and ob-
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served datasets is the precipitation, where ERAS and ERA-
Interim both show more precipitation than the observations.
Again, the temperatures are practically identical, meaning
that the potential evapotranspirations, although weak in that
region, are very similar. The mean annual hydrograph is also
very similar between ERA-Interim and the observations, but
it can be seen that the ERAS model overestimates stream-
flow in winter while matching the snowmelt peak flows more
closely than the other datasets. The difference in KGE in
this case comes from a better matching of peak flows, which
counts more heavily towards the KGE than the low flows.

The third catchment, located in the west, is characterized
by large precipitation systems in autumn and winter, with a
months long dry spell in summer. ERA5 mostly corrected
ERA-Interim’s strong underestimation of precipitation for
that catchment, as is the case for most western coast catch-
ments as seen in Fig. 3. ERAS temperatures are slightly
cooler and are more in line with the observations. In terms of
hydrological modelling, ERA-Interim underestimates the av-
erage streamflows year-round, while ERAS slightly overesti-
mates them in winter. As seen in Table 1, the ERAS dataset
managed to improve the KGE from 0.83 (ERA-Interim) to
0.87, as compared to the reference of 0.90 obtained with the
observed data. The improvements in precipitation in ERAS
for this region thus seem to translate to improved hydrolog-
ical modelling compared to using ERA-Interim, which con-
firms the findings of Fig. 6.

5 Discussion

This study aims to evaluate the ERAS reanalysis product
as a potential reference dataset for hydrological modelling.
The ERAS reanalysis was compared to the ERA-Interim and
observation datasets when used in two hydrological models
covering 3138 catchments in North America. This section
aims to analyse and explain the results obtained in light of the
literature and properties of the ERAS reanalysis. First, differ-
ences in climate and hydrological data will be investigated,
followed by an analysis based on climate classifications and
catchment size. Finally, limitations of the study and recom-
mendations for future work will be provided.

5.1 Differences in temperature and precipitation
between the ERA5, ERA-I and observation datasets

In this study, the observations are taken as the reference
dataset and ERAS5 is compared to both the observations and
ERA-Interim. This allows validation of both the improve-
ment in ERAS with respect to ERA-Interim as well as evalua-
tion of the possibility of using ERAS reanalysis data as inputs
to hydrological models to overcome potential deficiencies of
observation networks, related to either quality and/or avail-
ability.

Hydrol. Earth Syst. Sci., 24, 2527-2544, 2020
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Table 1. Summary of physical and hydrological modelling statistics for the three catchments presented in Fig. 11.

KGE in calibration
Catchment Outlet latitude ~ Outlet longitude Outlet Catchment ERAS ERA-I OBS
(dec. deg.) (dec. deg.) elevation (m) area (kmz) dataset dataset dataset
Ouiska Chitto (south-eastern USA) 30.93 —92.98 53 1320 0.65 0.49 0.87
Grande Baleine (northern Canada) 55.08 —73.10 389 36300 0.94 0.94 0.92
Cosumnes River (western USA) 38.60 —120.68 696 1388 0.87 0.83 0.90
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Figure 12. Difference in hydrological modelling performance, mean monthly precipitation and temperature and mean annual hydrograph
using ERA-I and ERAS observations (OBS) and streamflow observations (G-OBS) on three dissimilar catchments: Ouiska Chitto Creek (top
row), Grande Riviere a la Baleine (centre row) and Cosumnes River (bottom row).

The evaluation of ERAS temperature and precipitation
variables compared to ERA-Interim and the observation
datasets showed that ERAS systematically reduced bi-
ases present in ERA-Interim for the temperature variables,
whereas precipitation was generally also less biased, al-
though to a lesser degree. There are remaining precipitation
biases on the western coast of North America with ERAS,
but from Fig. 2 it can bee seen that the scale of these biases is
dependent on the season. In the south-eastern United States,
ERADS largely corrects biases that were present in the ERA-
Interim dataset and led to relatively poor hydrological mod-
elling in a few studies (e.g. Essou et al., 2016b). As for tem-
perature, Fig. 2 shows that summer temperatures in ERAS are
mostly too high for the catchments west of the Rocky Moun-
tains but are improved over the ERA-Interim data. There is
also an interesting pattern of biases between the eastern and
western coasts (Figs. 2 and 3), which could be partly ex-
plained by some processes not being accounted for in ERAS,
notably the high-amplitude ridge trough wave patterns which
have seen a recent increase allowing severe weather in both
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the east and west simultaneously (Singh et al., 2016; Ray-
mond et al., 2017), although ERAS5 did improve the repre-
sentation of many processes since ERA-I (Hoffmann et al.,
2019).

It is important to note that these perceived biases suppose
that the observation data are perfect. In reality, at the catch-
ment scale, one would expect that the observations would
be far from perfect and contain errors due to location rep-
resentativeness, precipitation undercatch, and missing data
due to station malfunction or instrument replacement, for
example. However, the observation data are the best esti-
mates available, which makes them the de facto reference
dataset. This means that although Figs. 2 and 3 show ERAS
and ERA-Interim as containing some important biases on
western North America, it is possible that these biases are
caused by biases in the station data relative to the catchment
size. The reanalysis products also have the advantage of be-
ing driven by spatialized sources such as satellites, which
can help in estimating precipitation and temperature data in
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regions where the weather station network is deficient or
sparse.

5.2 Differences in hydrological simulations using
ERAS, ERA-I and observation data as inputs to
hydrological models

One way to evaluate the quality of the observation and re-
analysis data is to use hydrological models as integrators to
compare simulated and observed streamflow, which can act
as an independent validation variable. In an attempt to inde-
pendently assess precipitation and temperature data for each
dataset, all possible combinations of precipitation and tem-
perature were fed to two hydrological models, which were
then calibrated for each combination. This was to remove
any bias caused by parameter sets calibrated on one single
dataset, which would obviously be favoured in the resulting
analysis. As was the case for the climatological variables, the
observed streamflows act as the reference hydrometric data
and are considered unbiased. Of course, in reality streamflow
gauges contain various sources of errors (Di Baldassarre and
Montanari, 2009), but for this study they are the best avail-
able estimates. This hypothesis could have a small effect on
the conclusions of this study. For example, if a certain com-
bination of precipitation and temperature datasets generates
higher KGE calibration scores, it is assumed that the climate
data are more likely to be correct than another dataset that
returns lower KGE scores. This could be incorrect in some
instances where the error actually comes from the stream-
flow data; however, on average over the 3138 catchments this
effect should not influence the results.

The results in Fig. 4 showed that the hydrological models
driven with the observed precipitation generally provide the
most representative simulated hydrographs, with KGE val-
ues exceeding those of the ERAS5-precipitation-driven hydro-
logical models by 0.1 on average, which is a significant dif-
ference. ERAS precipitation is also shown to be clearly bet-
ter than ERA-Interim precipitation on average for the catch-
ments in this study. Another interesting aspect is that in
Fig. 4, replacing observed temperatures with ERAS temper-
atures marginally improves the hydrological modelling skill.
While not a significant difference, this attests to the quality
of the ERAS5 temperatures in general for hydrological mod-
elling. Therefore, the differences observed in the hydrologi-
cal modelling performance are almost entirely due to the pre-
cipitation data quality. The rest of this study will thus focus
on the precipitation and hydrological modelling and forego
further analysis of temperature data.

Also of note is that in general, ERAS-driven hydrologi-
cal simulations are less skillful than those driven by obser-
vations. However, there are some catchments — mostly in
the mountainous regions of the western United States and in
northern Canada — where use of ERAS leads to improved hy-
drological simulations. This is probably due to the difficulty
in installing weather stations and obtaining representative ob-
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Figure 13. Distribution of the Kling—Gupta efficiency metrics for
the 3 north-eastern US climate zones (Cfa, Dfa, Dfb) and for all the
other 10 climate zones grouped together, for hydrological model
HMETS.

servation data in those regions, but it shows that reanalysis
data can be used as a replacement for observations for hy-
drological modelling in these regions, as previously reported
by Essou et al., 2016b).

The more detailed spatial (Fig. 6) and climate zone
(Figs. 10 and 11) analysis outlined the strong spatial depen-
dence on dataset performance. Observations clearly outper-
formed ERAS over the eastern half of the US, where a larger
portion of the watersheds used in this study are located. To
illustrate this point, Fig. 13 presents modelling performance
over the eastern US (grouping climate zones Cfa, Dfa, and
Dfb) against that of the other 10 climate zones.

Figure 13 paints a much different picture than Fig. 6 since
it shows that hydrological modelling with ERA-5 precipita-
tion and temperature is as good as observations everywhere
in North America, with the exception of the eastern US. The
disproportionate number of watersheds in this region may
overemphasize the performance differential between ERAS
and observations as seen in Fig. 6. An interesting fact is that
the eastern US is the North American region with by far the
highest density of weather stations, as reported by Janis et
al. (2002). Theoretically, this could explain why observation-
based modelling performs better in this region. However,
Fig. 13 shows that observation-based modelling performance
is not different in the other regions, whereas reanalysis-based
modelling clearly suffers over the eastern US. This was also
noted in Essou et al. (2016b). It could mean that reanaly-
ses face a harder challenge in the eastern US, further away
from the Pacific Ocean control on atmospheric circulation. A
large proportion of summer and autumn precipitation in these
zones comes from convective storms. Eastern Canadian wa-
tersheds are well modelled using reanalyses, but the hydro-
logical behaviour of most of those watersheds is dominated
by the spring flood, which is largely controlled by tempera-
ture, which is very well reproduced by both reanalyses.

Alternatively, this could also mean that eastern US water-
sheds are in fact more difficult to hydrologically model and
that differences are therefore directly linked to network den-
sity. Equal performance of ERAS and observations elsewhere
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would therefore be the result of the improved process rep-
resentation of ERAS coupled with some degradation of ob-
servations due to the gridded interpolation process between
more distant stations. As discussed below, a more precise in-
vestigation of modelling performance as a function of station
density could shed light on this issue.

5.3 Differences between the HMETS and GR4]J
hydrological models

In this study, two hydrological models were selected to per-
form the hydrological evaluation of the reanalysis and ob-
servation datasets. While both models are conceptually simi-
lar, GR4J is simpler than HMETS (two routing processes in-
stead of four, non-scalable PET, much simpler snow model,
less than half the number of parameters, etc.). They were
shown to perform generally well over all climate zones rep-
resented by the catchments used in this study, as can be seen
in Fig. 4. Interestingly, both GR4J and HMETS return simi-
lar results for any given driving climate dataset. HMETS per-
forms slightly better than GR4J almost everywhere, although
that can be attributed to its more flexible model structure and
parameterizations that can better adapt to various hydrologi-
cal conditions.

Since the main objective of this study was to evaluate
the ERAS5 dataset for hydrological modelling, the interest
is not to compare the hydrological model performances, but
to compare the ERAS-driven simulations to the others for
each model. In both cases, as can be seen in Figs. 4, 6 and
8, ERAS5-driven hydrological models clearly outperform the
ERA-Interim-driven models, which shows that the precipita-
tion scheme in ERAS is superior to that in ERA-Interim for
hydrological modelling purposes. As stated in Sect. 5.2, tem-
perature seems to play only a minor role in the differences in
hydrological modelling.

Furthermore, the observation-driven hydrological mod-
els generally perform better than the ERAS-driven models,
which confirms that station data should be prioritized when
possible. The main caveat to this point is that when the obser-
vation station network is of poor quality or too sparse, then
ERAS can be used to fill the voids and get an acceptable hy-
drological response, as discussed in Sect. 5.2.

5.4 Analysis of the impacts of catchment size and
elevation on the hydrological simulation
performance using the ERA-I and ERA5
reanalyses

One of the major differences between ERA-Interim and
ERAS is the horizontal resolution, improving from 79 to
31 km. This finer resolution should allow for more precise
estimations of precipitations and temperatures over smaller
catchments that were not adequately represented by ERA-
Interim. This logic should apply even though the hydrologi-
cal models are lumped models. Larger catchments could also
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see some improvements, namely in a better estimation of the
terrain elevation, but it is expected that the gain would not be
as large as for smaller catchments.

In order to test this hypothesis, the improvements between
ERAS and ERA-Interim in hydrological modelling were
sorted according to catchment size, as shown in Fig. 7. It
is clear from Fig. 7 that the catchment size is not a good pre-
dictor of hydrological simulation improvement. While most
catchments see improvements with ERAS over ERA-Interim,
the catchment size does not seem to affect the rate of im-
provement. This suggests that the improvements do not come
from the higher spatial resolution, lending credence to the hy-
pothesis that the enhancements are due to ERAS’s improved
physics and process representations.

A similar analysis was performed to evaluate the impact of
catchment elevation on hydrological modelling skill. It can
be seen from Fig. 8 that the elevation plays a significant role
in the hydrological model’s ability to estimate streamflow.
For example, the median and interquartile ranges increase for
all datasets as elevation increases. This could be caused by
a more rapid hydrological response in higher-elevation and
steeper catchments, compared to the slow runoff schemes
often found in flat lowlands. The hydrological models be-
ing lumped models could contribute to this as large and flat
catchments would be more affected by the location of rain-
fall events compared to steeper ones, especially in the timing
of the hydrograph peaks. For the northern catchments, the
peaks are caused by snowmelt which is much more uniform
than rainfall events, which would minimize this effect.

Another, more probable reason for the reanalysis datasets
being stronger in mountainous regions is simply because
there are fewer weather stations set up in those areas due to
difficulties in accessing and maintaining them. The density
of weather stations in the eastern part of the US is typically
at least twice as large as for the western part (Janis et al.,
2002). In such cases, a reanalysis would provide information
that is not conveyed by station data, making it a de facto best
estimation of precipitation. In essence, the ERAS data are
not yet as accurate as observations; however, they are able to
perform very well in their absence.

Finally, in all the analysed scenarios in this study, ERAS
has always been at least as good as ERA-Interim in terms of
hydrological performance. The same is true for the precipi-
tations and temperatures at the catchment scale. From all the
results in this study, there does not seem to be any reason or
indication that ERA-Interim should continue to be used for
hydrological modelling applications, at least in North Amer-
ica. This is not to say that ERAS is perfect, but it should
become the reference for the time being.

5.5 Limitations
As is the case with any large-scale comparison studies, some

methodological limitations may potentially impact conclu-
sions drawn from the presented results. In terms of hydro-
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logical modelling, this study only uses two lumped concep-
tual models and one flow criterion (KGE). Both models are
lumped, which limits the assessment of the horizontal reso-
lution component of the three datasets. This aspect was how-
ever indirectly assessed by looking at the impact of water-
shed size. Both hydrological models are conceptually simi-
lar, but HMETS is more flexible and has more hydrological
processes (and parameters). Accordingly, this study was able
to look at the impact of parametric space flexibility in deal-
ing with various dataset biases, but not at other issues such as
the impact of physically based processes and distributed in-
puts. A study looking at the latter points would require more
complex hydrological models, but at the expense of having
to look at far fewer watersheds.

The single streamflow criteria and objective function
(KGE), like its Nash—Sutcliffe relative, is weighted towards
higher-flow events. Other objective functions would return
different results; however, the fact that ERAS climate data are
generally improved in all areas is an indicator that other met-
rics could potentially see improved results as well, although
no test has been performed to that effect in this study. There
are several other streamflow criteria which could shed light
on differences between datasets, such as extremes. In particu-
lar, high-flow extremes have the potential to outline improve-
ments in ERAS compared to its predecessor ERA-I because
of improved resolution and processes. Low flows may also
be of interest, although they are typically less well modelled
by conceptual hydrological models and are more strongly de-
pendent on temperature, which is very comparable across all
three datasets. Finally, there are now several potential other
precipitation datasets that could have been included in the
comparison (see for example Beck et al., 2017a). However,
the goal of this work was a first evaluation of the 1979-2019
ERAS5 dataset, because of the potential linked to its spatial
and temporal resolutions.

5.6 Recommendations

One of the main reasons for the interest in the ERAS reanal-
ysis resides in its hourly temporal resolution. Therefore, the
obvious next step is to investigate sub-daily components, and
particularly for precipitation. Sub-daily precipitation is key
to investigating the hydrological response of smaller water-
sheds. However, sub-daily studies raise another set of chal-
lenges, notably the absence of a robust baseline hourly me-
teorological dataset. MSWEP (Beck et al., 2017b) is the best
potential candidate at the sub-daily timescale (3-hourly), but
the reliability of its sub-daily component is largely unknown.
Reliance on hourly weather station data will therefore be
required, meaning additional problems, including having to
deal with missing data.

The differences noted in the eastern USA raised the ques-
tion of the potential impact of the density of the station net-
work on the absolute and relative performance of the vari-
ous datasets. This could be better studied by assigning a net-
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work density index to each watershed. This could ultimately
lead to a better understanding of the role of station density
and provide guidance on network improvements or rational-
ization. It could also be envisioned to extend this work to
underdeveloped countries where there is a lower number of
observational gauges, where a good quality reanalysis might
allow for improved hydrological simulations and better un-
derstanding of the regional weather characteristics.

The hydrological performance of ERAS opens specific av-
enues of research for streamflow forecasting using ECMWF
forecasts. Calibrating hydrological models with ERAS data
could potentially reduce streamflow forecast biases since the
reanalysis and forecasts essentially originate from the same
model.

6 Conclusions

The main objective of this study was to evaluate the ERAS
reanalysis as a potential reference dataset for hydrological
modelling over North America, by performing a large-scale
hydrological modelling study using ERAS5, ERA-Interim and
observations as forcing data to two hydrological models. The
first assessment showed that ERAS precipitation and temper-
ature data were greatly improved compared to its predeces-
sor ERA-Interim, although some significant biases remain in
the south-eastern United States and North American western
coast. These improvements were then shown to translate well
to the hydrological modelling results, where both hydrolog-
ical models showed significant increases in skill with ERAS
as opposed to ERA-Interim. In all cases, ERAS was consis-
tently better than ERA-Interim for hydrological modelling
and as good as observations over most of North America,
with the exception of the eastern half of the USA. The lesser
performance of reanalyses in this region may reflect some de-
ficiencies in representing precipitation seasonality accurately
and may also result from the higher-density network over the
eastern USA, thus favouring observations or a combination
thereof. We also showed that the catchment size did not im-
pact the hydrological modelling performance; thus, the im-
provements are not linked to ERAS’s model resolution, but to
its improved internal physics and assimilation. While some
limitations apply to ERAS, it seems that this reanalysis is
significantly improved compared to ERA-I and that it should
definitely be considered a high-potential dataset for hydro-
logical modelling in regions where observations are lacking
either in number or in quality.

Future work should focus on evaluating the sub-daily
performance of hydrological modelling with ERAS, test-
ing its quality on other continents, integrating ERAS-based
model calibration for hydrological forecasting applications
and evaluating its potential for weather network augmenta-
tion and rationalization.

Finally, it is important to state that this paper does not
advocate the replacement of observed data from weather
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stations by products such as reanalysis, nor should it be
interpreted as providing justification to pursue the current
trend of decommissioning additional stations. Weather sta-
tions will continue to provide the best estimate of surface
weather data at the local and regional scales, and there are
many fundamental reasons to keep on supporting a strong
network of quality weather stations. The results provided in
this study for ERAS show that atmospheric reanalyses have
likely reached the point where they can reliably complement
observations from weather stations and provide reliable prox-
ies in regions with less dense station networks, at least over
North America.

Code and data availability. The gridded observed weather data
were downloaded from the Santa Clara repository avail-
able here: http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_
2010 (Maurer et al., 2002).

The Canopex climate and streamflow data can be downloaded
from the official data repository available here: http://canopex.
etsmtl.net/ (Arsenault et al., 2016).

The USGS streamflow data (USGS, 2019) can be downloaded
from the USGS Water Data for the Nation repository available here:
https://doi.org/10.5066/F7P55KIN.

ERA-Interim data are available through the ECMWF servers at
https://apps.ecmwf.int/datasets/data/interim-full-daily/ (Dee et al.,
2011).

ERAS data are available on the Copernicus Climate Change
Service (C3S) Climate Data Store: https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-eraS-single-levels?tab=form (Hers-
bach and Dee, 2016).

The HMETS hydrological model is available on the Mat-
lab File Exchange: https://www.mathworks.com/matlabcentral/
fileexchange/48069-hmets-hydrological-model (Martel et al.,
2017).

Finally, the GR4J model (Perrin et al, 2003)
and  CemaNeige Snow module (Valéry et al,
2014) are available on the Matlab File Exchange:
https://www.mathworks.com/matlabcentral/fileexchange/61720-
grdj-rainfall-runoff-model-deterministic-and-stochastic-methods-
with-matlab.
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