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Abstract. Inflow forecasting plays an essential role in reser-
voir management and operation. The impacts of climate
change and human activities have made accurate inflow
prediction increasingly difficult, especially for longer lead
times. In this study, a new hybrid inflow forecast frame-
work – using the ERA-Interim reanalysis data set as input
and adopting gradient-boosting regression trees (GBRT) and
the maximal information coefficient (MIC) – is developed for
multistep-ahead daily inflow forecasting. Firstly, the ERA-
Interim reanalysis data set provides more information for
the framework, allowing it to discover inflow for longer lead
times. Secondly, MIC can identify an effective feature sub-
set from massive features that significantly affects inflow;
therefore, the framework can reduce computational burden,
distinguish key attributes from unimportant ones and pro-
vide a concise understanding of inflow. Lastly, GBRT is a
prediction model in the form of an ensemble of decision
trees, and it has a strong ability to more fully capture non-
linear relationships between input and output at longer lead
times. The Xiaowan hydropower station, located in Yunnan
Province, China, was selected as the study area. Six evalu-
ation criteria, namely the mean absolute error (MAE), the
root-mean-squared error (RMSE), the Pearson correlation
coefficient (CORR), Kling–Gupta efficiency (KGE) scores,
the percent bias in the flow duration curve high-segment vol-
ume (BHV) and the index of agreement (IA) are used to eval-
uate the established models utilizing historical daily inflow
data (1 January 2017–31 December 2018). The performance
of the presented framework is compared to that of artificial
neural network (ANN), support vector regression (SVR) and
multiple linear regression (MLR) models. The results indi-

cate that reanalysis data enhance the accuracy of inflow fore-
casting for all of the lead times studied (1–10 d), and the
method developed generally performs better than other mod-
els, especially for extreme values and longer lead times (4–
10 d).

1 Introduction

Reliable and accurate inflow forecasting 1–10 d in advance
is significant with respect to the efficient utilization of wa-
ter resources, reservoir operation and flood control, espe-
cially in areas with concentrated rainfall. Rainfall in southern
China is usually concentrated for several days at a time due to
strong convective weather, such as typhoons. Low accuracy
inflow predictions can consequently mean that power sta-
tions are unable to devise reasonable power generation plans
7–10 d ahead of disaster events, and this subsequently leads
to unnecessary water abandonment and even substantial eco-
nomic losses. Figure 1 shows the “losses of electric quantity
due to discarded water” (LEQDW) in Yunnan and Sichuan
provinces, China, from 2011 to 2016 (Sohu, 2017; Jiang,
2018). The total LEQDW in Yunnan and Sichuan provinces
increased from 1.5 × 109 to 45.6 × 109 kWh during the pe-
riod from 2011 to 2016, with an average annual growth rate
of 98.0 %. In recent years, due to the increasing number of
hydropower stations and improved hydropower capacity, the
problem of discarding water due to inaccurate inflow fore-
casting is becoming increasingly serious and has had a nega-
tive impact on the development of hydropower in China.
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The main challenge with respect to inflow forecasting at
present, which is caused by climate change and human ac-
tivities, is low accuracy, especially for longer lead times
(Badrzadeh et al., 2013; El-Shafie et al., 2007). Meanwhile,
streamflow variation, which also stems from climate change
and anthropogenic activities, means that inflow forecasting
models often need to be rebuilt, and the model parameters
need to be recalibrated according to the actual inflow and
meteorological data within 1 or 2 years.

To address these problems, a variety of models and ap-
proaches have been developed. These approaches can be
divided into three categories: statistical methods (Valipour
et al., 2013), physical methods (Duan et al., 1992; Wang
et al., 2011; Robertson et al., 2013) and machine-learning
methods (Chau et al., 2005; Liu et al., 2015; Rajaee et al.,
2019; Zhang et al., 2018; Yaseen et al., 2019; Fotovatikhah
et al., 2018; Mosavi et al., 2018; Chau, 2017; Ghorbani et al.,
2018). Each method has its own conditions and scope of ap-
plication.

Statistical methods are usually based on historical inflow
records and mainly include the autoregressive model, the au-
toregressive moving average (ARMA) model and the autore-
gressive integrated moving average (ARIMA) model (Lin
et al., 2006). Statistical methods assume that the inflow series
is stationary and the relationship between input and output is
simple. However, real inflow series are complex, nonlinear
and chaotic (Dhanya and Kumar, 2011), making it difficult
to obtain high-accuracy predictions using statistical models.

Physical methods, which have clear mechanisms, are im-
plemented using theories of inflow generation and conflu-
ence. These methods can reflect the characteristics of the
catchment but are very strict with initial conditions and in-
put data (Bennett et al., 2016). Meanwhile, these methods,
which are used for flood forecasting, have a shorter lead time
and cannot be utilized to acquire long-term forecasting re-
sults due to input uncertainty.

Machine-learning methods, which have a strong ability
to handle the nonlinear relationship between input and out-
put and have recently shown excellent performance with re-
spect to inflow prediction, are widely used for medium- and
long-term inflow forecasts. In particular, several studies have
shown that artificial neural networks (ANNs; Rasouli et al.,
2012; Cheng et al., 2015; El-Shafie and Noureldin, 2011)
and support vector regression (SVR; Tongal and Booij, 2018;
Luo et al., 2019; Moazenzadeh et al., 2018) are two power-
ful models for inflow prediction. However, these models still
have some inherent disadvantages. For example, ANNs are
prone to being trapped by local minima, and both ANN and
SVR suffer from over-fitting issues and reduced generalizing
performance.

In recent years, gradient-boosting regression trees (GBRT)
(Fienen et al., 2018; Friedman, 2001), a nonparametric
machine-learning method based on a boosting strategy and
decision trees, has been developed and has been used to study
traffic (Zhan et al., 2019) and environmental (Wei et al.,

2019) issues, where it has proven to alleviate the above-
mentioned problems. Thus, GBRT is selected for daily inflow
prediction with lead times of 1–10 d in this paper. Compared
with ANN and SVR, GBRT also has two other advantages.
Firstly, GBRT can rank features according to their contribu-
tion to model scores, which is of great significance for re-
ducing the complexity of the model. Secondly, GBRT is a
white box model and can be easily interpreted. To the best of
our knowledge, GBRT has not previously been used for daily
inflow prediction with lead times of 1–10 d. For comparison
purposes, ANN, SVR and multiple linear regression (MLR)
have been employed to forecast daily inflow and are consid-
ered to be benchmark models in this study.

In addition to forecasting models, a vital reason why many
approaches cannot attain a higher inflow prediction accuracy
is that inflow is influenced by various factors (Yang et al.,
2019), such as rainfall, temperature and humidity. Thus,
it is very difficult to select appropriate features for inflow
forecasting. The current feature selection methods for in-
flow forecasting mainly include two methodologies. The first
method is the model-free method (Bowden, 2005; Snieder
et al., 2020) which employs a measure of the correlation
coefficient criterion (Badrzadeh et al., 2013; Siqueira et al.,
2018; Pal et al., 2013) to characterize the correlation between
a potential model input and the output variable. The sec-
ond method is the model-based method (Snieder et al., 2020)
which usually utilizes the model and search strategies to de-
termine the optimal input subset. Common search strategies
include forward selection and backward elimination (May
et al., 2011). The correlation coefficient has a limited abil-
ity to capture nonlinear relationships and exhaustive searches
tend to increase the computational burden. Thus, in order to
accurately and quickly select effective inputs, the maximal
information coefficient (MIC; Reshef et al., 2011) is used to
select input factors for inflow forecasting.

MIC is a robust measure of the degree of correlation be-
tween two variables and has attracted a lot attention from
academia (Zhao et al., 2013; Ge et al., 2016; Lyu et al., 2017;
Sun et al., 2018). In addition, sufficient potential input factors
are a prerequisite for obtaining reliable and accurate predic-
tion results, and it is not enough to use only antecedent in-
flow series as model input. To enhance the accuracy of in-
flow forecasting and acquire a longer lead time, increasing
amounts of meteorological forecasting data have been used
for inflow forecasting (Lima et al., 2017; Fan et al., 2015;
Rasouli et al., 2012). However, with extended lead times, the
errors of forecast data continuously increase, as the variables
are obtained using a numerical weather prediction (NWP)
system are also affected by complex factors (Mehr et al.,
2019). Moreover, due to the continuous improvement of fore-
casting systems, it is difficult to obtain consistent and long
series of forecasting data (Verkade et al., 2013).

To mitigate these problems, reanalysis data generated
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis Interim – ERA-Interim (Dee
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Figure 1. Losses of electric quantity due to discarded wa-
ter (LEQDW) in Sichuan and Yunnan provinces.

et al., 2011), which employs one of the best methods for the
reanalysis of data describing atmospheric circulation and el-
ements (Kishore et al., 2011), have been used as model in-
put. The reanalysis data have less error than observed data
and forecast data, which is the result of assimilating observed
data with forecast data. ERA-Interim provides the results of a
global climate reanalysis from 1979 to date, which have been
produced using a fixed version of a NWP system. The fixed
version ensures that there are no spurious trends caused by an
evolving NWP system. Therefore, these meteorological re-
analysis data satisfy the need for long sequences of consistent
data and have been used for the prediction of wind speeds
(Stopa and Cheung, 2014) and solar radiation (Ghimire et al.,
2019; Linares-Rodríguez et al., 2011) in the past.

This study aims to provide a reliable inflow forecasting
framework with longer lead times for daily inflow forecast-
ing. The framework adopts the ERA-Interim reanalysis data
as model input, which ensures that ample information is sup-
plied to depict inflow. The MIC is used to select appropriate
features to avoid over-fitting and the waste of computing re-
sources caused by feature redundancy. GBRT, which is ro-
bust to outliers and has a strong nonlinear fitting ability, is
used as the prediction model to improve the inflow forecast-
ing accuracy of longer lead times. This paper is organized as
follows: Sect. 2 describes a case study and the data collected;
Sect. 3 introduces the theory and processes of the methods
used, including the MIC and GBRT; Sect. 4 presents the re-
sults and a discussion of the data; and the conclusions are
given in Sect. 5.

2 Data

2.1 The study area and the data utilized

The Xiaowan hydropower station in the lower reaches of
the Lancang River was chosen as the study site (Fig. 2).
The Xiaowan hydropower station is the main controlling hy-
dropower station in the Lancang River; therefore, it is very
meaningful to adopt it as the case study. The Lancang River,
which is also known as the Mekong River, is approximately
2000 km long and has a drainage area of 113 300 km2 above
the Xiaowan hydropower station. The river originates on the
Tibetan Plateau and runs through China, Myanmar, Laos,
Thailand, Cambodia and Vietnam. The major source of water
flowing into the Lancang River in China comes from melting
snow on the Tibetan Plateau (Mekong River Commission,
2005).

We collected the ERA-Interim reanalysis data set and
the observed daily inflow and rainfall data for Xiaowan for
8 years (January 2011 to December 2018). Figure 3 de-
picts the daily inflow series. The data from January 2011
to December 2014 (1461 d, accounting for approximately
50 % of the whole data set), from January 2015 to Decem-
ber 2016 (731 d, accounting for approximately 25 % of the
whole data set) and from January 2017 to December 2018
(730 d, accounting for approximately 25 % of the whole data
set) are used as the training, validation and testing data
sets respectively. The reanalysis data set can be downloaded
from https://apps.ecmwf.int/datasets/data/interim-full-daily/
levtype=sfc/ (last access: 1 July 2019), and it is provided
every 12 h on a 0.25◦× 0.25◦ spatial grid. Based on expert
knowledge and available literature, the 26 near-surface vari-
ables (Table A1), which include the total precipitation (tp),
the 2 m temperature (t2m) and the total column water (tcw),
from the reanalysis data are considered as potential predic-
tors for inflow forecasting. More details regarding the ERA-
Interim data set are presented in Appendix A.

2.2 Feature scaling and feature selection

Feature scaling is necessary for machine-learning methods,
and all features are scaled to the range between zero and one,
as shown in Eq. (1), before being included in the calculation.

xscale =
xoriginal− xmin

xmax− xmin
, (1)

where xscale and xoriginal indicate the scaled and original data
respectively; and xmax and xmin represent the maximum and
minimum of inflow series respectively. The reasonable selec-
tion of input variables can reduce the computational burden
and improve the prediction accuracy of the model by remov-
ing redundant feature information and reducing the dimen-
sions of the features. If too many features are selected, the
model will become very complex, which will cause trouble
when adjusting parameters and subsequently result in over-
fitting and difficult convergence. Moreover, natural patterns
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Figure 2. Location of the Xiaowan hydropower station.

Figure 3. Daily inflow time series for the Xiaowan hydropower sta-
tion.

in the data will be blurred by noise (Zhao et al., 2013). Con-
versely, if irrelevant features are chosen, noise will be added
into the model and hinder the learning process. The MIC
is employed to select input data from candidate predictors
from the reanalysis data set. The lagged inflow and rainfall
series are identified using the partial autocorrelation func-
tion (PACF) and the cross-correlation function (CCF). The
corresponding 95 % confidence interval is used to identify
significant correlations. Furthermore, when the correlation
coefficient slowly declines and cannot fall into the confidence
interval, a trial-and-error procedure is used to determine the
optimum lag, i.e. starting from one lag and then modifying
the external inputs by successively adding one more lagged

time series into the input data (Amiri, 2015; Shoaib et al.,
2015).

3 Methodology

3.1 Feature selection via the maximal information
coefficient

The calculation of the MIC is based on the concept of mu-
tual information (MI; Kinney and Atwal, 2014). For a ran-
dom variable X, such as observed inflow, the entropy of X is
defined as

H(X)=−
∑
x∈X

p(x) logp(x), (2)

where p(x) is the probability density function ofX = x. Fur-
thermore, for another random variable Y , such as observed
rainfall, the conditional entropy of X given Y may be evalu-
ated using the following expression:

H(X|Y )=−
∑
x∈X

∑
y∈Y

p(x,y) logp(x|y), (3)

whereH(X|Y ) is the uncertainty ofX given knowledge of Y ,
and p(x, y) and p(x|y) are the joint probability density and
the conditional probability of X = x and Y = y respectively.
The reduction of the original uncertainty of X, due to the
knowledge of Y , is called the MI (Amorocho and Espildora,
1973; Chapman, 1986) and is defined by
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MI(X,Y )=H(X)−H(X|Y )

=

∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
. (4)

Considering a given data set D, including variable X and Y
with a sample size n, the calculation of the MIC is divided
into three steps. Firstly, scatter plots of X and Y as well
as grids for partitioning, which are called “x-by-y” grids,
are drawn. Let D|G denote the distribution of D divided by
one of the x-by-y grids asG. MI∗(D,x,y)=max MI(D|G),
where MI(D|G) is the mutual information ofD|G. Secondly,
the characteristic matrix is defined as

M(D)x,y =
MI∗(D,x,y)

log(min(x,y))
. (5)

Lastly, the MIC is introduced as the maximum value of the
characteristic matrix: MIC(D)= max

xy<B(n)
M(D)x,y , where

B(n) is the upper bound of the grid size and is a function
of sample size, which is defined as B = n0.6. We perform
feature selection from the ERA-Interim reanalysis data set in
two steps via MIC. First, we compute the MIC of each of
the reanalysis variables and observed inflow. Then, we sort
features based on the MIC in descending order and deter-
mine the optimum inputs using a trial-and-error procedure,
i.e. starting from the top feature and then modifying the ex-
ternal inputs by successively adding one more feature into
model input. The selected k features from the reanalysis data
are used as part of the model input.

3.2 Gradient-boosting regression trees

GBRT is an ensemble model that mainly includes two al-
gorithms: the decision tree algorithm and the boosting algo-
rithm. The decision tree is robust to outliers and is used as
a primitive model, and the boosting algorithm, which is an
integration rule, is used to improve inflow forecasting accu-
racy.

3.2.1 The decision tree

The decision tree in this paper refers to decision tree learning
used in computer science, which is one of the predictive mod-
elling approaches used in machine learning. A decision tree
consists of branch nodes (the tree structure) and leaf nodes
(the tree output). Assuming that a training data set is given in
a feature space with N features and each feature has n sam-
ples, (X1, y1), (X2, y2), . . . , (Xn, yn) (Xi = (x1, x2, . . . , xN ),
i = 1, 2, . . . , n). In the input space where the training set is lo-
cated, each region is recursively divided into two subregions,
and the output value of each subregion is used to construct
a binary decision tree. The top-down cyclic branch learning
of the decision tree adopts a greedy algorithm where each
branch node only cares about its own objective function. By

Figure 4. The structure of the decision tree model.

traversing all features and all segmentation points of each
feature, the best feature j and segmentation points “s” can
be found by minimizing squared loss:

min
j,s

[
min
c1

∑
Xi∈R1(j,s)

(yi − c1)
2
+min

c2

∑
Xi∈R2(j,s)

(yi − c2)
2

]
, (6)

where

R1(j,s)=
{
Xi |x

(j)
i ≤ s, i = 1,2, · · ·, N

}
(7)

R2(j,s)=
{
Xi |x

(j)
i > s,i = 1,2, · · ·, N

}
(8)

cm =
1
Nm

∑
Xi∈Rm(j,s)

yi(m= 1,2). (9)

Here, yi is the observed value, and R1(j , s) and R2(j , s) are
the results of partitioning. c1 and c2 are output values
of R1(j , s) and R2(j , s) respectively. Figure 4 shows an ex-
ample of a decision tree model with a max depth and number
of leaf nodes of 3 and 5 respectively. If the threshold of loss
is set as the stopping condition of the decision tree, it will
easily lead to over-fitting problems. Hence, we set the fol-
lowing parameters to alleviate the over-fitting problem of the
decision tree model: the maximum depth of the tree, the min-
imum number of samples required to split an internal node,
the minimum number of samples required at a leaf node and
the number of leaf nodes. These parameters are also those
used for optimization when using the decision tree.
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3.2.2 The boosting algorithm

The idea of gradient boosting originated from the observa-
tion by Breiman (Breiman, 1997) and can be interpreted as an
optimization algorithm based on a suitable cost function. Ex-
plicit regression gradient-boosting algorithms have been sub-
sequently developed (Friedman, 2001; Mason et al., 1999).
The boosting algorithm used is described in the following.
Supposing a training data set with n samples (X1, y1), (X2,
y2), . . . , (Xn, yn), a squared loss function is used to train the
decision tree:

L(y,f (X))=

n∑
i=1

(y− f (Xi))
2. (10)

The core of the GBRT algorithm is the iterative process of
training the decision with a residual method. The iterative
training process of GBRT withM decision trees is explained
in the following.

1. Initialization f0(x)= argmin
c

n∑
i=1
L(yi,c);

2. for m (m= 1, 2, . . . ,M) decision trees:

a. operating i (i = 1, 2, . . . , n) sample points, and us-
ing the negative gradient of the loss function to
replace the residual in the current model rmi =

−

[
∂L(yi ,f (xi ))
∂f (xi )

]
f (x)=fm−1(x)

;

b. fitting a regression tree with Rmt
{(
xi, rmi

)}
, the

ith regression tree with Rmt (t = 1, 2, . . . , T ) as its
corresponding leaf node region is obtained, where
t is the number of leaf nodes of regression;

c. for each leaf region t = 1, 2, . . . , T , the
best fitting value is calculated by cmt =
argmin
c

∑
xi∈Rmt

L(yi,fm−1 (xi)+ c);

d. the fitting results are updated by adding the fit-
ting values obtained to the previous values using

fmt (xi)= fm−1 (xi)+
T∑
t=1
cmt I

(
xi ∈ Rmt

)
;

3. finally, a strong learning method is obtained f̂ (xi)=

fM (xi)=
M∑
m=1

T∑
t=1
cmt I

(
xi ∈ Rmt

)
.

According to the above introduction to GBRT, the parame-
ters of the GBRT can be divided into two categories: boost-
ing parameters and tree parameters. The boosting parameters
include the learning rate and the number of weak learners
(learning_rate and n_estimators). The learning rate setting is
used to reduce the gradient step. The learning rate influences
the overall time of training: the smaller the value, the more it-
erations are required for training. There are four tree parame-
ters: max_leaf_nodes, min_samples_leaf, min_samples_split

and max_depth. Hence, GBRT has six parameters that con-
trol model complexity (Fienen et al., 2018), which we ad-
justed for tuning using a trial-and-error procedure.

3.3 Evaluation criteria of the models

It is critical to carefully define the meaning of performance
and to evaluate the performance on the basis of the fore-
casting and fitted values of the model compared with his-
torical data. The root-mean-squared error (RMSE) and mean
absolute error (MAE) are the most commonly used criteria
to assess model performance, and they are calculated using
Eqs. (11) and (12) respectively:

RMSE=

√√√√1
n

n∑
i=1

(
Q̂i −Qi

)2
(11)

MAE=
1
n

n∑
i=1

∣∣∣Q̂i −Qi

∣∣∣ , (12)

where Q̂i and Qi are the inflow estimation and observed
value at time i respectively, and n is the number of sam-
ples. The RMSE is more sensitive to extremes in the sam-
ple sets, and it is consequently used to evaluate the model’s
ability to simulate flood peaks. The Pearson correlation coef-
ficient (CORR) is a measure of the strength of the association
between the observed inflow series and the forecasted inflow
series, and it is calculated according to Eq. (13):

CORR=

n∑
i=1

(
Qi −Q

)(
Q̂i − Q̂

)
√

n∑
i=1

(
Qi −Q

)2√ n∑
i=1

(
Q̂i − Q̂

)2
, (13)

where Q̂ is the mean of the estimation series. The range of
the CORR is between zero and one and values close to one
demonstrate a perfect estimation result. The Kling–Gupta ef-
ficiency (KGE) score (Knoben et al., 2019) is also a widely
used evaluation index. It can be provided following Eqs. (14)
and (15):

KGE= 1−

√√√√
(CORR− 1)2+

(
σ̂

σ
− 1

)2

+

(
Q̂

Q
− 1

)2

(14)

σ̂ =

√√√√1
n

n∑
i=1

(
Q̂i − Q̂

)2
,σ =

√√√√1
n

n∑
i=1

(
Qi −Q

)2
, (15)

where σ is the standard deviation of the observed values, σ̂ is
the standard deviation of the inflow estimation, µ is the mean
of the observed series and µ̂ is the mean of the inflow esti-
mation series. The percent bias in the flow duration curve
high-segment volume (BHV; Yilmaz et al., 2008; Vogel and
Fennessey, 1994) is presented to estimate the prediction per-
formance of the model for extreme values. It can be provided
following Eq. (16):
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BHV=

H∑
k=1

(
Q̂h−Qh

)
H∑
h=1

Qh

× 100, (16)

where h= 1, 2, . . . ,H is the inflow index for inflows with
exceedance probabilities lower than 0.02. In this paper, the
inflow threshold of exceedance probabilities equalling 0.02
is 1722 m3 s−1. The index of agreement (IA; Willmott, 1981)
plays a significant role in evaluating the degree of the agree-
ment between observed series and inflow estimation series.
Similar to CORR, it ranges between zero (no agreement at
all) and one (perfect fit). It is given by

IA= 1−

n∑
i=1

(
Q̂i −Qi

)2

n∑
i=1

(∣∣∣Q̂i −Q

∣∣∣+ ∣∣Qi −Q
∣∣)2

. (17)

3.4 Overview of framework

Figure 5 illustrates the overall structure of the framework
presented. This structure consists of two major models:
GBRT and GBRT-MIC. In GBRT, we measure the relevance
of the different lags in observed inflow and rainfall with ob-
served inflow at the time of forecast using the partial auto-
correlation function (PACF) and the cross-correlation func-
tion (CCF; Badrzadeh et al., 2013), and we select appropri-
ate lags as predictors for the model using hypothesis testing
and trial-and-error procedures. Data preprocessing and fea-
ture scaling are then carried out for selected predictors. Next,
the data set is divided into a training set, a validation set, and
a testing set according to the length of each data set, which is
specified in advance (in Sect. 2.2). A grid search algorithm,
which is an exhaustive search-all candidate parameter combi-
nation method, is guided to the optimization model parame-
ters by the evaluation of the validation set for each lead time
(Chicco, 2017). Lastly, the prediction results are evaluated
based on the testing set. Compared with GBRT, GBRT-MIC
adds reanalysis data which are selected via MIC (in Sect. 3.1)
as the model input. Moreover, GBRT-MIC also calculates the
importance of features according to the prediction results and
ranks the features (Louppe, 2014).

It is difficult to perform multistep forecasting due to the ac-
cumulation of errors, reduced accuracy and increased uncer-
tainty. Therefore, the current state of multistep-ahead fore-
casting is reviewed. There are two main strategies that one
can use for multistep forecasting for single output, namely,
static (direct) multistep forecasting and recursive multistep
forecasting (Bontempi et al., 2012; Taieb et al., 2012). The
recursive forecasting strategy is biased when the underlying
model is nonlinear, and it is sensitive to the estimation error
as estimated values, instead of actual values, are used more
often as the forecasts move further into the future (Bontempi

Figure 5. Overview of the framework.

et al., 2012). Thus, the static multistep forecasting strategy
is employed in this paper. As the static strategy does not use
any approximated values to compute the forecasts, it is not
prone to the accumulation of errors. The model structures of
GBRT and GBRT-MIC are as follows:

Q̂I
t+T = f

(
θ I
t ;Qt ,Qt−1, . . ., Qt+1−p,Rt ,Rt−1, . . .,

Rt+1−q
)
(T = 1,2, . . ., 10) (18)

Q̂II
t+T = f

(
θ II
t ;Qt ,Qt−1, . . ., Qt+1−p,Rt ,Rt−1, . . .,

Rt+1−q ,E
1
t ,E

2
t , . . ., E

k
t

)
(T = 1,2, . . ., 10), (19)

where Q̂I
t+T and Q̂II

t+T are the forecasted values of GBRT
and GBRT-MIC at lead time T of current time t respectively;
θ I
t and θ II

t are parameters of GBRT and GBRT-MIC at lead
time T of current time t respectively; p and q are lags of the
observed inflow and rainfall determined using the PACF and
CCF respectively; Et represents the features from reanalysis
data at the current time t ; and k is the number of features
from the reanalysis data determined via the MIC.

4 Experimental results and discussion

In order to compare them with GBRT-MIC, the ANN-MIC,
SVR-MIC and MLR-MIC models, which were obtained by
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Figure 6. (a) The PACF plot of Xiaowan daily inflow, and (b) the CCF of Xiaowan rainfall and inflow.

Table 1. The candidate inputs via the PACF and CCF.

No. Input

1 Qt−1, Qt−4
2 Qt−1, Qt−4, Rt−1
3 Qt−1, Qt−4, Rt−1, Rt−2
4 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3
5 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4
6 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5
7 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6
8 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7
9 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7, Rt−8
10 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7, Rt−8, Rt−9
11 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7, Rt−8, Rt−9, Rt−10
12 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7, Rt−8, Rt−9, Rt−10, Rt−11
13 Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6, Rt−7, Rt−8, Rt−9, Rt−10, Rt−11, Rt−12

replacing GBRT in the framework with ANN, SVR and MLR
respectively, are also employed for inflow forecasting with
lead times of 1–10 d. As mentioned previously, six indices,
the MAE, RMSE, CORR, KGE, BHV and IA, are calcu-
lated to evaluate the performance of models based on the
testing set. We also explored the feature importance based
on the GBRT-MIC model (Louppe, 2014). All computations
carried out in this paper were performed on a ThinkPad P1
workstation containing an Intel Core i7-9850H CPU with
2.60 GHz and 16.0 GB of RAM, using the version 3.7.10 of
Python (Python Software Foundation, 2020), which is pow-
erful, fast and open, and the scikit-learn package (Pedregosa
et al., 2011).

4.1 Feature selection

Figure 6 shows the PACF, CCF and the corresponding 95 %
confidence interval from lag 1 to lag 12. The PACF shows
significant autocorrelation at lag 1 and lag 4 respectively
(Fig. 6a); thus, inflow series 1 and 4 d lag are selected as the
model inputs. The CCF between inflow and rainfall gradu-
ally decreases as the time lag increases (Fig. 6b) and cannot
fall into the 95 % confidence interval. Therefore, a trial-and-
error procedure is used to determine the optimal selection of

the lagged rainfall series. A total of 13 input structures are
tried (Table 1), and the trial results are shown in Fig. A1.
The results indicate that 7th input structure shows the best
performance. Accordingly, rainfall series from 1 to 6 d lag
are selected as the model input. As mentioned previously,
based on the MIC between inflow and the reanalysis variable
(Table A1), a trial-and-error procedure is used to determine
the optimal input subset. A total of 26 input structures are
tried (Table 2), and the trial results are shown in Fig. A2. The
results show that 8th input structure shows the best perfor-
mance; thus, the predictors nos. 1–8 in Table A1 are selected
as the model input. Finally, a total of 16 variables including
8 observed variables and 8 reanalysis variables are selected
as the model input (Table 3). As shown in Table 3, nos. 9–
18 are reanalysis variables, and the range of the MIC of the
reanalysis variables selected is 0.643 to 0.847. Furthermore,
no. 9 and nos. 13–16 are variables related to temperature.
Soil temperature level 3 (no. 9) is the temperature of the soil
in layer 3 (28–100 cm, where the surface is at 0 cm). The
temperature of the snow layer (no. 13) gives the tempera-
ture of the snow layer from the ground to the snow–air inter-
face. Nos. 10–12 are variables related to the water content of
the atmosphere. The 2 m dewpoint temperature (no. 10) is a
measure of the humidity of the air, and, when combined with
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Table 2. The candidate inputs from reanalysis data via the MIC.

No. Input

1 obs, stl3t−1
2 obs,stl3t−1, d2mt−1
3 obs,stl3t−1, d2mt−1, tcwvt−1
4 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1
5 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1
6 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1
7 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1
8 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1
9 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1
10 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1, rot−1
11 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1, rot−1, swvl1t−1
12 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1, rot−1, swvl1t−1, swvl2t−1
13 obs,stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1, rot−1, swvl1t−1, swvl2t−1, swvl3t−1
14 obs, rea, t2mt−1
15 obs, rea, t2mt−1, swvl4t−1
16 obs, rea, t2mt−1, swvl4t−1, mx2tt−1
17 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1
18 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1
19 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1
20 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1
21 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1
22 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1, sdt−1
23 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1, sdt−1, smltt−1
24 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1, sdt−1, smltt−1, istl1t−1
25 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1, sdt−1, smltt−1, istl1t−1, istl3t−1
26 obs, rea, t2mt−1, swvl4t−1, mx2tt−1, sft−1, cpt−1, tpt−1, rsnt−1, lspt−1, sdt−1, smltt−1, istl1t−1, istl3t−1, istl2t−1

Note: “obs” represents the selected observed optimal input set, obs={Qt−1, Qt−4, Rt−1, Rt−2, Rt−3, Rt−4, Rt−5, Rt−6}. “rea” represents the selected input set from
the reanalysis, rea={stl3t−1, d2mt−1, tcwvt−1, tcwt−1, stl2t−1, mn2tt−1, tsnt−1, stl4t−1, stl1t−1, rot−1, swvl1t−1, swvl2t−1, swvl3t−1}.

Table 3. List of input data for GBRT-MIC. There are of two input types, observed and reanalysis variables. The reanalysis variables are
available twice a day at 00:00 and 12:00 UTC. The cumulative variables (e.g. total column water) are the sum of two periods, and the
instantaneous variables (e.g. 2 m dewpoint temperature) are the mean of two periods.

No. Description Index Unit MIC Type

1 Inflow on day t − 1 Qt−1 (m3 s−1) – Obs.
2 Inflow on day t − 2 Qt−2 (m3 s−1) – Obs.
3 Rainfall on day t − 1 Rt−1 (mm) – Obs.
4 Rainfall on day t − 2 Rt−2 (mm) – Obs.
5 Rainfall on day t − 3 Rt−3 (mm) – Obs.
6 Rainfall on day t − 4 Rt−4 (mm) – Obs.
7 Rainfall on day t − 5 Rt−5 (mm) – Obs.
8 Rainfall on day t − 6 Rt−6 (mm) – Obs.
9 Soil temperature level 3 stl3t−1 (K) 0.847 ERA-I.
10 2 m dewpoint temperature d2mt−1 (K) 0.781 ERA-I.
11 Total column water vapour tcwvt−1 (kg m−2) 0.699 ERA-I.
12 Total column water tcwt−1 (kg m−2) 0.699 ERA-I.
13 Soil temperature level 2 stl2t−1 (K) 0.689 ERA-I.
14 Minimum temperature at 2 m mn2tt−1 (K) 0.684 ERA-I.
15 Temperature of snow layer tsnt−1 (K) 0.664 ERA-I.
16 Soil temperature level 4 stl4t−1 (K) 0.643 ERA-I.
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Figure 7. Sensitivity of the activation function and the number of nodes in the hidden layer to the MAE of the ANN-MIC model: (a) 1 d
ahead and (b) 10 d ahead. The shaded area represents the 95 % confidence interval obtained by a bootstrap of 50 trials.

Table 4. Four commonly used activation functions for ANN-MIC.

Name Functional expression

Logistic f (x)= 1
1+e−x

Tanh f (x)= ex−e−x

ex+e−x

Identity f (x)= x

ReLU f (x)=max(0, x)

temperature and pressure, it can be used to calculate the rel-
ative humidity. The total column water vapour (no. 11) is the
total amount of water vapour, which is a fraction of the total
column water. The total column water (no. 12) is the sum of
the water vapour, liquid water, cloud ice, rain and snow in a
column extending from the surface of the Earth to the top of
the atmosphere. The volumetric soil water layer 1 (no. 19) is
the volume of water in soil layer 1. In summary, all the se-
lected predictors are interpretable and have a good physical
connection to inflow.

4.2 Hyperparameter optimization

For machine-learning methods, hyperparameters are param-
eters that are set before training and cannot be directly learnt
from the regular training process. In order to improve the
performance of models, it is imperative to tune the hyper-
parameters of models. The grid search function is employed
to tune the hyperparameters of GBRT, GBRT-MIC, ANN-
MIC and SVR-MIC. After a review of the available literature
(Badrzadeh et al., 2013; Rasouli et al., 2012), an optimizer
in the family of quasi-Newton methods, namely L-BFGS, is
chosen as the training algorithm for the ANN, and the num-
ber of hidden layers is fixed to three. Another two parame-
ters, namely the activation function and the number of nodes
of the hidden layer, need to be adjusted. A range of 2–20 neu-
rons and four commonly used activation functions (Table 4)
are selected by grid search. To alleviate the influence of the
random initialization of weights, 50 ANN-MIC models are
trained for each parameter combination. The optimal activa-

tion function and the number of nodes of the hidden layer are
determined by selecting the minimal MAE of the validation
set for each lead time. The results of the trials show that tanh
and the logistic function are the two more robust activation
functions (Fig. 7), and ANN, with fewer nodes, is inclined to
obtain a lower error. The optimal parameter combination for
each lead time is listed in Table 5. It can be seen that the op-
timal number of nodes is 2, 3 or 4, and the optimal activation
function is either tanh or the logistic function.

For SVR, according to Lin et al. (2006) and Dibike et al.
(2001), the radial basis function (RBF) outperforms other
kernel functions for runoff modelling; thus, RBF is used as
the kernel function in this study. There are three parameters
that need to be adjusted. Firstly, an appropriate tuning range
of each parameter is determined by a trial-and-error proce-
dure. Then, to reach at an optimal choice of these parame-
ters, the MAE is used to optimize the parameters using grid
search. The optimal tuning parameters of SVR are shown in
Table 5. As mentioned earlier, for GBRT, there are six param-
eters need to be adjusted. In order to obtain an optimal pa-
rameter combination as soon as possible, we optimize all pa-
rameters in two steps. Firstly, n_estimators and learning_rate
are fixed to 100 and 0.1 respectively. The max_leaf_nodes,
min_samples_leaf, max_depth and min_samples_split tun-
ing parameters generate 40 000 models at each lead time.
Secondly, after the tree parameters are determined, learn-
ing_rate is modified to 0.01 and n_estimators is determined
using grid search. To accommodate the computational bur-
den, all models are distributed among about 12 central pro-
cessing units (CPUs), and the total wall time for the runs is
about 7 h for GBRT_MIC and GBRT. Table 6 lists the opti-
mal tuning parameters for GBRT and GBRT-MIC.

4.3 Input comparison

Figure 8 illustrates the performance indices of GBRT and
GBRT-MIC for the testing set (1 January 2017–31 Decem-
ber 2018) at lead times of 1–10 d. It is obvious that the re-
analysis data selected by the MIC greatly improves upon the
GBRT forecasting at both short and long lead times. In par-

Hydrol. Earth Syst. Sci., 24, 2343–2363, 2020 www.hydrol-earth-syst-sci.net/24/2343/2020/



S. Liao et al.: Daily inflow forecasting using ERA-Interim reanalysis 2353

Figure 8. Performance of GBRT and GBRT-MIC for the testing set (2017–2018) in terms of the following six indices: (a) MAE, (b) RMSE,
(c) CORR, (d) KGE, (e) BHV and (f) IA.

Table 5. Tuning parameters for ANN-MIC and SVR-MIC.

Model Tuning Tuning range 1 2 3 4 5 6 7 8 9 10
parameter

ANN-MIC Structure – 19–4–1 19–2–1 19–3–1 19–2–1 19–2–1 19–2–1 19–2–1 19–2–1 19–2–1 19–2–1
Activation – Tanh Tanh Logistic Logistic Logistic Logistic Logistic Logistic Tanh Tanh
function

SVR-MIC C (1, 100, 20) 6.2105 1.0000 1.0000 1.0000 11.4211 1.0000 1.0000 6.2105 1.0000 6.2105
ε (0.001, 0.1, 20) 0.0069 0.0084 0.0017 0.0079 0.0017 0.0001 0.0022 0.0006 0.0048 0.0043
γ (0.001, 0.1, 20) 0.0323 0.0583 0.0844 0.0271 0.0062 0.0218 0.0375 0.0166 0.0687 0.0166

Note: the bold text, (min, max, step) represents
[
min+ max−min

step−1 × 0, min+ max−min
step−1 × 1, . . ., min+ max−min

step−1 × (step− 1)
]
.
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Table 6. Tuning parameters for GBRT and GBRT-MIC.

Tuning parameter Tuning range Optimal parameters (lead times of 1–10 d)

GBRT GBRT-MIC

max_leaf_nodes [2, 4, 6, . . . , 40] 8, 4, 4, 4, 4, 2, 4, 2, 2, 2 7, 9, 13, 7, 15, 4, 5, 4, 4, 17

min_samples_leaf [1, 6, 11, . . . , 46] 6, 31, 1, 1, 1, 31, 6, 1, 6, 1 2, 7, 2, 4, 2, 1, 10, 10, 8, 1

max_depth [1, 2, 3, . . . , 10] 3, 2, 2, 2, 3, 1, 3, 1, 1, 1 4, 6, 8, 5, 9, 9, 2, 2, 7, 2

min_samples_split [2, 4, 6, . . . , 40] 18, 2, 16, 16, 24, 2, 16, 2, 2, 2 18, 15, 12, 13, 8, 3, 19, 3, 19, 8

n_estimators [100, 200, 300, . . . , 4000] 1100, 900, 1200, 700, 700, 3800, 2700, 1300, 900, 1000,
1200, 600, 1100, 900, 900 700, 1400, 2000, 1300, 1200

Figure 9. The 5 d ahead inflow forecasts of GBRT and GBRT-MIC for the testing set (2017–2018, 730 d). (a) Observed versus forecasted
inflow. (b) The histogram of the prediction error of the testing set. (c) Comparison of the observed and forecasted inflow.

ticular, for the longer lead times, GBRT-MIC significantly
outperforms GBRT. From Fig. 8a, it can be noted that the
MAE of GBRT-MIC decreases from 175 to 172, which is
a decrease of 1.74 %, for 2 d ahead forecasting, and it de-
creases from 273 to 237, which is a decrease of 13.18 %, for
10 d ahead forecasting compared with GBRT. From Fig. 8b,
it can be seen that the RMSE of GBRT-MIC achieves a 1.4 %
and 10.6 % reduction for 2 and 10 d ahead forecasting respec-
tively compared with GBRT. Figure 8c, d and f show that

the CORR, KGE and IA of GBRT-MIC increase by 0.2 %,
2.2 %, 1.0 % for 2 d ahead forecasting and 3.4 %, 7.8 % and
2.2 % for 10 d ahead forecasting respectively. Figure 8e com-
pares the BHV values for GBRT and GBRT-MIC and indi-
cates that the reanalysis data can enhance the forecasting of
extreme values. Figure 9a shows the 5 d ahead forecasted in-
flow of GBRT-MIC and GBRT versus the observed inflow
in the testing set. The slopes of the fitting curves of GBRT-
MIC and GBRT are 0.89 and 0.81 respectively; this also
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Table 7. Performance indices of the training set.

Index Model 1 2 3 4 5 6 7 8 9 10

MAE (m3 s−1) GBRT-MIC 56 63 78 122 89 163 161 155 161 172
SVR-MIC 98 126 144 162 173 183 188 194 197 203
ANN-MIC 99 129 148 162 172 184 192 196 203 205
MLR-MIC 103 136 159 175 187 198 207 215 221 228

RMSE (m3 s−1) GBRT-MIC 77 87 107 185 124 257 255 245 254 278
SVR-MIC 153 212 247 280 300 319 329 337 344 353
ANN-MIC 151 206 240 264 284 304 318 328 334 339
MLR-MIC 157 214 250 275 295 315 330 342 352 361

CORR GBRT-MIC 0.9952 0.9940 0.9908 0.9724 0.9877 0.9464 0.9468 0.9510 0.9476 0.9366
SVR-MIC 0.9811 0.9641 0.9511 0.9380 0.9286 0.9186 0.9126 0.9073 0.9039 0.8977
ANN-MIC 0.9815 0.9653 0.9528 0.9424 0.9331 0.9232 0.9156 0.9101 0.9066 0.9036
MLR-MIC 0.9801 0.9628 0.9485 0.9376 0.9278 0.9172 0.9090 0.9019 0.8959 0.8900

KGE GBRT-MIC 0.9884 0.9827 0.9738 0.9439 0.9642 0.9009 0.9069 0.9099 0.9002 0.8877
SVR-MIC 0.9618 0.9207 0.8982 0.8613 0.8445 0.8266 0.8223 0.8247 0.8149 0.8103
ANN-MIC 0.9735 0.9508 0.9325 0.9177 0.9048 0.8907 0.8800 0.8724 0.8668 0.8611
MLR-MIC 0.9718 0.9473 0.9272 0.9117 0.8979 0.8829 0.8713 0.8613 0.8528 0.8444

BHV (%) GBRT-MIC −0.3025 −0.6382 −0.8986 −1.3422 −1.4019 −1.5485 −1.7486 −1.7692 −2.6647 −3.0375
SVR-MIC −1.3488 −3.3959 −4.0686 −6.9058 −7.5421 −8.2216 −6.9950 −6.1996 −6.2406 −5.6687
ANN-MIC −0.1814 −0.2586 −0.7710 −0.7723 −0.6249 −0.6815 −0.6878 −0.8821 −0.6487 −0.1239
MLR-MIC −0.4668 −1.0527 −1.5863 −1.9709 −1.9477 −2.1634 −2.0182 −1.8074 −2.0454 −1.7473

IA GBRT-MIC 0.9976 0.9969 0.9952 0.9854 0.9935 0.9706 0.9712 0.9734 0.9712 0.9650
SVR-MIC 0.9902 0.9804 0.9727 0.9636 0.9574 0.9506 0.9472 0.9449 0.9421 0.9386
ANN-MIC 0.9906 0.9820 0.9752 0.9695 0.9643 0.9586 0.9541 0.9509 0.9487 0.9468
MLR-MIC 0.9898 0.9807 0.9729 0.9668 0.9613 0.9551 0.9502 0.9460 0.9423 0.9387

Note: the bold text represents the values of the performance criterion for the best fitted models.

demonstrates that GBRT-MIC can obtain more accurate in-
flow forecasting than GBRT. Figure 9b illustrates the dis-
tribution of the forecast errors of GBRT and GBRT-MIC.
The results show that the prediction error of two models has
an approximately normal distribution. This demonstrates that
the prediction error contains information that is not extracted
by the model and that more errors of the forecasted inflow
concentrate at around zero for GBRT-MIC than for GBRT.
Figure 9c provides forecasted inflow time series (from the
testing set) for GBRT-MIC and GBRT at a lead time of 5 d. It
can be seen that GBRT-MIC shows great performance com-
pared with GBRT, especially for extreme values. This re-
veals that the problem of inaccurate extreme value predic-
tion that has arisen in areas with concentrated rainfall for the
GBRT model could be mitigated by incorporating the reanal-
ysis data identified by the MIC.

4.4 Model comparison

GBRT-MIC, SVR-MIC and ANN-MIC with the optimal
model parameters are employed for inflow forecasting of 1
to 10 d ahead. The summarized results for the training and
testing set are presented in Tables 7 and 8 respectively. To
avoid the problem of local minima, 50 ANN-MIC models
are trained for each lead time, and the median of the predic-
tions of the 50 models is used as the final prediction. It is
clear from Table 7 that the GBRT-MIC model is more effi-

cient in the training set than other models at lead times of
1–10 d, which demonstrates that GBRT-MIC has a power-
ful fitting ability. Meanwhile, all machine-learning models
obtain better forecasted results than MLR-MIC, which can-
not capture nonlinear relationships. It should be noted that
ANN-MIC has the best performance for extreme values in
terms of the BHV in the training set. As shown in Table 8,
GBRT-MIC performs best for the testing set at lead times of
4–10 d in terms of the above-mentioned six indices. At a lead
time of 10 d, the KGE of GBRT-MIC even reached 0.8317.
At lead times of 1–3 d, three machine-learning models obtain
good performance and outperform MLR-MIC. The machine-
learning models can acquire enough information to perform
forecasting at short lead times (1–3 d). The performance in-
dices of these four models in the testing set (2017–2018) at
lead times of 1–10 d are presented in Fig. 10. The results in-
dicate that the performance of these four models decreases
(higher MAE, RMSE and BHV, and lower CORR, KGE
and IA) as the lead time increases. As mentioned earlier, the
four models perform equally well for 1 to 3 d ahead forecast-
ing, whereas significant differences among their performance
are found as lead times exceed 3 d. This clearly indicates
that GBRT produces much higher CORR, KGE and IA val-
ues and lower MAE, RMSE and BHV values than the other
three models for 4–10 d ahead forecasting, although ANN-
MIC performs almost as well as GBRT-MIC for 10 d ahead
forecasting. It should be noted that SVR shows the worst
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Figure 10. Performance of GBRT-MIC, SVR-MIC, ANN-MIC and MLR-MIC for the testing set (2017–2018) in term of the following six
indices: (a) MAE, (b) RMSE, (c) CORR, (d) KGE, (e) BHV and (f) IA.

performance according to the BHV and KGE values, and
this demonstrates that SVR cannot capture extreme values.
On the contrary, GBRT-MIC significantly outperforms other
models in terms of the BHV at lead times of 1–10 d, which
indicates that GBRT-MIC is the most successful model with
respect to obtaining extreme values among all of the models
developed in this paper.

4.5 Feature importance

A benefit of using gradient boosting is that after the boosted
trees are constructed, the relative importance scores for each
feature can be acquired to estimate the contribution of each
feature to inflow forecasting. Figure 11 shows the feature
importance based on GBRT-MIC for lead times of 1 and
10 d respectively. The 1 d lag observed time series (Qt−1)
is more important for shorter lead times (Fig. 11a), which
demonstrates that the historical observed values are essen-
tial to inflow forecasting at shorter lead times. The features

(e.g. stl3t−10 and d2mt−10) from the reanalysis data have
a high relative importance at longer lead times (Fig. 11b).
Based on the analysis of the concepts of stl3t−10 and tcwt−10
(Sect. 4.1), we infer that the temperature near the ground im-
pacts the inflow by affecting the melting of snow, which is
consistent with the fact that the Lancang River is a snowmelt
river. The 10 d lag observed time series (Qt−10) is also very
important, which indicates the long memory of inflow se-
ries (Salas, 1993). Meanwhile, it is found that the reanalysis
data provide important information for inflow forecasting at
longer lead times.

5 Conclusions

In this study, GBRT-MIC is employed to make inflow fore-
casts for lead times of 1–10 d, and ANN-MIC, SVR-MIC
and MLR-MIC are developed to compare with GBRT-MIC.
The reanalysis data selected by the MIC and the antecedent
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Table 8. Performance indices of the testing set.

Index Model 1 2 3 4 5 6 7 8 9 10

MAE (m3 s−1) GBRT-MIC 137 172 185 188 202 211 219 222 230 237
SVR-MIC 131 164 182 197 212 223 227 231 233 237
ANN-MIC 132 163 182 198 211 221 225 230 239 238
MLR-MIC 138 173 195 213 230 244 248 252 259 263

RMSE (m3 s−1) GBRT-MIC 211 274 295 304 319 336 347 359 374 396
SVR-MIC 200 263 303 342 366 387 395 403 407 413
ANN-MIC 199 258 296 324 341 362 376 391 402 399
MLR-MIC 205 268 314 347 369 391 404 413 423 429

CORR GBRT-MIC 0.9722 0.9526 0.9449 0.9414 0.9354 0.9285 0.9236 0.9181 0.9112 0.8997
SVR-MIC 0.9751 0.9575 0.9434 0.9300 0.9196 0.9099 0.9058 0.8999 0.8993 0.8950
ANN-MIC 0.9752 0.9580 0.9444 0.9333 0.9257 0.9163 0.9091 0.9017 0.8956 0.8975
MLR-MIC 0.9738 0.9545 0.9374 0.9231 0.9126 0.9012 0.8940 0.8893 0.8834 0.8802

KGE GBRT-MIC 0.9550 0.9367 0.9244 0.9092 0.9200 0.8769 0.8693 0.8580 0.8417 0.8317
SVR-MIC 0.9520 0.9055 0.8797 0.8347 0.8158 0.7950 0.7915 0.7941 0.7822 0.7786
ANN-MIC 0.9625 0.9352 0.9115 0.8953 0.8808 0.8658 0.8530 0.8440 0.8371 0.8313
MLR-MIC 0.9605 0.9284 0.9011 0.8800 0.8620 0.8452 0.8319 0.8232 0.8137 0.8054

BHV (%) GBRT-MIC −0.3826 0.3880 −0.2319 −0.9629 0.6566 −2.2766 −2.7422 −3.1924 −4.3363 −4.5040
SVR-MIC −1.3382 −4.0253 −5.3037 −8.2410 −9.4167 −10.0357 −9.6049 −8.9452 −9.6886 −10.1058
ANN-MIC −0.1228 −0.9608 −1.8150 −2.0839 −2.7642 −3.3509 −4.4831 −4.7424 −5.1999 −5.5886
MLR-MIC −0.8093 −2.3244 −3.4945 −4.4210 −4.8268 −5.5955 −6.5914 −6.6302 −6.8944 −7.3080

IA GBRT-MIC 0.9856 0.9753 0.9710 0.9686 0.9661 0.9601 0.9571 0.9535 0.9485 0.9419
SVR-MIC 0.9869 0.9763 0.9676 0.9568 0.9495 0.9421 0.9396 0.9372 0.9351 0.9326
ANN-MIC 0.9872 0.9779 0.9701 0.9637 0.9590 0.9532 0.9486 0.9442 0.9405 0.9408
MLR-MIC 0.9865 0.9759 0.9661 0.9577 0.9511 0.9441 0.9392 0.9360 0.9320 0.9295

Note: the bold text represents the values of the performance criterion for the best fitted models.

Figure 11. Feature importance obtained by GBRT-MIC: (a) 1 d ahead and (b) 10 d ahead.

inflow and the rainfall records selected by the PACF and
CCF are used as predictors to drive the models. These mod-
els are compared using six evaluation criteria: the MAE,
RMSE, CORR, KGE, BHV and IA. It is shown that GBRT-
MIC, ANN-MIC and SVR-MIC outperform MLR-MIC at
lead times of 1–10 d, and GBRT-MIC performs best at lead
times of 4–10 d, especially for the forecasting of extreme val-

ues. According to a comparison of the forecasted results of
GBRT and GBRT-MIC, we conclude that GBRT-MIC can
be used for more accurate and reliable inflow forecasting
at lead times of 1–10 d and that reanalysis data selected by
the MIC greatly improve upon the GBRT forecasting, espe-
cially for lead times of 4–10 d. In addition, the feature im-
portance achieved by GBRT-MIC demonstrates that soil tem-
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perature, the total amount of water vapour in a column and
dewpoint temperature near the ground contribute to increas-
ing the prediction accuracy of inflow at longer lead times.
In summary, the framework developed integrates GBRT and
reanalysis data selected by the MIC and can perform inflow
forecasting well at lead times of 1–10 d. The results of this
study are of significance as they can assist power stations in
making power generation plans 7–10 d in advance in order
to reduce LEQDW and flood disasters. Another possibility
to improve the results may be the consideration of heuristic
methods (e.g. the Grey Wolf algorithm) to optimize model
parameters, which could search a wider range of hyperpa-
rameters and optimization parameters more quickly.
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Appendix A: ERA-Interim reanalysis data set and
model input

ERA-Interim is a reanalysis product of global atmospheric
forecasts at ECMWF that is produced using the Integrated
Forecast System (IFS) data assimilation system. The system
includes a four-dimensional variational analysis (4D-Var)
with a 12 h analysis window. The spatial resolution of the
data set is approximately 80 km (0.72◦) with vertical 60 lev-
els from the surface up to 0.1 hPa (Berrisford et al., 2011).
The 0.125 to 2.5◦ reanalysis meteorological products are
generated by interpolation. Reanalysis meteorological prod-
ucts from the ERA-Interim such as rainfall, maximum and
minimum temperatures, and wind speed at a 0.25◦× 0.25◦

(latitude× longitude) spatial and 12 h temporal resolution for
the study period from 2011 to 2018 are downloaded from the
ECMWF web page.

A total of 13 input structures from the observed data are
tried, and 50 trials are performed for each input structure.
The results (Fig. A1) show that the 7th input structure is the
optimal input subset for GBRT.

A total of 26 input structures from the reanalysis data are
tried, and 50 trials are performed for each input structure.
The results (Fig. A2) show that the 8th input structure is the
optimal input subset for GBRT-MIC.

Figure A1. Trial results of 13 input structures from the observed
data.

Figure A2. Trial results of 26 input structures from the reanalysis
data.
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Table A1. Description and notations of the ECMWF reanalysis fields.

No. Variable MIC Description Units

1 stl3 0.847 Soil temperature level 3 (K)
2 d2m 0.781 2 m dewpoint temperature (K)
3 tcwv 0.699 Total column water vapour (kg m−2)
4 tcw 0.699 Total column water (kg m−2)
5 stl2 0.689 Soil temperature level 2 (K)
6 mn2t 0.684 Minimum temperature at 2 m since previous post-processing (K)
7 tsn 0.664 Temperature of snow layer (K)
8 stl4 0.643 Soil temperature level 4 (K)
9 stl1 0.631 Soil temperature level 1 (K)
10 ro 0.619 Runoff m
11 swvl1 0.614 Volumetric soil water layer 1 (m3 m−3)
12 swvl2 0.610 Volumetric soil water layer 2 (m3 m−3)
13 swvl3 0.610 Volumetric soil water layer 3 (m3 m−3)
14 t2m 0.571 2 m temperature (K)
15 swvl4 0.550 Volumetric soil water layer 4 (m3 m−3)
16 mx2t 0.539 Maximum temperature at 2 m since previous post-processing (K)
17 sf 0.470 Snowfall (m w.e.)
18 cp 0.426 Convective precipitation (K)
19 tp 0.416 Total precipitation (m)
20 rsn 0.408 Snow density (kg m−3)
21 lsp 0.358 Large-scale precipitation (m)
22 sd 0.337 Snow depth (m w.e.)
23 smlt 0.252 Snowmelt (m w.e.)
24 istl1 0.112 Ice temperature layer 1 (K)
25 istl3 0.109 Ice temperature layer 3 (K)
26 istl2 0.100 Ice temperature layer 2 (K)

Note: “m w.e.” refers to metres of water equivalent.
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