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Abstract. Soil texture and soil particle size fractions (PSFs)
play an increasing role in physical, chemical, and hydrolog-
ical processes. Many previous studies have used machine-
learning and log-ratio transformation methods for soil texture
classification and soil PSF interpolation to improve the pre-
diction accuracy. However, few reports have systematically
compared their performance with respect to both classifica-
tion and interpolation. Here, five machine-learning models
– K-nearest neighbour (KNN), multilayer perceptron neu-
ral network (MLP), random forest (RF), support vector ma-
chines (SVM), and extreme gradient boosting (XGB) – com-
bined with the original data and three log-ratio transforma-
tion methods – additive log ratio (ALR), centred log ra-
tio (CLR), and isometric log ratio (ILR) – were applied to
evaluate soil texture and PSFs using both raw and log-ratio-
transformed data from 640 soil samples in the Heihe River
basin (HRB) in China. The results demonstrated that the
log-ratio transformations decreased the skewness of soil PSF
data. For soil texture classification, RF and XGB showed bet-
ter performance with a higher overall accuracy and kappa
coefficient. They were also recommended to evaluate the
classification capacity of imbalanced data according to the
area under the precision–recall curve (AUPRC). For soil
PSF interpolation, RF delivered the best performance among
five machine-learning models with the lowest root-mean-

square error (RMSE; sand had a RMSE of 15.09 %, silt was
13.86 %, and clay was 6.31 %), mean absolute error (MAE;
sand had a MAD of 10.65 %, silt was 9.99 %, and clay was
5.00 %), Aitchison distance (AD; 0.84), and standardized
residual sum of squares (STRESS; 0.61), and the highest
Spearman rank correlation coefficient (RCC; sand was 0.69,
silt was 0.67, and clay was 0.69). STRESS was improved by
using log-ratio methods, especially for CLR and ILR. Predic-
tion maps from both direct and indirect classification were
similar in the middle and upper reaches of the HRB. How-
ever, indirect classification maps using log-ratio-transformed
data provided more detailed information in the lower reaches
of the HRB. There was a pronounced improvement of 21.3 %
in the kappa coefficient when using indirect methods for soil
texture classification compared with direct methods. RF was
recommended as the best strategy among the five machine-
learning models, based on the accuracy evaluation of the soil
PSF interpolation and soil texture classification, and ILR was
recommended for component-wise machine-learning models
without multivariate treatment, considering the constrained
nature of compositional data. In addition, XGB was preferred
over other models when the trade-off between the accuracy
and runtime was considered. Our findings provide a refer-
ence for future works with respect to the spatial prediction
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of soil PSFs and texture using machine-learning models with
skewed distributions of soil PSF data over a large area.

1 Introduction

Soil texture, classified by ranges of soil particle size frac-
tions (PSFs), is one of the most important attributes affect-
ing the soil properties and the physical, chemical, and hy-
drological processes covering soil porosity, soil fertility, wa-
ter retention, infiltration, drainage, aeration, and so on. Soil
texture distribution can be used for soil fertility manage-
ment (Pahlavan-Rad and Akbarimoghaddam, 2018; Bationo
et al., 2007), water management (Thompson et al., 2012),
and ecosystem service provision (Adhikari and Hartemink,
2016). The soil PSFs – sand, silt, and clay – are vital in most
hydrological, ecological, and environmental risk assessment
models (Liess et al., 2012). The spatial distributions of soil
texture and soil PSFs affect runoff generation, slope stabil-
ity, soluble salt content, and the estimation of the evaporative
fraction (McNamara et al., 2005; Follain et al., 2006; Yoo et
al., 2006; Gochis et al., 2010; Crouvi et al., 2013; Xu et al.,
2019).

The ancillary data should be considered in the predic-
tion, especially over a large study area, to enhance the in-
terpolation performance (Wang and Shi, 2017). Machine-
learning models, such as boosting regression trees (Jafari
et al., 2014; Yang et al., 2016), random forests (RF; Hengl
et al., 2015; Zeraatpisheh et al., 2017), and artificial neural
networks (Bagheri Bodaghabadi et al., 2015; Taalab et al.,
2015), have been commonly employed in both interpolation
and classification combined with environmental covariates
for soil properties. Machine-learning models such as RF and
gradient boosting have shown better performance than sta-
tistical linear models (e.g. multiple linear regression) in the
prediction of soil properties, because they are robust to noise
and have a low bias when dealing with large data sets (Hengl
et al., 2015, 2017). Among machine-learning models, artifi-
cial neural networks and “tree learners” (e.g. decision trees)
have been preferred due to their relatively high overall ac-
curacy and kappa coefficients, the interpretability of the re-
sults, and the speed of the parameterization in the prediction
of soil classes (Taghizadeh-Mehrjardi et al., 2015; Heung et
al., 2016). Most previous studies have used machine-learning
algorithms to simulate soil category or continuous proper-
ties for classification or regression problems. However, few
studies have systematically analysed both soil texture classi-
fication and soil PSF interpolation using different machine-
learning models.

The soil PSFs, which can be classified as soil texture, are
not only continuous variables but are also compositional data
– thus, the constant sum (1 % or 100 %) should be guaran-
teed. Soil PSF data are typical compositional data with three
components that are not independent of each other but are

rather expressed as a percentage (Filzmoser et al., 2009). Be-
cause of the spurious correlations between components, dif-
ferent results occur on different measurement scales (Abdi
et al., 2015; Reimann and Filzmoser, 2000). Indicators and
statistical methods based on Euclidean distances can reveal
misleading or biased results (Butler, 1979). Numerous dif-
ferent interpretations of compositional data have been sug-
gested in soil science (Gobin et al., 2001; Salazar et al., 2015;
Tolosana-Delgado et al., 2019; Hengl et al., 2018), and the
most extensively used method has been a combination of
log-ratio transformation methods, including the additive log
ratio (ALR; Aitchison, 1982), the centred log ratio (CLR;
Aitchison, 1982), and the isometric log ratio (ILR; Egozcue
et al., 2003). Soil PSFs have been predicted using multiple
linear regression (Huang et al., 2014) and kriging (Wang and
Shi, 2018; Zhang et al., 2013) combined with log-ratio trans-
formation methods. Moreover, multivariate treatment of soil
PSFs can be realized using the probability density functions
of soil particle size curves (PSCs), as non-negative values
integrating to 1 % (or 100 %) can be considered as com-
positional data with infinitesimal parts (so-called functional
compositions) (Menafoglio et al., 2014). Functional compo-
sitions are beneficial for acquiring complete and continuous
information rather than discrete information, and soil texture
and soil PSFs can be extracted from the stochastic simulation
of soil PSCs (Menafoglio et al., 2016a), which can be jointly
applied to the fractions to fully exploit the richness of infor-
mation. Menafoglio et al. (2016b) applied such functional–
compositional data for the stochastic simulation of PSCs
based on a geostatistical Monte Carlo and Bayes space ap-
proach combined with a CLR transformation method in het-
erogeneous aquifer systems in hydrogeology, demonstrat-
ing a remarkable improvement of the characterization of the
spatial variability and uncertainty compared with traditional
methods. However, most soil PSF data used in studies are
discrete (i.e. sand, silt, and clay), and few studies have con-
ducted a systematic comparison of the accuracy, strengths,
and weaknesses of different machine-learning models using
original data and different log-ratio-transformed data.

Soil texture classification can be predicted by machine-
learning models directly, and it can also be derived indirectly
from soil PSFs. For the direct soil texture classification,
tree-based models such as RF and classification tree (CT)
performed better than multinomial logistic regression, sup-
port vector machines (SVM), and artificial neural network
(ANNs; Camera et al., 2017; Wu et al., 2018). For the indi-
rect classification of soil texture, Poggio and Gimona (2017)
combined hybrid geostatistical generalized additive models
with ALR and modelled PSFs at a 250 m resolution in Scot-
land. Considering the particularity of compositional data, the
results of soil PSF classification and interpolation could be
compared using the direct and indirect methods. Neverthe-
less, few studies have systematically compared the different
machine-learning models for both direct and indirect soil tex-
ture classification.

Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020 www.hydrol-earth-syst-sci.net/24/2505/2020/



M. Zhang et al.: Systematic comparison of five machine-learning models 2507

In our study, five machine-learning models – K-nearest
neighbour (KNN), multilayer perceptron neural network
(MLP), RF, SVM, and extreme gradient boosting (XGB) –
were applied for soil texture classification and soil PSF inter-
polation. Furthermore, the log-ratio-transformed data were
also combined with these five machine-learning models for
soil PSF interpolation. The objectives of this study are (i) to
compare the performance of five machine-learning mod-
els for soil texture classification and soil PSF interpolation,
(ii) to evaluate the performance of machine-learning mod-
els using original and different log-ratio-transformed data for
soil PSF interpolation, and (iii) to estimate the performance
of direct and indirect soil texture classification using these
methods.

2 Data and methods

2.1 Study area

The Heihe River basin (HRB; 97◦6′–102◦3′ E, 37◦43′–
42◦40′ N) is situated in the northwest of China, covering
the Inner Mongolia Autonomous Region, including Gansu
and Qinghai provinces, and is the second largest inland river
basin in China with an area of 146 700 km2 (Fig. 1a). The
elevation ranges from 669 m to 5573 m (Fig. 1b). For the up-
per reaches of the HRB, the mean annual precipitation is
350 mm, the annual mean temperature ranges from −5 to
4 ◦C, and the annual average evaporation is 1000 mm. For
the middle reaches of the HRB, the mean annual precipita-
tion is between 50 and 250 mm, the annual average evap-
oration increases from 2000 (east) to 4000 mm (west), and
the mean annual temperature ranges from 2.8 to 7.6 ◦C. The
lower reaches of the HRB are situated in Ejin Banner on the
Alxa Plateau, which has an arid desert climate with an annual
precipitation of under 50 mm and an annual average evapora-
tion of above 3500 mm; the mean annual temperature ranges
from 8 to 10 ◦C.

The vegetation in the upper reaches of the HRB (Fig. 1c)
is influenced by hydrothermal conditions from the southeast
to the northwest. The main vegetation types are alpine veg-
etation (4000–5000 m), the alpine meadow vegetation belt
(3000–4000 m), alpine shrub meadow (3200–3800 m), the
mountain forest meadow belt (2400–3200 m), the mountain
grassland belt (1800–2400 m), and the desert base belt (less
than 1800 m). The main vegetation types in the middle and
lower reaches of the HRB are relatively fewer, and the shrub
and steppe are mainly located in the area near the lower
reaches of the Heihe River.

The main soil types (Fig. 1d) are frigid desert soils (higher
than 4000 m), alpine meadow soil and alpine steppe soil
(3600–4000 m), grey cinnamon soil and Chernozem (3200–
3600 m), Sierozem and grey cinnamon soil (2600–3200 m),
grey cinnamon soil (2300–2600 m), and Sierozem (1900–
2300 m) in the upper reaches of the HRB. The main soil

types in the middle reaches of the HRB are aeolian sandy
soil, frigid frozen soil, and grey brown desert soil. The main
soil types in the lower reaches of the HRB are aeolian sandy
soil, grey–brown desert soil (northwest), and Lithosol (north-
east).

The main geomorphology types in the upper reaches of the
HRB are modern glaciers, alpine, hilly, and intermountain
basin (Fig. 1e). Narrow plains are distributed in the middle
reaches of the HRB. In the lower reaches, the main types of
geomorphology are hilly (northwest), plain, sandy land, and
platform (east), as well as a flood plain located in the area
near the Heihe River.

The main land use type in the upper reaches, middle
reaches, and lower reaches of the Heihe River were forest
land and grassland, cultivated land, and unused land respec-
tively (Fig. 1f). The water area and construction area were
mainly distributed near the river in the middle reaches of the
HRB.

2.2 Soil sampling

A total of 640 soil sampling points was collected in the
HRB from the National Tibetan Plateau Data Center (NT-
PDC) in China (http://data.tpdc.ac.cn/zh-hans/, last access: 5
May 2020), including 392 samples from the upper reaches
and 248 samples from the middle and lower reaches of the
HRB (Fig. 1b). The distribution of the soil types, vegeta-
tion types, the digital elevation model (DEM), and the ge-
omorphology types of the HRB were considered in the soil
sample collection, in terms of their location and proportion,
in order to obtain samples that were more representative of
soil PSFs using limited soil samples. Purposive sampling was
used as the sampling strategy to collect soil samples and to
characterize the spatial variability of soil PSFs. In this strat-
egy, sample sites were chosen based on the variability of soil
formation factors, which represented the heterogeneity of the
soil PSFs in the HRB, such as the distribution of climate, cat-
egorical maps, and so on. Due to the complicated soil types
and vegetation types in the middle and upper reaches of the
HRB, there were more soil sampling points in these areas. In
contrast, fewer samples were collected in the lower reaches
because of the relatively similar vegetation types. To reduce
the noise effect of soil samples, the average of three to five
mixed topsoil (0–20 cm) samples for each soil sample and
its parallel sample was used as the final measurement. The
global position system (GPS) information and related envi-
ronmental covariates were recorded. Subsequently, the sam-
ples were dried, analysed, and measured for soil PSFs (ap-
proximately 30 g of each sample). Soil PSFs were analysed
using a Malvern Panalytical Mastersizer 2000 laser diffrac-
tion particle size analyser (the average measurement error is
less than 3 %).
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Figure 1. (a) The location of the Heihe River basin (HRB) in China; (b) the distributions of the Heihe River, the elevation and soil sampling
points, (c) the vegetation types, (d) the soil types, (e) the geomorphology types, and (f) the land use types in the HRB.

2.3 Environmental covariates

The environmental covariates, such as topographic variables,
remote sensing variables, climate and position variables, soil
physicochemical variables, and categorical maps, are related
to the distributions of the soil PSFs. System for Automated
Geoscientific Analysis (SAGA) GIS (Conrad et al., 2015)
was used to compute the topographic variables from the
DEM, including the slope, aspect, convergence index, gen-
eral curvature, plane curvature, profile curvature, and valley
depth. Remote sensing variables, including the normalized
difference vegetation index (NDVI; Huete et al., 2002), the
brightness index (BI; Metternicht and Zinck, 2003), and the
soil adjusted vegetation index (SAVI; Huete, 1988), were de-
rived from the Landsat 7 based on band operation. We also

collected climate variables such as the mean annual precip-
itation and the mean annual temperature from the National
Meteorological Information Center (http://data.cma.cn/, last
access: 29 April 2020). Furthermore, latitude and longitude
were also considered because of the large area of the HRB.
Mean annual surface evapotranspiration data (Wu et al.,
2012) were gathered from the NTPDC (http://data.tpdc.ac.
cn/zh-hans/, last access: 5 May 2020) as well as soil physic-
ochemical variables, including soil organic carbon, saturated
water content, field water holding capacity, wilt water con-
tent, saturated hydraulic conductivity, and soil thickness (Yi
et al., 2015; Song et al., 2016; Yang et al., 2016). Addition-
ally, categorical maps were also used, such as geomorphol-
ogy types, soil types, land use types, and vegetation types
(Fig. 1).
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2.4 Machine-learning models and parameter
optimization

2.4.1 K-nearest neighbour

K-nearest neighbour (KNN) is a simple and nonparametric
classifier that is based on using the known instance to label
the unknown instance (Cover and Hart, 1967). For the test
set, K-nearest training set vectors (k) were found based on
distance, and the maximum summed kernel densities were
computed for classification. Moreover, continuous variables
can also be predicted for regression with the average val-
ues of K-nearest neighbours. The parameters of KNN con-
tain the maximum value of k (kmax), the distances of the
nearest neighbours (distance), and different kernel functions
(kernel). The KNN model is available in the “kknn” R pack-
age (Schliep and Hechenbichler, 2016).

2.4.2 Multilayer perceptron neural network

Multilayer perceptron neural network (MLP), which is one of
the most common multilayer feed-forward back-propagation
networks (Zhang et al., 2018), was selected to train the artifi-
cial neural network (ANN) models due to the rapid operation,
the small set of training requirements, and the ease of imple-
mentation (Subasi, 2007). MLP neurons can perform clas-
sification or regression depending on whether the response
variable is categorical or continuous. The MLP has three
sequential layers: the input layer, the hidden layer, and the
output layer. The resilient back-propagation algorithm was
chosen because the learning rate of this algorithm was adap-
tive, avoiding oscillations and accelerating the learning pro-
cess (Behrens and Scholten, 2006). The range of the data set
should be standardized because MLPs operate in terms of a
scale from zero to one. MLP can be run using the “RSNNS”
R package (Bergmeir and Benitez, 2012).

2.4.3 Random forest

Random forest (RF) was developed by Breiman (2001), com-
bining the bagging method (Breiman, 1996) with random
variable selection, and the principle was to merge a group
of “weak learners” together to form a “strong learner”. Boot-
strap sampling is used for each tree of RF, and the rules to bi-
nary split data are different for regression and classification
problems. For classification, the Gini index is used to split
the data; for regression, minimizing the sum of the squares of
the mean deviations can be selected to train each tree model.
The benefits of using RFs are that the ensembles of trees are
used without pruning. In addition, RF is relatively robust to
overfitting. Standardization or normalization is not necessary
because it is insensitive to the range of input values. Two pa-
rameters should be adjusted for the RF model: the number of
trees (ntree) and the number of features randomly sampled at
each split (mtry). The RF model is available in the “random-
Forest” R package (Liaw and Wiener, 2002).

2.4.4 Support vector machine

Support vector machine (SVM), proposed by Cortes and
Vapnik (1995), is a type of generalized linear classifier that
is widely applied to classification and regression problems in
soil science (Burges, 1998). The main principle of SVM is
to classify different classes by constructing an optimal sep-
arating hyperplane in the feature space (so-called “structural
risk minimization”). Regression problems can also be solved
by minimization of the structural risk using loss functions
(Vapnik, 1998) in SVM, which is known as support vector
regression. The SVM is more effective in high dimensional
spaces. A linear function was selected for SVM as the kernel
function in our study. Additionally, cost and gamma are two
other parameters that needed to be tuned, as these parame-
ters control the trade-off between the classification accuracy
and complexity and the ranges of the radial effect respec-
tively. The SVM model is available in the “e1071” R package
(Meyer et al., 2017).

2.4.5 Extreme gradient boosting

Extreme gradient boosting, put forward by Chen and
Guestrin (2016), is an efficient method of implementation
for gradient boosting frames, tree learning algorithms, and
efficient linear model solvers to solve both classification and
regression problems (Chen et al., 2018). Like the boosted re-
gression trees (Elith et al., 2008), it follows the principle of
gradient enhancement; however, more regularized model for-
malization is applied to XGB to control over-fitting, making
it perform better in terms of accuracy assessment. The resid-
uals of the first tree can be fitted by the second tree to en-
hance the model accuracy, and the sum of the prediction of
each tree generates the ultimate prediction. There are seven
parameters in XGB – the learning rate (eta), the maximum
depth of a tree (max_depth), the max number of boosting it-
erations (nrounds), the subsample ratio of columns (colsam-
ple_bytree), the subsample ratio of the training instance (sub-
sample), the minimum loss reduction (gamma), and the min-
imum sum of instance weight (min_child_weight). The XGB
model is available in the “xgboost” R package (Chen et al.,
2018).

2.4.6 Parameter optimization

The equation description of five machine-learning models
can be found in the Supplement (Sect. S1). The “caret” R
package (Kuhn, 2018) for MLP, SVM, and XGB; the “ran-
domForest” R package for RF; and the “kknn” R package for
KNN were used to adjust the above parameters. A set of pa-
rameters with the lowest RMSE for regression and the high-
est kappa coefficient for classification by cross-validation are
selected as the best parameters. There are 11 dependent vari-
ables (i.e. “sand”, “silt”, “clay”, “ILR1”, “ILR2”, “ALR1”,
“ALR2”, “CLR1”, “CLR2”, and “CLR3” for regression and
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“class” for classification) trained with environmental covari-
ates (independent variables). All methods were applied on
these 11 components independently, and all of the adjusted
parameters for the different models are listed in Table S1.
More details about parameter optimization and independent
modelling are given in Sect. S2.

2.5 Log-ratio transformation methods

For the composition of D elements x = [x1, . . ., xD], xj >
0, ∀j = 1, 2, . . .,D, and

∑D
j=1xj = 1, the transformation

equations for ALR, CLR, and ILR are defined as follows:

ALR(x)= (ln
x1

xj
, . . ., ln

xj−1

xj
, ln

xj+1

xj
, . . ., ln

xD

xj
), (1)

CLR(x)= (ln
x1

D

√∏D
j=1xj

, . . ., ln
xD

D

√∏D
j=1xj

), (2)

z= (z1, . . .,zD−1)= ILR(x), (3)

zi =

√
D− i

D− i+ 1
ln

xi

D−i

√∏D
j=i+1xj

, for i = 1, . . .,D− 1, (4)

where zi is the ith component. The inverse transformation
equations for ALR, CLR, and ILR were computed in the
“compositions” R package (van den Boogaart and Tolosana-
Delgado, 2008) and are defined as follows:

ALR(xj )=
exp(ALR(xj ))∑D
j=1 exp(ALR(xj ))

, (5)

CLR(xj )=
exp(CLR(xj ))∑D
j=1 exp(CLR(xj ))

, (6)

Y (xj )=
∑D

j=1

ILR(xj )
√
j × (j + 1)

−

√
j − 1
j
× ILR(xj ), (7)

ILR(x0)= ILR(xD)= 0, (8)

ILR(xj )=
exp(Y (xj ))∑D
j=1 exp(Y (xj ))

. (9)

For original data, the standardization function was used to
ensure that the predictions of soil PSFs were between 0 and
100 and that their sum was 100 %:

sands =
sand

(sand+ silt+ clay)
× 100, (10)

where sands is the content of sand after standardization; this
is the same for the silt and clay fractions.

2.6 Validation

2.6.1 Validation method

We used five machine-learning models combined with origi-
nal data (ORI) and three log-ratio methods (ALR, CLR, and
ILR) in this study, including five machine-learning models

for direct soil texture classification (five models); we also
use the above-mentioned methods with original data and log-
ratio-transformed data for indirect soil texture classification
(20 models) and soil PSF interpolation (20 models) (Table 1).
The data were randomly divided into two sets: 448 soil sam-
ples (70 %) for training and 192 soil samples (30 %) for val-
idation. This process was repeated 30 times.

2.6.2 Validation indicators for soil texture classification

We used the overall accuracy, kappa coefficients, area un-
der the precision–recall curve (AUPRC), and abundance in-
dex to validate the performance of different models. The first
two indicators were selected to evaluate the overall predic-
tion performance of soil texture types, and the last two were
applied to evaluate the performance of each soil texture type.

The overall accuracy represents all samples of all soil tex-
ture types correctly classified by machine-learning models,
divided by the total number of samples of soil texture types
used in the validation. The overall accuracy is defined as fol-
lows (Brus et al., 2011):

overall accuracy=
TP+TN

TP+TN+FP+FN
, (11)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative respectively. The kappa co-
efficient demonstrates the agreement between the observed
classes and the measured classes, which is calculated based
on the confusion matrix; the equation is defined as follows:

kappa=
po−pe

1−pe
, (12)

where po is the probability of observed agreement (over-
all accuracy), and pe is the probability of agreement when
two classes are unconditionally independent. The strength of
the kappa coefficients is interpreted in the following manner:
0.01–0.20 represents slight, 0.21–0.40 represents fair, 0.41–
0.60 represents moderate, 0.61–0.80 represents substantial,
and 0.81–1.00 represents almost perfect (Landis and Koch,
1977). The probabilities of different soil texture types (sum
to 1) obtained during the training and predicting processes
of machine-learning models were selected to calculate the
precision and recall, which indicate the extent of identifying
positive cases:

recall=
TP

TP+FN
, (13)

precison=
TP

TP+FP
. (14)

Soil texture is a class-imbalanced data set of positive and
negative with 62.5 % silt loam types; the negative classi-
fier would be overvalued under these circumstances because
of the overabundance of majority (negative) examples, ad-
ditionally revealing overly optimistic findings (Davis and
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Table 1. The method system of soil texture classification and soil PSF interpolation.

Transformation methods Soil texture classification (direct) Soil texture classification (indirect) & soil PSF
interpolation

Original data (ORI) KNN, MLP, RF, SVM, and XGB KNN_ORI, MLP_ORI, RF_ORI, SVM_ORI,
and XGB_ORI

Log-ratio-transformed data
(ALR, CLR, and ILR)

– KNN_ALR, KNN_CLR, KNN_ILR,
MLP_ALR, MLP_CLR, MLP_ILR, RF_ ALR,
RF_CLR, RF_ILR, SVM_ALR, SVM_CLR,
SVM_ILR, XGB_ALR, XGB_ CLR, and
XGB_ILR

Goadrich, 2006). PRCs are informative in dealing with class-
imbalanced data (Fu et al., 2017). The “precrec” R package
(Saito and Rehmsmeier, 2017) can generate PRCs and com-
pute AUPRC for each soil texture type. This process was re-
peated 30 times, and the average PRCs and AUPRCs were
eventually obtained.

Similarly, the confusion index (COI) based on prediction
probability was calculated to evaluate the uncertainties of
machine-learning models of classification (Burrough et al.,
1997). The equation was as follows:

COI=
∑n
i=1[1− (Pmax,i −Psecmax,i)]

n
, (15)

where Pmax,i refers to the maximum value of the probability
of soil sampling point i, and Psecmax,i represents the second
highest value of the probability of soil sampling point i. A
lower COI indicates better model performance.

The abundance index was applied to describe the propor-
tion of all soil texture types and well-classified soil texture
types in prediction maps and was defined as follows:

abundance index= p/t, (16)

where p is all soil texture types in prediction maps, and t is
all soil texture type(s) of soil samples. All of the soil texture
types were involved to ensure the balance of the soil texture
types, including clay loam (ClLo: 12), loam (Lo: 57), loamy
sand (LoSa: 18), sand (Sa: 23), sandy clay loam (SaClLo: 4),
sandy loam (SaLo: 58), silt (Si: 31), silty clay loam (SiClLo:
37), and silt loam (SiLo: 400).

2.6.3 Validation indicators for soil PSF interpolation

Five statistical indicators, including the Spearman rank cor-
relation coefficient (RCC), root-mean-square error (RMSE),
mean absolute error (MAE), Aitchison distance (AD; Aitchi-
son, 1992), and standardized residual sum of squares
(STRESS; Martin-Fernandez et al., 2001), were used to val-
idate the methods of soil PSF interpolation. The equations
for the validation indicators RCC, RMSE, MAE, AD, and

STRESS are as follows:

RCC= ρxy(rank)=
σxy(rank)

σx(rank)σy(rank)
, (17)

RMSE=

√
1
n

∑n

i=1
(Yi,m−Yi,e)

2, (18)

MAE=
1
n

∑n

i=1

∣∣Yi,m−Yi,e∣∣ , (19)

where Yi,m, Yi,e, and Y i,m are the measured value, the es-
timated value, and the mean of measured soil PSFs respec-
tively, and n is the number of observations (soil sampling
points for validation). σx(rank) and σy(rank) are variances for
measured and estimated data respectively. σxy(rank) is covari-
ance. Rank refers to assigning a rank of 1 to the smallest
value, a rank of 2 to the next highest value, and so on (Mishra
and Datta-Gupta, 2018). A higher RCC and lower RMSE and
MAE show better model performance.

AD=

[∑D

i=1

[
log

xi

g(x)
− log

Xi

g(X)

]2
]1/2

, (20)

STRESS=

[∑
i<j (ADx,ij −ADX,ij )2∑

i<j (ADx,ij )2

]1/2

, (21)

where x is the observed value, X is the predicted value, D
is the number of dimensions (for soil PSFs are three), g(x)
denotes the geometric mean (x1 . . . xD)

1/D , and ADx,ij and
ADX,ij are the ADs between the observed soil PSFs and the
predicted soil PSFs at sites i and j . Both of these parame-
ters show that model performance is better when the values
are lower. The standard deviation (SD) of prediction values
and the ranges of the 95 % confidence interval (CI; Streiner,
1996) of the indicators were derived from 30 model runs to
assess the model uncertainty.

2.7 Statistical analysis for the original and
log-ratio-transformed data

The standard deviation (SD), coefficient of variation (CV),
mean value, minimum value (Min), maximum value (Max),
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median absolute deviation (MAD), skewness (Skew), kurto-
sis, and the Kolmogorov–Smirnov (k–s) test (p>0.05) were
employed for descriptive statistical analysis of the original
and log-ratio-transformed data. The means of the log-ratio-
transformed data are calculated as follows: (1) transform the
data using a log-ratio method, (2) calculate the mean values
of transformed values (ALRs, CLRs, or ILRs), and (3) back-
transform the calculated mean values to the initial closed
space. Furthermore, the multivariate median values based
on depth measures (Bedall and Zimmermann, 1979; Small,
1990) were used because of the sum-constraint of compo-
sitional soil PSF data. The arithmetic mean of log-ratio-
transformed data should be back-transformed to the original
space. For X = [X1, . . .,Xn], the MAD can be calculated ac-
cording to Eq. (22):

MAD(X)=median(|Xi −median(X)|). (22)

3 Results

3.1 The descriptive statistics for the original and
log-ratio-transformed data of soil PSFs

For the original data of sand content, the mean (30.64 %)
was much higher than that of the median centre (26.06 %). In
contrast, silt and clay contents were the opposite, with lower
means (silt, 55.79 %; clay, 13.57 %) than median centres (silt,
59.51 %; clay, 14.43 %). For the log-ratio-transformed data,
different log-ratio methods delivered the same means for
sand, silt, and clay. Additionally, the means of sand (28.69 %)
and silt (60.54 %) were closer to the median centres of the
original data, except for clay (10.78 %). With respect to the
SD and CV, soil PSF data in the log-ratio geometry had more
stability and less variability than the original data. ILR and
CLR had the lowest MAD for the first component (0.66)
and the second component (0.43) respectively (Fig. 2). Al-
though the p values of the original and the various log-ratio-
transformed data were not significant, log ratios made the
data more symmetric according to the skews (Fig. 2). All log-
ratio-transformed data had lower skews (ALR: 0.77; CLR:
0.88; ILR: −1.20) than those of the original data (1.24) of
the first component. All of the kurtosis values for log-ratio-
transformed data were much higher than for the original data.

3.2 Comparison of the machine-learning models in the
classification of soil texture types

3.2.1 Comparison of the validation indicators for soil
texture classification

The overall accuracy of all models ranged from 0.613 to
0.636. (Fig. 3a). RF had the highest overall accuracy (0.636)
among the five models, followed closely by KNN (0.630) and
MLP (0.627). In addition, SVM (0.618) and XGB (0.613)
had relatively lower accuracy than the other models. The

highest kappa coefficient was generated from MLP (0.242),
followed by RF (0.238), XGB (0.229), KNN (0.213), and
SVM (0.213) (Fig. 3b). With respect to the confusion in-
dices (COIs), XGB (0.278) delivered the best performance,
and RF (0.501) demonstrated the highest confusion of mod-
els (Fig. 3c).

We combined the PRCs of the five machine-learning mod-
els to evaluate the performance of predicting each soil texture
type using imbalanced data with different samples of each
type (Fig. 4). The AUPRCs of the types with fewer positive
examples were typically small, especially for SaClLo (only
four samples), and delivered unsatisfying results. This was
because the lack of soil sampling points made models learn
poorly during the training process. In contrast, the soil tex-
ture types (Lo, SaLo, SiLo, and SiClLo) with more positive
examples delivered superior results to those with fewer posi-
tive examples. Moreover, these soil texture types had signif-
icant differences in AUPRCs. For example, SiLo, which had
the largest number of samples, was the most effective among
the nine types. For soil texture types with more samples, RF
and XGB performed better. For soil texture classes with less
samples, RF and SVM showed better performance according
to the AUPRCs.

3.2.2 Comparison of the prediction maps for soil
texture classification

Prediction maps of soil texture types delivered quite differ-
ent spatial distributions in the overall performance of dif-
ferent models (Fig. 5). The abundance indices pointed out
that SVM could predict all nine types, KNN and XGB pre-
dicted eight of nine types, followed closely by RF (seven of
nine types) and MLP (six of nine types). The maps predicted
by RF, SVM, and XGB illustrated that the main soil texture
types in the northwest of the lower reaches of the HRB were
mostly LoSa, while other prediction models produced SaLo.
In the upper reaches of the HRB, soil texture types generated
from RF were more abundant and more in accordance with
the real environment (Fig. 1).

3.3 Comparison of the machine-learning methods
combined with log-ratio-transformed data in soil
PSF interpolation

3.3.1 Comparison of the validation indicators for the
interpolation of soil PSFs

We compared the performance of each machine-learning
model using the original and log-ratio-transformed data. The
results indicated that the STRESS of the methods using log-
ratio-transformed data were superior to the methods using
original data (Table 2). The RMSE, MAE, RCC, and AD
generated from KNN, MLP, RF, and XGB using original data
outperformed the results using log-ratio-transformed data.
By comparison, among different log-ratio-transformed data

Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020 www.hydrol-earth-syst-sci.net/24/2505/2020/



M. Zhang et al.: Systematic comparison of five machine-learning models 2513

Figure 2. Descriptive statistical analysis for the original and log-ratio-transformed data for (a) sand, (b) silt, (c) clay, (d) ALR_1, (e) ALR_2,
(f) CLR_1, (g) CLR_2, (h) CLR_3, (i) ILR_1, and (j) ILR_2. “MAD” refers to median absolute deviation, “SD” refers to standard deviation,
“CV” refers to the coefficient of variation, and “Median” is the multivariate median based on depth measures. ALR and ILR transformed
S3 (the simplex) to R2 (the real space), and CLR transformed S3 to R3. Blue dashed lines showed the multivariate medians of the original
data.

Figure 3. (a) The overall accuracy, (b) the kappa coefficients, and (c) the confusion indices (COIs) for KNN, MLP, RF, SVM, and XGB.
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Figure 4. The AUPRCs for different machine-learning models in the prediction of each soil texture type: (a) ClLo, (b) Lo, (c) LoSa, (d) Sa,
(e) SaClLo, (f) SaLo, (g) Si, (h) SiClLo, and (i) SiLo. “n” denotes the number of sampling points for different soil texture types.

Figure 5. Soil texture classification prediction maps of different soil texture types for (a) KNN, (b) MLP, (c) RF, (d) SVM, and (e) XGB.
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Table 2. Comparisons of the accuracy of different machine-learning models combined with original and transformed data. Bold values denote
the best model performance for different indicators.

RMSE (%) MAE (%) RCC AD STRESS

Sand Silt Clay Sand Silt Clay Sand Silt Clay

KNN_ALR 16.05 15.04 7.12 11.35 10.93 5.59 0.65 0.60 0.63 0.90 0.62
KNN_CLR 15.82 14.77 7.09 11.21 10.74 5.58 0.66 0.61 0.63 0.88 0.62
KNN_ILR 15.82 14.82 7.14 11.22 10.84 5.60 0.66 0.61 0.63 0.88 0.64
KNN_ORI 15.51 14.47 7.05 11.12 10.51 5.49 0.67 0.62 0.63 0.84 0.66
MLP_ALR 15.83 15.07 7.43 11.42 11.06 5.97 0.64 0.57 0.64 0.92 0.66
MLP_CLR 15.84 15.07 7.41 11.45 11.05 5.96 0.64 0.57 0.64 0.92 0.66
MLP_ILR 15.84 15.07 7.40 11.46 11.04 5.95 0.64 0.57 0.64 0.92 0.66
MLP_ORI 15.80 14.72 6.96 11.50 10.85 5.52 0.65 0.58 0.65 0.90 0.68
RF_ALR 15.50 14.43 6.62 10.90 10.52 5.24 0.69 0.65 0.68 0.86 0.61
RF_CLR 15.28 14.22 6.61 10.70 10.25 5.21 0.69 0.66 0.68 0.86 0.61
RF_ILR 15.27 14.25 6.66 10.66 10.26 5.26 0.69 0.66 0.68 0.86 0.61
RF_ORI 15.09 13.86 6.31 10.65 9.99 5.00 0.69 0.67 0.69 0.84 0.66
SVM_ALR 15.66 14.59 6.76 11.66 10.88 5.34 0.66 0.57 0.66 0.88 0.66
SVM_CLR 15.27 14.36 6.87 11.01 10.41 5.41 0.66 0.60 0.65 0.87 0.65
SVM_ILR 15.29 14.37 6.84 10.92 10.43 5.42 0.67 0.61 0.65 0.87 0.65
SVM_ORI 15.30 14.38 6.92 10.94 10.32 5.43 0.67 0.61 0.66 0.87 0.67
XGB_ALR 15.82 14.92 6.72 11.32 11.01 5.35 0.67 0.62 0.67 0.88 0.64
XGB_CLR 15.70 14.80 6.75 10.96 10.67 5.39 0.67 0.63 0.67 0.88 0.62
XGB_ILR 15.45 14.57 6.75 10.91 10.52 5.36 0.67 0.62 0.66 0.88 0.63
XGB_ORI 15.15 14.05 6.47 10.88 10.15 5.15 0.67 0.66 0.67 0.86 0.68

of the same machine-learning model, ILR and CLR outper-
formed ALR. KNN_CLR demonstrated the most remarkable
performance with the highest RCC and the lowest RMSE and
MAE for KNN using the three log-ratio transformation meth-
ods. Furthermore, RF and SVM generated relatively similar
results using CLR- and ILR-transformed data . XGB_ILR
showed the best performance with most of the indicators
except for RMSE (6.75 %) and MAE (5.36 %) of clay, and
STRESS (0.63). RF had the lowest RMSE and MAE, the
highest RCC, and the lowest AD and STRESS for ALR,
CLR, and ILR. For original data, RF also outperformed other
models.

3.3.2 Comparison of the interpolation prediction maps
of soil PSFs

Interpolation prediction maps of soil PSFs using log-ratio-
transformed data (ILR) and original data are represented
in Figs. 6, S1, and S2. The maps generated from ILR-
transformed data showed closer ranges to the original soil
sampling data in terms of the ranges of sand (0.98 %–
99.66 %), silt (0.17 %–95.87 %), and clay (0.03 %–39.77 %),
and the texture features were more consistent with the dis-
tributions of the real environment (Figs. 6, S1, S2). With re-
spect to different machine-learning models, RF and XGB de-
livered prediction maps that were closer to the range of the
distribution of the original data than KNN, SVM, or MLP.

3.4 Comparison of direct and indirect soil texture
classification

3.4.1 Comparison of the validation indicators for direct
and indirect soil texture classification

The overall accuracy and kappa coefficients of the indirect
classification were improved by using log-ratio-transformed
data, especially for RF and XGB (Fig. 7). ILR showed the
highest overall accuracy among the three log-ratio transfor-
mations and also demonstrated the best performance in terms
of the kappa coefficients, except for MLP. We compared di-
rect classification with indirect classification and found that
the differences in the overall accuracy of direct and indirect
classification methods were negligible. However, the kappa
coefficients were greatly modified using indirect classifica-
tion compared with direct classification, except for MLP; pe-
culiarly, RF_ILR increased the kappa coefficient to 0.291 (a
21.3 % improvement) and the accuracy remained stable.

3.4.2 The prediction performance of soil texture types
from different methods

The distributions of soil texture types using original and ILR-
transformed data are illustrated in Fig. 8 using the United
States Department of Agriculture (USDA) soil texture trian-
gle. The triangle of the original data of soil PSFs (Fig. 8a)
demonstrates wider ranges of spatial dispersion than the in-
terpolated data using machine-learning methods. These pre-
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Figure 6. Prediction maps of the sand fraction. All of the ranges of the prediction maps of sand (approximately 9.0 %–90.0 %) were within
the range of the original data (0.98 %–99.66 %). RF_ILR (7.9 %–94.7 %) and XGB_ORI (1.8 %–92.4 %) generated wider output distributions
and were relatively closer to the range of the distribution of the original data than other prediction maps, such as KNN_ILR (7.3 %–88.6 %),
KNN_ORI (7.8 %–80.8 %), MLP_ILR (8.8 %–90.8 %), MLP_ORI (9.0 %–90.3 %), RF_ORI (9.0 %–81.0 %), SVM_ILR (6.5 %–85.6 %),
SVM_ORI (7.3 %–90.0 %), and XGB_ILR (5.0 %–88.5 %).

dictions reveal the properties of aggregating from the sides to
the centre of triangles. With respect to the machine-learning
models, RF shows the most dispersed feature in accordance
with the original soil PSF data. The predictions from models
combined with ILR-transformed data are more discrete and
more associated with the original soil PSF data than those
resulting from ORI methods. The prediction results repre-
sent significant differences in the error ratio (yellow symbols,
Fig. 8) of the soil sampling points with respect to soil types
between the left part (LoSa, SaLo, and Lo) and right part of
the triangles (SiLo and Si) for most of the models, especially
for KNN and MLP. The log-ratio methods over-calculate the

mean value of silt in the process of transformation (Fig. 2), so
these points are biased to the right of the USDA soil texture
triangle based on overall contraction (regression smoothing
effects), crossing the classification boundary and turning to
other soil texture types. RF_ILR (Fig. 8f) delivers the highest
right ratio (RR) among these models, and the classification
accuracy is enhanced using the ILR method (83.9 %) com-
pared with ORI (81.7 %). In the case of other models, the dif-
ferences between ORI and ILR are negligible. We also com-
pared the RRs of indirect classification models with those
of direct classification, demonstrating all RRs of direct clas-
sification were higher (KNN, 67.97 %; MLP, 75.16 %; RF,
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Figure 7. Overall accuracy and kappa coefficients calculated from
soil texture classification by soil PSF interpolation using five
machine-learning models combined with original data and log-
ratio-transformed data.

100 %; SVM, 66.09 %; XGB, 81.09 %), especially for RF
and XGB. However, we removed this evaluation indicator be-
cause the same data sets were employed in the processes of
training and predicting.

3.4.3 Comparison of prediction maps of direct and
indirect soil texture classification

The soil texture maps predicted using original data were dif-
ferent from the map generated using log-ratio-transformed
data, and classification maps of the machine-learning mod-
els combined with the log-ratio-transformed data had more
detailed information (Figs. 9, S3). The results of machine-
learning models using three log-ratio-transformed data sets
were similar to the number of predicted types; however,
there were significant differences between the results using
original data and log-ratio-transformed data. All machine-
learning models combined with original data predicted more
Lo and SaLo soil texture types and fewer LoSa and Si types
(Fig. 9). We also compared the prediction of soil texture
types by direct classification (Fig. 5) with those generated
from indirect classification using the same machine-learning
models, which revealed that different distributions of LoSa
existed among them in the lower reaches of Heihe River
basin. For the upper reaches, prediction maps of the ILR
methods generated more Si and less Lo than the ORI method.
Si soil texture types were mainly distributed in the middle
and southeast of the upper reaches of the HRB in the predic-
tions combined with ILR methods. For the middle reaches,
ILR prediction maps were recommended and were more in
line with the real environment than the ORI methods, be-
cause more SaLo and less Lo soil texture types were pre-
dicted in the middle reaches of the HRB. Furthermore, the
predicted soil texture using indirect methods was more abun-
dant than the directly predicted soil texture in the middle
reaches (Fig. 5).

3.4.4 Comparison of total computing time for each
model in soil texture classification and soil PSF
interpolation

The run times of the models were computed and compared
for different machine-learning models in soil texture classifi-
cation and soil PSF interpolation (Fig. 10). Because the run
times of the ORI and log-ratio methods were similar, the ILR
was selected for soil PSF interpolation. With respect to the
different models, RFs required the longest time for both clas-
sification (453.73 s) and interpolation (188.87 s), which may
cause it to lose its advantage over the other models when
processing large data sets. KNN (classification, 4.2 s; inter-
polation, 23.6 s) and SVM (classification, 4.15 s; interpola-
tion, 12.4 s) had shorter run times with respect to both clas-
sification and interpolation. XGB (classification, 21.6 s; in-
terpolation, 17.13 s) was much more stable and required less
time; the data processes were also simpler compared with
MLP (classification: 47.28 s, interpolation: 152.31 s). More-
over, XGB delivered better performance than KNN and SVM
in prediction maps, demonstrating that it is an effective way
of dealing with large data sets.

4 Discussion

4.1 The systematic comparison of the five
machine-learning models

The range of applicability of the study is limited to indepen-
dent modelling, i.e. the component-wise approaches. How-
ever, joint fractions modelling could lead to different results.
We found that tree-based machine-learning models – RF and
XGB – delivered better performance than KNN, MLP, and
SVM, which was also concluded by Heung et al. (2016).
With respect to the total computing time, RF revealed the
longest run time with respect to both the classification and
interpolation mode. In addition, regarding trade-offs between
the total computing time of the model and the accuracy, XGB
was superior to the other four models, reducing the comput-
ing time significantly while maintaining acceptable accuracy.
In fact, parallel calculations can be automatically executed
during the training phase of the XGB model: this is a great
advantage when working with large data sets, as the XGB
can be more than 10 times faster than the existing gradi-
ent boosting models (Chen and Guestrin, 2016). Therefore,
XGB is recommended due to its speed (although this is at the
expense of suboptimal accuracy) when researchers are deal-
ing with large data sets in study areas. Moreover, some joint
fractions approaches – compositional kriging (Wang and Shi,
2017), high accuracy surface modelling (HASM; Yue et al.,
2015, 2016) and the Dirichlet regression (Hijazi and Jerni-
gan, 2009) – can consider the multivariate treatment for soil
PSFs using a joint model, but machine-learning models are
more convenient for combining environmental covariables.

www.hydrol-earth-syst-sci.net/24/2505/2020/ Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020



2518 M. Zhang et al.: Systematic comparison of five machine-learning models

Figure 8. Soil texture types of 640 soil samples shown using the USDA texture triangle. The results of soil PSFs were generated from
(a) soil PSF samples, (b) KNN_ILR, (c) KNN_ORI, (d) MLP_ILR, (e) MLP_ORI, (f) RF_ILR, (g) RF_ORI, (h) SVM_ILR, (i) SVM_ORI,
(j) XGB_ILR, and (k) XGB_ORI. Note that the green symbols represent that the predicted and original soil texture classes were the same,
whereas the yellow symbols represent the misclassification of the soil texture classes. The predicted right ratios (RRs) of the soil texture
classes are given in parentheses after the interpolators above the plots.
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Figure 9. The prediction maps of soil texture classification by indirect methods using KNN, MLP, RF, SVM, and XGB with either ILR-
transformed data (ILR) or original data (ORI).

For the machine-learning models in our study, KNN, MLP,
RF, and SVM also can be applied to multivariate vectors
combined with log-ratio methods. For example, the multi-
variate random forest (MRF) method, which is the extended
version of RF, calculates predictions of all output features
using a single model (Segal and Xiao, 2011).

4.2 The systematic comparison of the models using
log-ratio-transformed data and original data

Log-ratio transformation methods can open the data and re-
move the “closure effect”, which induces spurious corre-
lation. The opened data can be interpolated into the map-
ping area, and the results can then be back-transformed
using inverse equations. However, in the process of pa-

rameter optimization, the optimal parameters of differ-
ent machine-learning models are obtained using log-ratio-
transformed data, which cannot guarantee the most accurate
back-transformed results. This is because the values of as-
sessment indicators (e.g. MAEs and RMSEs) will remain
stable with limited differences due to the small value range
of log-ratio-transformed data. Therefore, when the prediction
values of log-ratio methods are back-transformed to the real
space, these indicator values will be enlarged.

Due to the contraction of the predicted values (Fig. 8),
there were small numbers of predictions beyond the range
of the original data values, including the negative predictions
using ORI data. Although these few negative predictions can
be eliminated by parameter adjustment in our study, there is
still a drawback to using ORI data. Among the three log-
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Figure 10. Average time spent running the KNN, MLP, RF, SVM,
and XGB models 30 times for soil texture classification and soil
PSF interpolation.

ratio methods, ILR and CLR were superior to ALR, which
can be explained by the fact that ILR and CLR are isomet-
ric transformations and they could preserve distances (Filz-
moser and Hron, 2009). Moreover, ALR has been criticized
because the results were affected by the subjective choice of
the denominator. In addition, ILR showed slightly better per-
formance than CLR, because the geometric mean composed
of all compositions of soil PSFs is the denominator in CLR,
and one-to-one mapping of equations and soil PSFs could
be implemented. Nevertheless, the sum of the dimensions of
CLR is zero, and the problem of collinearity is still present.
ILR transformed all of the information into D-1 orthogonal
log contrasts (so-called balances) (Egozcue et al., 2003) and
overcame the data collinearity and sub-compositional inco-
herence in CLR by using an appropriate choice of the ba-
sis (Egozcue and Pawlowsky-Glahn, 2005). Moreover, in the
ILR method, multiple sets of ILR-transformed data can be
generated by permutations of components (different sequen-
tial binary partitions, SBPs) in compositional data, and dif-
ferent choices of ILR balances influenced the model accu-
racy. The choice of a specific SBP for compositions is cru-
cial for the intended interpretation of coordinates (Fiserova
and Hron, 2011). The choice of SBPs can be applied blindly
(Fiserova and Hron, 2011), can be based on a priori ex-
pert knowledge, or can be based on using a compositional
biplot (Lloyd et al., 2012), and the best ILR balance also
can be chosen using variograms and cross-variograms (Mo-
layemat et al., 2018). All three SBPs are demonstrated in
Sect. S6 (Table S3). The ILR balance chosen in our study
was SBP1, because the ILR-transformed data using SBP1
were more symmetric than other two SBPs. However, there
will be different results and prediction maps when different
SBPs are used, which requires further research. Furthermore,
each component of log-ratio or original soil PSF data was
independently modelled using component-wise approaches
(machine-learning methods), which may be suboptimal com-

pared with the joint fractions approach under the circum-
stances (when dealing with the multivariate treatment). For
example, CLR-transformed data are still characterized by
collinearity, but there is no guarantee that the sum of the
three components of CLR is zero due to the use of indepen-
dent modelling. Although the final predictions were not in-
fluenced (still sum to 100 %) due to the inverse equations for
CLR, collinear constraints reduced the prediction accuracy.
By contrast, the ILR method is more meaningful and appro-
priate than the other log-ratio methods because it indeed re-
moves the data constraints. Therefore, ILR is recommended
as a combination method with machine-learning models for
component-wise modelling unless multivariate extensions of
the methods (e.g. functional compositions) are considered.

4.3 The systematic comparison of the direct and
indirect soil texture classification

Compared with the real soil texture distribution and envi-
ronment of the HRB, SiLo overlaid the upper reaches of the
HRB, and SaLo and Lo were present in the south of the up-
per reaches of the HRB (showing a strip distribution). More-
over, an uncovered area was detected in the northwest of
the lower reaches of the HRB, where it cannot be predicted
accurately due to a lack of input information in the model
training process. The main soil texture types in the lower
reaches of the HRB were SiLo, LoSa, and small areas of
SaLo and Lo, which were distributed in the uncovered area.
The main soil texture types predicted from direct classifica-
tion using machine-learning models were SaLo and SiLo; RF
and XGB delivered much more LoSa than other direct classi-
fication models. However, all of these models predicted that
the main soil type in the lower reaches of the HRB was SaLo,
which did not fit with the real environment (LoSa). In fact,
LoSa and SaLo were obviously the most confusing. How-
ever, they are fairly similar to each other (Fig. 8). In addition,
due to the limitation of the training subsets, direct classifi-
cation can only predict types that are contained in training
subsets. In contrast, indirect classification broke such limi-
tations, and new prediction types arose due to the transfor-
mation from soil PSFs to soil texture types. Moreover, more
suitable matching performance with respect to the real en-
vironment should be considered such as the log-ratio meth-
ods of the MLP and RF models, KNN_ALR, KNN_ILR, and
XGB_CLR.

5 Conclusion

We systematically compared five machine-learning models
using original data and three log-ratio-transformed data in the
HRB for direct and indirect soil texture classification and soil
PSF interpolation. As flexible and stable models, tree learn-
ers – RF models – delivered powerful performance in both
classification and interpolation and were superior to the other
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machine-learning models mentioned above. As a new and
suboptimal machine-learning method in soil science, XGB
appeared to be more computationally efficient in processing
large data sets. RF and XGB were recommended to evaluate
the classification capacity of imbalanced data. In addition,
the log-ratio methods, especially ILR, had the advantage of
modifying STRESS in soil PSF interpolation. Moreover, the
indirect methods for soil texture classification outperformed
the direct methods, especially when combined with log-ratio
transformations. The indirect methods for soil texture classi-
fication generated preferable results with respect to both the
accuracy indicators and the prediction maps. The keys to im-
proving the interpolator accuracy are using more appropri-
ate interpolation techniques with environmental covariates,
transforming soil PSF data using more efficient transforma-
tion methods, utilizing compositional data analysis in the
multivariate studies, and using systematic parameter adjust-
ment algorithms for compositional data.
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Appendix A: Abbreviations

PSFs Particle size fractions
HRB Heihe River basin
KNN K-nearest neighbour
MLP Multilayer perceptron neural network
RF Random forest
SVM Support vector machines
XGB Extreme gradient boosting
ALR Additive log ratio
CLR Centred log ratio
ILR Isometric log ratio
ORI Original data
PRC Precision–recall curve
AUPRC Area under the PRC
RMSE Root-mean-square error
MAE Mean absolute error
RCC Spearman rank correlation coefficient
MAD Median absolute deviation
AD Aitchison distance
STRESS Standardized residual sum of squares
SD Standard deviation
KNN_ALR, KNN_CLR, KNN_ILR, and KNN_ORI KNN combined with ALR, CLR, ILR, and ORI respectively
MLP_ALR, MLP_CLR, MLP_ILR, and MLP_ORI MLP combined with ALR, CLR, ILR, and ORI respectively
RF_ALR, RF_CLR, RF_ILR, and RF_ORI RF combined with ALR, CLR, ILR, and ORI respectively
SVM_ALR, SVM_CLR, SVM_ILR, SVM_ORI SVM combined with ALR, CLR, ILR, and ORI respectively
XGB_ALR, XGB_CLR, XGB_ILR, XGB_ORI XGB combined with ALR, CLR, ILR, and ORI respectively
ClLo Clay loam
Lo Loam
LoSa Loamy sand
Sa Sand
SaClLo Sandy clay loam
SaLo Sandy loam
Si Silt
SiClLo Silty clay loam
SiLo Silt loam
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Data availability. The 640 soil sampling data
for the HRB, http://data.tpdc.ac.cn/zh-hans/
data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/
(Zhang, 2020), http://data.tpdc.ac.cn/zh-hans/data/
2e9cbc1a-5972-4e29-945d-99a1902cadb7/ (Huang
and Jiang, 2020), http://data.tpdc.ac.cn/zh-hans/
data/737e4d01-c5f8-4940-98d2-3bda306784ad/ (Yue
and Zhao, 2020a), http://data.tpdc.ac.cn/zh-hans/
data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/ (Yue
and Zhao, 2020b), http://data.tpdc.ac.cn/zh-hans/
data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/
(Ma, 2020), http://data.tpdc.ac.cn/zh-hans/data/
b8bfbb8b-97e4-4622-acbd-06b5ac466403/ (Zhao and
Ma, 2020), and http://data.tpdc.ac.cn/zh-hans/data/
438fc689-ad9e-4370-8961-5b2de53d8b87/ (Si, 2020); the satu-
rated water content, field water holding capacity, wilt water content,
and saturated hydraulic conductivity data, http://data.tpdc.ac.cn/
zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/ (Zhang
and Song, 2020a); and the soil thickness data, http://data.tpdc.
ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/
(Zhang and Song, 2020b), can be accessed through
http://data.tpdc.ac.cn/zh-hans/ (last access: 5 May 2020). The
meteorological data can be accessed through http://data.cma.cn/
(last access: 14 March 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-2505-2020-supplement.

Author contributions. WS contributed to soil data sampling and
oversaw the design of the entire project. MZ performed the analysis
and wrote the paper. ZX collected and analysed data. All authors
contributed to writing the paper and interpreting data.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge the comments from the ed-
itor, Alberto Guadagnini; the reviewers, Tom Hengl and Alfred
Stein; and the anonymous referees that helped us improve the qual-
ity of the paper. Thanks are also due to the National Meteorological
Information Center for providing the meteorological data and the
National Tibetan Plateau Data Center for the soil particle size frac-
tions data.

Financial support. This study was supported by the National
Key Research and Development Program of China (grant
no. 2017YFA0604703), the National Natural Science Foundation
of China (grant nos. 41771364 and 41771111), the Fund for Ex-
cellent Young Talents in Institute of Geographic Sciences and Nat-
ural Resources Research, Chinese Academy of Sciences (CAS;
grant no. 2016RC201), the Youth Innovation Promotion Associa-
tion, CAS (grant no. 2018071), the Investigation and Monitoring
project of Ministry of Natural Resources (grant no. JCQQ191504-

06) and a grant from the State Key Laboratory of Resources and
Environmental Information System.

Review statement. This paper was edited by Alberto Guadagnini
and reviewed by two anonymous referees.

References

Abdi, D., Cade-Menun, B. J., Ziadi, N., and Parent, L. E.: Compo-
sitional statistical analysis of soil 31P-NMR forms, Geoderma,
257, 40–47, https://doi.org/10.1016/j.geoderma.2015.03.019,
2015.

Adhikari, K. and Hartemink, A. E.: Linking soils to ecosys-
tem services – A global review, Geoderma, 262, 101–111,
https://doi.org/10.1016/j.geoderma.2015.08.009, 2016.

Aitchison, J.: The statistical-analysis of compositional data, Chap-
man and Hall, 139–177, 1982.

Aitchison, J.: On criteria for measures of compositional difference,
Math. Geol., 24, 365–379, https://doi.org/10.1007/bf00891269,
1992.

Bagheri Bodaghabadi, M., Antonio Martinez-Casasnovas, J.,
Salehi, M. H., Mohammadi, J., Esfandiarpoor Borujeni, I., Too-
manian, N., and Gandomkar, A.: Digital soil mapping using arti-
ficial neural networks and terrain-related attributes, Pedosphere,
25, 580–591, 2015.

Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., and Kimetu,
J.: Soil organic carbon dynamics, functions and manage-
ment in west african agro-ecosystems, Agr. Syst., 94, 13–25,
https://doi.org/10.1016/j.agsy.2005.08.011, 2007.

Bedall, F. K. and Zimmermann, H.: Algorithm as 143: The
mediancentre, J. Roy. Stat. Soc. C-Appl., 28, 325–328,
https://doi.org/10.2307/2347218, 1979.

Behrens, T. and Scholten, T.: Chapter 25 A comparison of data-
mining techniques in predictive soil mapping, in: Developments
in soil science, edited by: Lagacherie, P., McBratney, A. B.,
and Voltz, M., Elsevier, 353–617, https://doi.org/10.1016/S0166-
2481(06)31025-2, 2006.

Bergmeir, C. and Benitez, J. M.: Neural networks in R using the
stuttgart neural network simulator: RSNNS, J. Stat. Softw., 46,
1–26, https://doi.org/10.18637/jss.v046.i07, 2012.

Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140,
https://doi.org/10.1023/a:1018054314350, 1996.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.

Brus, D. J., Kempen, B., and Heuvelink, G. B. M.: Sampling for
validation of digital soil maps, Eur. J. Soil Sci., 62, 394–407,
https://doi.org/10.1111/j.1365-2389.2011.01364.x, 2011.

Burges, C. J. C.: A tutorial on support vector machines for
pattern recognition, Data Min. Knowl. Disc., 2, 121–167,
https://doi.org/10.1023/a:1009715923555, 1998.

Burrough, P. A., van Gaans, P. F. M., and Hootsmans, R.:
Continuous classification in soil survey: Spatial correla-
tion, confusion and boundaries, Geoderma, 77, 115–135,
https://doi.org/10.1016/S0016-7061(97)00018-9, 1997.

Butler, J. C.: Effects of closure on the moments of
a distribution, J. Int. Ass. Math. Geol., 11, 75–84,
https://doi.org/10.1007/bf01043247, 1979.

www.hydrol-earth-syst-sci.net/24/2505/2020/ Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020

http://data.tpdc.ac.cn/zh-hans/data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/
http://data.tpdc.ac.cn/zh-hans/data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/
http://data.tpdc.ac.cn/zh-hans/data/2e9cbc1a-5972-4e29-945d-99a1902cadb7/
http://data.tpdc.ac.cn/zh-hans/data/2e9cbc1a-5972-4e29-945d-99a1902cadb7/
http://data.tpdc.ac.cn/zh-hans/data/737e4d01-c5f8-4940-98d2-3bda306784ad/
http://data.tpdc.ac.cn/zh-hans/data/737e4d01-c5f8-4940-98d2-3bda306784ad/
http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/
http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/
http://data.tpdc.ac.cn/zh-hans/data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/
http://data.tpdc.ac.cn/zh-hans/data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/
http://data.tpdc.ac.cn/zh-hans/data/b8bfbb8b-97e4-4622-acbd-06b5ac466403/
http://data.tpdc.ac.cn/zh-hans/data/b8bfbb8b-97e4-4622-acbd-06b5ac466403/
http://data.tpdc.ac.cn/zh-hans/data/438fc689-ad9e-4370-8961-5b2de53d8b87/
http://data.tpdc.ac.cn/zh-hans/data/438fc689-ad9e-4370-8961-5b2de53d8b87/
http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/
http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/
http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/
http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/
http://data.tpdc.ac.cn/zh-hans/
http://data.cma.cn/
https://doi.org/10.5194/hess-24-2505-2020-supplement
https://doi.org/10.1016/j.geoderma.2015.03.019
https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.1007/bf00891269
https://doi.org/10.1016/j.agsy.2005.08.011
https://doi.org/10.2307/2347218
https://doi.org/10.1016/S0166-2481(06)31025-2
https://doi.org/10.1016/S0166-2481(06)31025-2
https://doi.org/10.18637/jss.v046.i07
https://doi.org/10.1023/a:1018054314350
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://doi.org/10.1023/a:1009715923555
https://doi.org/10.1016/S0016-7061(97)00018-9
https://doi.org/10.1007/bf01043247


2524 M. Zhang et al.: Systematic comparison of five machine-learning models

Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M.,
Christoforou, I. C., and Bruggeman, A.: A high resolution
map of soil types and physical properties for Cyprus: A
digital soil mapping optimization, Geoderma, 285, 35–49,
https://doi.org/10.1016/j.geoderma.2016.09.019, 2017.

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boost-
ing system, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, California, USA,
https://doi.org/10.1145/2939672.2939785, 2016.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,
Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin,
M., Geng, Y., and Li, Y.: Xgboost: Extreme gradient boosting,
R package version 0.71.2, available at: https://CRAN.R-project.
org/package=xgboost (last access: 14 March 2020), 2018.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz,
L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Auto-
mated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model
Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015,
2015.

Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn.,
20, 273–297, https://doi.org/10.1023/a:1022627411411, 1995.

Cover, T. M. and Hart, P. E.: Nearest neighbor pat-
tern classification, IEEE T. Inform. Theory, 13, 21–27,
https://doi.org/10.1109/tit.1967.1053964, 1967.

Crouvi, O., Pelletier, J. D., and Rasmussen, C.: Predicting
the thickness and aeolian fraction of soils in upland wa-
tersheds of the Mojave Desert, Geoderma, 195, 94–110,
https://doi.org/10.1016/j.geoderma.2012.11.015, 2013.

Davis, J. and Goadrich, M.: The relationship between precision-
recall and ROC curves, Proceedings of the 23rd international
conference on Machine learning, Pittsburgh, Pennsylvania, USA,
2006.

Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G.,
and Barcelo-Vidal, C.: Isometric logratio transformations
for compositional data analysis, Math. Geol., 35, 279–300,
https://doi.org/10.1023/a:1023818214614, 2003.

Egozcue, J. J. and Pawlowsky-Glahn, V.: Groups of parts and their
balances in compositional data analysis, Math. Geol., 37, 795–
828, https://doi.org/10.1007/s11004-005-7381-9, 2005.

Elith, J., Leathwick, J. R., and Hastie, T.: A working guide
to boosted regression trees, J. Anim. Ecol., 77, 802–813,
https://doi.org/10.1111/j.1365-2656.2008.01390.x, 2008.

Filzmoser, P., and Hron, K.: Correlation analysis for
compositional data, Math. Geosci., 41, 905–919,
https://doi.org/10.1007/s11004-008-9196-y, 2009.

Filzmoser, P., Hron, K., and Reimann, C.: Univariate statis-
tical analysis of environmental (compositional) data: Prob-
lems and possibilities, Sci. Total Environ., 407, 6100–6108,
https://doi.org/10.1016/j.scitotenv.2009.08.008, 2009.

Fiserova, E. and Hron, K.: On the interpretation of orthonormal co-
ordinates for compositional data, Math. Geosci., 43, 455–468,
https://doi.org/10.1007/s11004-011-9333-x, 2011.

Follain, S., Minasny, B., McBratney, A. B., and Walter, C.: Simu-
lation of soil thickness evolution in a complex agricultural land-
scape at fine spatial and temporal scales, Geoderma, 133, 71–86,
https://doi.org/10.1016/j.geoderma.2006.03.038, 2006.

Fu, G., Xu, F., Zhang, B., and Yi, L.: Stable variable
selection of class-imbalanced data with precision-

recall criterion, Chemometr. Intell. Lab., 171, 241–250,
https://doi.org/10.1016/j.chemolab.2017.10.015, 2017.

Gobin, A., Campling, P., and Feyen, J.: Soil-landscape modelling
to quantify spatial variability of soil texture, Phys. Chem. Earth
Pt. B, 26, 41–45, https://doi.org/10.1016/s1464-1909(01)85012-
7, 2001.

Gochis, D. J., Vivoni, E. R., and Watts, C. J.: The impact of
soil depth on land surface energy and water fluxes in the
North American Monsoon region, J. Arid Environ., 74, 564–571,
https://doi.org/10.1016/j.jaridenv.2009.11.002, 2010.

Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B.,
Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A.,
de Jesus, J. M., Tamene, L., and Tondoh, J. E.: Mapping soil
properties of Africa at 250 m resolution: Random forests sig-
nificantly improve current predictions, Plos One, 10, e0125814,
https://doi.org/10.1371/journal.pone.0125814, 2015.

Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonza-
lez, M. R., Kilibarda, M., Blagotic, A., Shangguan, W.,
Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S.,
and Kempen, B.: Soilgrids250m: Global gridded soil infor-
mation based on machine learning, Plos One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and
Graeler, B.: Random forest as a generic framework for predic-
tive modeling of spatial and spatio-temporal variables, Peerj, 6,
e5518, https://doi.org/10.7717/peerj.5518, 2018.

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer,
C. E., and Schmidt, M. G.: An overview and compari-
son of machine-learning techniques for classification pur-
poses in digital soil mapping, Geoderma, 265, 62–77,
https://doi.org/10.1016/j.geoderma.2015.11.014, 2016.

Hijazi, R., and Jernigan, R.: Modelling compositional data using
Dirichlet regression models, Journal of Applied Probability and
Statistics, 4, 77–91, 2009.

Huang, G. and Jiang, Y.: Soil texture of soil sampling points in
Yingke Irrigation District, available at: http://data.tpdc.ac.cn/
zh-hans/data/2e9cbc1a-5972-4e29-945d-99a1902cadb7/, last
access: 11 May 2020.

Huang, J., Subasinghe, R., and Triantafilis, J.: Mapping particle-
size fractions as a composition using additive log-ratio transfor-
mation and ancillary data, Soil Sci. Soc. Am. J., 78, 1967–1976,
https://doi.org/10.2136/sssaj2014.05.0215, 2014.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fer-
reira, L. G.: Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices, Remote Sens. Environ.,
83, 195–213, https://doi.org/10.1016/s0034-4257(02)00096-2,
2002.

Huete, A. R.: A soil-adjusted vegetation index (SAVI), Re-
mote Sens. Environ., 25, 295–309, https://doi.org/10.1016/0034-
4257(88)90106-x, 1988.

Jafari, A., Khademi, H., Finke, P. A., Van de Wauw, J.,
and Ayoubi, S.: Spatial prediction of soil great groups by
boosted regression trees using a limited point dataset in
an arid region, southeastern Iran, Geoderma, 232, 148–163,
https://doi.org/10.1016/j.geoderma.2014.04.029, 2014.

Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020 www.hydrol-earth-syst-sci.net/24/2505/2020/

https://doi.org/10.1016/j.geoderma.2016.09.019
https://doi.org/10.1145/2939672.2939785
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1016/j.geoderma.2012.11.015
https://doi.org/10.1023/a:1023818214614
https://doi.org/10.1007/s11004-005-7381-9
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1007/s11004-008-9196-y
https://doi.org/10.1016/j.scitotenv.2009.08.008
https://doi.org/10.1007/s11004-011-9333-x
https://doi.org/10.1016/j.geoderma.2006.03.038
https://doi.org/10.1016/j.chemolab.2017.10.015
https://doi.org/10.1016/s1464-1909(01)85012-7
https://doi.org/10.1016/s1464-1909(01)85012-7
https://doi.org/10.1016/j.jaridenv.2009.11.002
https://doi.org/10.1371/journal.pone.0125814
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.7717/peerj.5518
https://doi.org/10.1016/j.geoderma.2015.11.014
http://data.tpdc.ac.cn/zh-hans/data/2e9cbc1a-5972-4e29-945d-99a1902cadb7/
http://data.tpdc.ac.cn/zh-hans/data/2e9cbc1a-5972-4e29-945d-99a1902cadb7/
https://doi.org/10.2136/sssaj2014.05.0215
https://doi.org/10.1016/s0034-4257(02)00096-2
https://doi.org/10.1016/0034-4257(88)90106-x
https://doi.org/10.1016/0034-4257(88)90106-x
https://doi.org/10.1016/j.geoderma.2014.04.029


M. Zhang et al.: Systematic comparison of five machine-learning models 2525

Kuhn, M.: Caret: Classification and regression training, R pack-
age version 6.0-80, available at: https://CRAN.R-project.org/
package=caret (last access: 14 March 2020), 2018.

Landis, J. R. and Koch, G. G.: Measurement of observer
agreement for categorical data, Biometrics, 33, 159–174,
https://doi.org/10.2307/2529310, 1977.

Liaw, A., and Wiener, M.: Classification and regression by random-
forest, R News, 2, 18–22, available at: https://CRAN.R-project.
org/doc/Rnews/ (last access: 29 April 2020), 2002.

Liess, M., Glaser, B., and Huwe, B.: Uncertainty in the
spatial prediction of soil texture comparison of regression
tree and random forest models, Geoderma, 170, 70–79,
https://doi.org/10.1016/j.geoderma.2011.10.010, 2012.

Lloyd, C. D., Pawlowsky-Glahn, V., and Jose Egozcue,
J.: Compositional data analysis in population stud-
ies, Ann. Assoc. Am. Geogr., 102, 1251–1266,
https://doi.org/10.1080/00045608.2011.652855, 2012.

Ma, M.: HiWATER: Dataset of soil parameters in the midstream
of the Heihe River Basin (2012), available at: http://data.tpdc.ac.
cn/zh-hans/data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/, last
access: 11 May 2020.

Martin-Fernandez, J. A., Olea-Meneses, R. A., and Pawlowsky-
Glahn, V.: Criteria to compare estimation methods of
regionalized compositions, Math. Geol., 33, 889–909,
https://doi.org/10.1023/a:1012293922142, 2001.

McNamara, J. P., Chandler, D., Seyfried, M., and Achet, S.: Soil
moisture states, lateral flow, and streamflow generation in a semi-
arid, snowmelt-driven catchment, Hydrol. Process., 19, 4023–
4038, https://doi.org/10.1002/hyp.5869, 2005.

Menafoglio, A., Guadagnini, A., and Secchi, P.: A kriging approach
based on Aitchison geometry for the characterization of particle-
size curves in heterogeneous aquifers, Stoch. Environ. Res.
Risk Assess., 28, 1835–1851, https://doi.org/10.1007/s00477-
014-0849-8, 2014.

Menafoglio, A., Secchi, P., and Guadagnini, A.: A class-kriging pre-
dictor for functional compositions with application to particle-
size curves in heterogeneous aquifers, Math. Geosci., 48, 463–
485, https://doi.org/10.1007/s11004-015-9625-7, 2016a.

Menafoglio, A., Guadagnini, A., and Secchi, P.: Stochastic simula-
tion of soil particle-size curves in heterogeneous aquifer systems
through a Bayes space approach, Water Resour. Res., 52, 5708–
5726, https://doi.org/10.1002/2015wr018369, 2016b.

Metternicht, G. I. and Zinck, J. A.: Remote sensing of soil salin-
ity: Potentials and constraints, Remote Sens. Environ., 85, 1–20,
https://doi.org/10.1016/s0034-4257(02)00188-8, 2003.

Meyer, D., Dimitriadou, E., Hornik, K., Andreas, W., and Friedrich,
L.: e1071: Misc functions of the department of statistics, proba-
bility theory group (formerly: E1071), TU Wien, R package ver-
sion 1.6-8, available at: https://CRAN.R-project.org/package=
e1071 (last access: 14 March 2020), 2017.

Mishra, S., and Datta-Gupta, A.: Exploratory data analysis, in:
Applied Statistical Modeling and Data Analytics, chap. 2,
edited by: Mishra, S. and Datta-Gupta, A., Elsevier, 15–29,
https://doi.org/10.1016/B978-0-12-803279-4.00002-X, 2018.

Molayemat, H., Torab, F. M., Pawlowsky-Glahn, V., Morshedy, A.
H., and Jose Egozcue, J.: The impact of the compositional na-
ture of data on coal reserve evaluation, a case study in Parvadeh
IV coal deposit, Central Iran, Int. J. Coal Geol., 188, 94–111,
https://doi.org/10.1016/j.coal.2018.02.003, 2018.

Pahlavan-Rad, M. R. and Akbarimoghaddam, A.: Spatial vari-
ability of soil texture fractions and pH in a flood plain
(case study from eastern Iran), Catena, 160, 275–281,
https://doi.org/10.1016/j.catena.2017.10.002, 2018.

Poggio, L. and Gimona, A.: 3D mapping of soil tex-
ture in Scotland, Geoderma Regional, 9, 5–16,
https://doi.org/10.1016/j.geodrs.2016.11.003, 2017.

Reimann, C. and Filzmoser, P.: Normal and lognormal data
distribution in geochemistry: Death of a myth. Con-
sequences for the statistical treatment of geochemical
and environmental data, Environ. Geol., 39, 1001–1014,
https://doi.org/10.1007/s002549900081, 2000.

Saito, T. and Rehmsmeier, M.: Precrec: Fast and accurate precision-
recall and ROC curve calculations in R, Bioinformatics, 33, 145–
147, https://doi.org/10.1093/bioinformatics/btw570, 2017.

Salazar, E., Giraldo, R., and Porcu, E.: Spatial prediction for
infinite-dimensional compositional data, Stoch. Environ. Res.
Risk A., 29, 1737–1749, https://doi.org/10.1007/s00477-014-
1010-4, 2015.

Schliep, K. and Hechenbichler, K.: kknn: Weighted K-nearest
neighbors, R package version 1.3.1, available at: https://CRAN.
R-project.org/package=kknn (last access: 14 March 2020), 2016.

Segal, M. and Xiao, Y. Y.: Multivariate random forests, Wiley Inter-
disciplinary Reviews-Data Mining and Knowledge Discovery, 1,
80–87, https://doi.org/10.1002/widm.12, 2011.

Si, J.: Data set of soil moisture in the lower reaches of Heihe
River (2012), available at: http://data.tpdc.ac.cn/zh-hans/data/
438fc689-ad9e-4370-8961-5b2de53d8b87/, last access: 12 May
2020.

Small, C. G.: A survey of multidimensional medians, Int. Stat. Rev.,
58, 263–277, https://doi.org/10.2307/1403809, 1990.

Song, X., Brus, D. J., Liu, F., Li, D., Zhao, Y., Yang,
J., and Zhang, G.: Mapping soil organic carbon con-
tent by geographically weighted regression: A case study
in the Heihe River Basin, China, Geoderma, 261, 11–22,
https://doi.org/10.1016/j.geoderma.2015.06.024, 2016.

Streiner, D. L.: Maintaining standards: Differences be-
tween the standard deviation and standard error, and
when to use each, Can. J. Psychiat., 41, 498–502,
https://doi.org/10.1177/070674379604100805, 1996.

Subasi, A.: Eeg signal classification using wavelet feature extraction
and a mixture of expert model, Expert Syst. Appl., 32, 1084–
1093, https://doi.org/10.1016/j.eswa.2006.02.005, 2007.

Taalab, K., Corstanje, R., Zawadzka, J., Mayr, T., Whelan, M. J.,
Hannam, J. A., and Creamer, R.: On the application of bayesian
networks in digital soil mapping, Geoderma, 259, 134–148,
https://doi.org/10.1016/j.geoderma.2015.05.014, 2015.

Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B.,
and Triantafilis, J.: Comparing data mining classifiers
to predict spatial distribution of USDA-family soil
groups in Baneh region, Iran, Geoderma, 253, 67–77,
https://doi.org/10.1016/j.geoderma.2015.04.008, 2015.

Thompson, J. A., Roecker, S., Grunwald, S., and Owens, P. R.: Digi-
tal soil mapping: Interactions with and applications for hydrope-
dology, chap. 21, in: Hydropedology, edited by: Lin, H., Aca-
demic Press, Boston, 665–709, https://doi.org/10.1016/B978-0-
12-386941-8.00021-6, 2012.

Tolosana-Delgado, R., Mueller, U., and van den Boogaart, K.
G.: Geostatistics for compositional data: An overview, Math.

www.hydrol-earth-syst-sci.net/24/2505/2020/ Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.2307/2529310
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1016/j.geoderma.2011.10.010
https://doi.org/10.1080/00045608.2011.652855
http://data.tpdc.ac.cn/zh-hans/data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/
http://data.tpdc.ac.cn/zh-hans/data/371ce545-e8d0-4e96-81e1-e862dbfc3b50/
https://doi.org/10.1023/a:1012293922142
https://doi.org/10.1002/hyp.5869
https://doi.org/10.1007/s00477-014-0849-8
https://doi.org/10.1007/s00477-014-0849-8
https://doi.org/10.1007/s11004-015-9625-7
https://doi.org/10.1002/2015wr018369
https://doi.org/10.1016/s0034-4257(02)00188-8
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1016/B978-0-12-803279-4.00002-X
https://doi.org/10.1016/j.coal.2018.02.003
https://doi.org/10.1016/j.catena.2017.10.002
https://doi.org/10.1016/j.geodrs.2016.11.003
https://doi.org/10.1007/s002549900081
https://doi.org/10.1093/bioinformatics/btw570
https://doi.org/10.1007/s00477-014-1010-4
https://doi.org/10.1007/s00477-014-1010-4
https://CRAN.R-project.org/package=kknn
https://CRAN.R-project.org/package=kknn
https://doi.org/10.1002/widm.12
http://data.tpdc.ac.cn/zh-hans/data/438fc689-ad9e-4370-8961-5b2de53d8b87/
http://data.tpdc.ac.cn/zh-hans/data/438fc689-ad9e-4370-8961-5b2de53d8b87/
https://doi.org/10.2307/1403809
https://doi.org/10.1016/j.geoderma.2015.06.024
https://doi.org/10.1177/070674379604100805
https://doi.org/10.1016/j.eswa.2006.02.005
https://doi.org/10.1016/j.geoderma.2015.05.014
https://doi.org/10.1016/j.geoderma.2015.04.008
https://doi.org/10.1016/B978-0-12-386941-8.00021-6
https://doi.org/10.1016/B978-0-12-386941-8.00021-6


2526 M. Zhang et al.: Systematic comparison of five machine-learning models

Geosci., 51, 485–526, https://doi.org/10.1007/s11004-018-9769-
3, 2019.

van den Boogaart, K. G. and Tolosana-Delgado, R.:
Compositions: A unified R package to analyze com-
positional data, Comput. Geosci., 34, 320–338,
https://doi.org/10.1016/j.cageo.2006.11.017, 2008.

Vapnik, V.: The support vector method of function estima-
tion, Nonlinear modeling: Advanced black-box techniques,
edited by: Suykens, J. A. K. and Vandewalle, J., 55–85,
https://doi.org/10.1007/978-1-4615-5703-6_3, 1998.

Wang, Z. and Shi, W.: Mapping soil particle-size
fractions: A comparison of compositional kriging
and log-ratio kriging, J. Hydrol., 546, 526–541,
https://doi.org/10.1016/j.jhydrol.2017.01.029, 2017.

Wang, Z. and Shi, W.: Robust variogram estimation combined
with isometric log-ratio transformation for improved accuracy
of soil particle-size fraction mapping, Geoderma, 324, 56–66,
https://doi.org/10.1016/j.geoderma.2018.03.007, 2018.

Wu, B., Yan, N., Xiong, J., Bastiaanssen, W. G. M., Zhu, W., and
Stein, A.: Validation of ETWatch using field measurements at di-
verse landscapes: A case study in Hai Basin of China, J. Hydrol.,
436, 67–80, https://doi.org/10.1016/j.jhydrol.2012.02.043, 2012.

Wu, W., Li, A., He, X., Ma, R., Liu, H., and Lv, J.: A
comparison of support vector machines, artificial neural net-
work and classification tree for identifying soil texture classes
in southwest China, Comput. Electron. Agr., 144, 86-93,
https://doi.org/10.1016/j.compag.2017.11.037, 2018.

Xu, T., He, X., Bateni, S. M., Auligne, T., Liu, S., Xu, Z., Zhou,
J., and Mao, K.: Mapping regional turbulent heat fluxes via vari-
ational assimilation of land surface temperature data from po-
lar orbiting satellites, Remote Sens. Environ., 221, 444–461,
https://doi.org/10.1016/j.rse.2018.11.023, 2019.

Yang, R., Zhang, G., Liu, F., Lu, Y., Yang, F., Yang, F., Yang, M.,
Zhao, Y., and Li, D.: Comparison of boosted regression tree and
random forest models for mapping topsoil organic carbon con-
centration in an alpine ecosystem, Ecol. Indic., 60, 870–878,
https://doi.org/10.1016/j.ecolind.2015.08.036, 2016.

Yi, C., Li, D., Zhang, G., Zhao, Y., Yang, J., Liu, F.,
and Song, X.: Criteria for partition of soil thickness
and case studies, Acta Pedologica Sinica, 52, 220–227,
https://doi.org/10.11766/trxb201402180069, 2015.

Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Spa-
tial patterns of soil organic carbon on hillslopes: Integrating ge-
omorphic processes and the biological C cycle, Geoderma, 130,
47–65, https://doi.org/10.1016/j.geoderma.2005.01.008, 2006.

Yue, T. and Zhao, N.: Digital soil mapping dataset of soil
texture (soil particle-size fractions) in the Tianlaochi basin
(2012–2014), available at: http://data.tpdc.ac.cn/zh-hans/
data/737e4d01-c5f8-4940-98d2-3bda306784ad/, last access:
11 May 2020a.

Yue, T. and Zhao, N.: Digital soil mapping dataset of soil tex-
ture (soil particle-size fractions) in the upstream of the Heihe
river basin (2012–2016), available at: http://data.tpdc.ac.cn/
zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/, last ac-
cess: 11 May 2020b.

Yue, T., Zhang, L., Zhao, N., Zhao, M., Chen, C., Du, Z., Song,
D., Fan, Z., Shi, W., Wang, S., Yan, C., Li, Q., Sun, X.,
Yang, H., Wilson, J., and Xu, B.: A review of recent de-
velopments in HASM, Environ. Earth Sci., 74, 6541–6549,
https://doi.org/10.1007/s12665-015-4489-1, 2015.

Yue, T., Liu, Y., Zhao, M., Du, Z., and Zhao, N.: A fundamental
theorem of Earth’s surface modelling, Environ. Earth Sci., 75,
751, https://doi.org/10.1007/s12665-016-5310-5, 2016.

Zeraatpisheh, M., Ayoubi, S., Jafari, A., and Finke, P.: Comparing
the efficiency of digital and conventional soil mapping to pre-
dict soil types in a semi-arid region in Iran, Geomorphology,
285, 186–204, https://doi.org/10.1016/j.geomorph.2017.02.015,
2017.

Zhang, G.: Soil texture of representative samples in the Heihe
River Basin, available at: http://data.tpdc.ac.cn/zh-hans/
data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/, last access:
11 May 2020.

Zhang, G. and Song, X.: Digital soil mapping dataset
of hydrological parameters in the Heihe River Basin
(2012), available at: http://data.tpdc.ac.cn/zh-hans/data/
e977f5e8-972b-42a5-bffe-cd0195f3b42b/, last access:
11 May 2020a.

Zhang, G. and Song, X.: Digital soil mapping dataset of soil depth in
the Heihe River Basin (2012–2014), available at: http://data.tpdc.
ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/,
last access: 11 May 2020b.

Zhang, S., Shen, C., Chen, X., Ye, H., Huang, Y., and Lai, S.: Spa-
tial interpolation of soil texture using compositional kriging and
regression kriging with consideration of the characteristics of
compositional data and environment variables, J. Integr. Agr.,
12, 1673–1683, https://doi.org/10.1016/s2095-3119(13)60395-
0, 2013.

Zhang, X., Liu, H., Zhang, X., Yu, S., Dou, X., Xie, Y., and Wang,
N.: Allocate soil individuals to soil classes with topsoil spec-
tral characteristics and decision trees, Geoderma, 320, 12–22,
https://doi.org/10.1016/j.geoderma.2018.01.023, 2018.

Zhao, C. and Ma, W.: Soil physical properties-soil bulk density
and mechanical composition dataset of Tianlaochi Watershed in
Qilian Mountains, available at: http://data.tpdc.ac.cn/zh-hans/
data/b8bfbb8b-97e4-4622-acbd-06b5ac466403/, last access:
12 May 2020.

Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020 www.hydrol-earth-syst-sci.net/24/2505/2020/

https://doi.org/10.1007/s11004-018-9769-3
https://doi.org/10.1007/s11004-018-9769-3
https://doi.org/10.1016/j.cageo.2006.11.017
https://doi.org/10.1007/978-1-4615-5703-6_3
https://doi.org/10.1016/j.jhydrol.2017.01.029
https://doi.org/10.1016/j.geoderma.2018.03.007
https://doi.org/10.1016/j.jhydrol.2012.02.043
https://doi.org/10.1016/j.compag.2017.11.037
https://doi.org/10.1016/j.rse.2018.11.023
https://doi.org/10.1016/j.ecolind.2015.08.036
https://doi.org/10.11766/trxb201402180069
https://doi.org/10.1016/j.geoderma.2005.01.008
http://data.tpdc.ac.cn/zh-hans/data/737e4d01-c5f8-4940-98d2-3bda306784ad/
http://data.tpdc.ac.cn/zh-hans/data/737e4d01-c5f8-4940-98d2-3bda306784ad/
http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/
http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/
https://doi.org/10.1007/s12665-015-4489-1
https://doi.org/10.1007/s12665-016-5310-5
https://doi.org/10.1016/j.geomorph.2017.02.015
http://data.tpdc.ac.cn/zh-hans/data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/
http://data.tpdc.ac.cn/zh-hans/data/b5835154-1e3c-41a4-ba6c-a6ec5c968949/
http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/
http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/
http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/
http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/
https://doi.org/10.1016/s2095-3119(13)60395-0
https://doi.org/10.1016/s2095-3119(13)60395-0
https://doi.org/10.1016/j.geoderma.2018.01.023
http://data.tpdc.ac.cn/zh-hans/data/b8bfbb8b-97e4-4622-acbd-06b5ac466403/
http://data.tpdc.ac.cn/zh-hans/data/b8bfbb8b-97e4-4622-acbd-06b5ac466403/

	Abstract
	Introduction
	Data and methods
	Study area
	Soil sampling
	Environmental covariates
	Machine-learning models and parameter optimization
	K-nearest neighbour
	Multilayer perceptron neural network
	Random forest
	Support vector machine
	Extreme gradient boosting
	Parameter optimization

	Log-ratio transformation methods
	Validation
	Validation method
	Validation indicators for soil texture classification
	Validation indicators for soil PSF interpolation

	Statistical analysis for the original and log-ratio-transformed data

	Results
	The descriptive statistics for the original and log-ratio-transformed data of soil PSFs
	Comparison of the machine-learning models in the classification of soil texture types
	Comparison of the validation indicators for soil texture classification
	Comparison of the prediction maps for soil texture classification

	Comparison of the machine-learning methods combined with log-ratio-transformed data in soil PSF interpolation
	Comparison of the validation indicators for the interpolation of soil PSFs
	Comparison of the interpolation prediction maps of soil PSFs

	Comparison of direct and indirect soil texture classification
	Comparison of the validation indicators for direct and indirect soil texture classification
	The prediction performance of soil texture types from different methods
	Comparison of prediction maps of direct and indirect soil texture classification
	Comparison of total computing time for each model in soil texture classification and soil PSF interpolation


	Discussion
	The systematic comparison of the five machine-learning models
	The systematic comparison of the models using log-ratio-transformed data and original data
	The systematic comparison of the direct and indirect soil texture classification

	Conclusion
	Appendix A: Abbreviations
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

