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1 WaterGAP 

WaterGAP is a global hydrological model for assessing water resources under the influence of humans (Döll et al., 2003; Müller 

Schmied et al., 2014). With a spatial resolution of 0.5°×0.5°, it simulates water abstractions and consumptive water use (so-called 

net abstractions, i.e. the amount of water that evapotranspirates during use and does not flow to surface water bodies and 

groundwater afterwards) in five sectors (irrigation, livestock, domestic, manufacturing and cooling of thermal power plants, see 

Fig. S1); then net abstractions from either groundwater (NAg) or surface water bodies (NAs) are computed (Müller Schmied et al., 

2014; Döll et al., 2012). Negative values of NAg occur where return flow to groundwater from irrigation with surface water is so 

high that water is added to groundwater storage by human water use. NA is the sum of NAg and NAs and equal to consumptive 

water use. Time series of NAg and NAs in each grid cells are then input to the WaterGAP Global Hydrology model WGHM that 

simulates their effect on water flows and storages (see Fig. S2). In WGHM, NAg and NAs are subtracted from either the 

groundwater or surface water bodies (lakes, reservoirs or rivers) (Müller Schmied et al., 2014).  

WGHM simulates daily water storage as well as flows like evapotranspiration, groundwater recharge (Döll and Fiedler, 

2008), runoff, and river discharge for all continents except Antarctica. Water is transported between grid cells according to the 

DDM30 drainage direction map (Döll et al., 2003). Water storage compartments encompass snow, canopy, soil, groundwater, 

rivers, lakes, wetlands, and man-made reservoirs (Eicker et al., 2014). Lake water storage is simulated as the difference of 

precipitation on the lake, evapotranspiration, inflows, and outflows. Outflow is zero for end lakes like Lake Urmia. The temporal 

variation of lake area, affecting precipitation on and evapotranspiration from the lake, is simulated as a non-linear function of lake 

water storage. WGHM contains more than 20 parameters that can be potentially be adjusted by calibration (Werth and Güntner, 

2010). 

WaterGAP includes a multitude of global data sets including information on irrigated areas, the fraction of irrigated areas 

that are equipped to be irrigated with groundwater (Siebert et al., 2010) and artificial drainage affecting return flows to surface 

water (Döll et al., 2012). For more information on data and model algorithms used in WaterGAP please refer to Müller Schmied 

et al. (2014) and Döll et al. (2014a). WaterGAP outputs were extensively compared to in-situ streamflow observations (e.g., Döll 

et al., 2003; Müller Schmied et al., 2014), to GRACE TWSA (Döll et al., 2012; Döll et al., 2014a) and GPS TWSA (Döll et al., 

2014b). Results were shown to depend on applied climate input data sets (e.g., Müller Schmied et al., 2014, 2016; Döll et al. , 

2014b), model structure (Müller Schmied et al., 2014), and assumptions on water use (Döll et al. 2014a; Döll et al. 2014b). 

Comparison of observed streamflow regime indicators (different streamflow percentiles representing statistical low and high flows) 

to the values computed by nine (or seven) GHMs showed that WaterGAP is one of the best fitting models (Gudmundsson et al. 

2012; Tallaksen and Stahl, 2014). Prudhomme et al. (2011) concluded that “of the three global models considered here, WaterGAP 

is arguably best suited to reproduce most regional characteristics of large-scale high and low flow events in Europe.” Regarding 

the fit to GRACE and GPS TWS, Döll et al. (2014b) found that WaterGAP underestimates seasonal variations of TWS on most of 

the land area of the globe and that seasonal maximum TWS occurs one month earlier according to WaterGAP than according to 

GRACE on most land areas. 
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Figure S1: Schematic of WaterGAP. The outputs of Ground Water-Surface Water USE submodel (GWSWUSE) for five sectors are 

translated into NAg and NAs, respectively, which allows computing the impact of human water use on storages and water flows by 

WGHM. For details see Döll et al. (2012). 

 

 

Figure S2: Schematic of WGHM within each 0.5◦ grid cell. Arrows represent water fluxes (inflows, outflows) and boxes show the water 

storage compartments. For details see Müller Schmied et al. (2014). 
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2 Data 

2.1 Remote sensing data 

Irrigated area in Lake Urmia basin. Based on MODIS images, Kamali and Youneszadeh Jalili (2015) estimated the annual time 

series of irrigated areas in Lake Urmia basin from 2001 to 2012. Considering that water management in the basin aims at preventing 

any increase of irrigated areas, it is assumed that the irrigated area in 2013 remained at the 2012 value (Fig. S3).  

 

Figure S3: Irrigated area in Lake Urmia basin assumed in WaterGAP and derived from MODIS (data from Kamali and Youneszadeh 

Jalili, 2015). 

GRACE total water storage anomalies. GRACE satellite data allow derivation of monthly time series of total water storage 

anomalies (TWSA) over all continents. TWSA describes the total amount of water stored on the continents, including water storage 

in surface water bodies, groundwater and soil, as compared to the mean value of total water storage over a reference period. In our 

study CSR GRACE RL05 mascon solutions (Save et al., 2016; http://www2.csr.utexas.edu/grace/RL05_mascons.html, last access: 

17 July 2018) were used. While it is recommended GRACE data products only for areas with at least 100,000 km2 (Watkins et al., 

2015; Landerer and Swenson, 2012), studies by Tourian et al. (2015) and Lorenz et al. (2014) showed that signal strength or the 

so-called gravimetric resolution is determining the applicability of GRACE data. In fact, Lake Urmia basin has experienced an 

8·109 m3 change in the water volume in the last decade, which allows the use of GRACE for monitoring the changes in water 

storage in the basin (Tourian et al., 2015). This fact is supported by the very small gain factor of 1.0083 for the Lake Urmia basin 

based on Community Land Model 4 (CLM4) for spherical harmonic solutions (Landerer and Swenson, 2012), which is the factor 

with which signal attenuation due to leakage could be balanced. We can assume errors of the applied GRACE monthly time series 

of TWSA are small compared to the uncertainty of TWSA as computed by WGHM, such that model calibration against GRACE 

TWSA is meaningful. 

2.2 Inflow into Lake Urmia 

We used total annual observed inflow into the lake during 2003-2013 which was computed by the Urmia Lake Restoration Program 

)ULRP( based on 19 hydrometric stations around the lake (data available in http://ulrp.sharif.ir/ (In Persian), last access: 12 

November 2017). Monthly observations were not available. It was compared to the sum of simulated river discharge of all WGHM 

grid cells flowing into the grid cell representing Lake Urmia. 

2.3 Groundwater levels and groundwater storage 

For evaluating the groundwater status in Lake Urmia basin, we used groundwater head data of 284 wells during 2003-2013 (Fig. 

3). To obtain a monthly time series of average groundwater level in the basin, first the average of all groundwater level in each 

0.5° grid cell was calculated and then the average values of all grid cells (see Strassberg et al., 2009). Using the results of a manual 

calibration for the RS_Q_GW_NA variant, which was the most comprehensive calibration variant, we estimated the average 

specific yield of the aquifers in the Lake Urmia Basin, i.e. the change in groundwater storage per unit change of the elevation of 

the groundwater table. We first divided the standard deviation of the simulated groundwater storage time series by the basin area 

to obtain groundwater storage variability in terms of equivalent water height and then divided this value by the standard deviation 
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of the observed groundwater levels. This resulted in a specific yield estimate of 0.02, which is equal to the average value derived 

from pumping tests at 10 locations south of the lake (Hamzekhani and Aghaie, 2015). Using specific yield and observed 

groundwater level, we estimated the groundwater storage anomaly (GWSA) over the basin. 

2.4 Water withdrawals and consumptive uses 

There are no water withdrawals time series data in Lake Urmia basin. However, water withdrawals in the Lake Urmia basin for 

2009 were reported to be 4,825·106 m3 (ULRP, 2015) of which 89% is used for irrigation (Table S1). 57% of the withdrawn water 

is taken from surface water, the rest from groundwater. According to the report of Mahab Ghodss Consulting Engineering (2013), 

16% of the water withdrawn for irrigation returns to groundwater and only 2% to surface water bodies, while the respective values 

for industrial and domestic water withdrawals are 50% and 10%. In our study, observed consumptive irrigation use was computed 

by subtracting total return flow from total water withdrawals for irrigation. Thus, consumptive use for irrigation was assumed to 

be 82% of water withdrawals for irrigation and 40% of the domestic and industry water withdrawals. The sum of consumptive 

water use in all sectors is the so-called total net abstraction (NA) from either surface water bodies or groundwater. 

Table S1: Water withdrawals in Lake Urmia basin in 2009 [106 m3] (data from URLP, 2015). 

Source 
 Sector  

Total 
 Agricultural Domestic Industry  

Surface water   2424 276 33  2733 

Groundwater   1867 190 35  2092 

Total   4291 466 68  4825 

 

2.5 Climate 

The 0.5° gridded EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-corrected for ISIMIP (EWEMBI) dataset 

(Lange, 2016) were used as forcing data set. EWEMBI includes daily climate data from 1979 to 2013. For EWEMBI, ERA-Interim 

Reanalysis Data were bias-corrected with monthly observation data on temperature, precipitation and the number of wet days as 

well as daily radiation data. We compared, for the period 2003-2013, basin-average monthly precipitation and temperature values 

of EWEMBI dataset with those derived as the mean over monthly values observed at 143 rain gauges and six temperature gauging 

stations. The correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and Willmott’s refined index of agreement (Willmott 

et al., 2012) were 0.985, 0.946, and 0.897, respectively, for precipitation, and 0.996, 0.983, and 0.941 respectively, for temperature. 

2.6 Lake volume 

Based on remote sensing data for lake extent and water table elevation as well as on in-situ bathymetry data, a time series of 

monthly water volume in Lake Urmia for the period 2003-2013 was generated by Tourian et al. (2015) (their Fig. 9). It was used 

for evaluation of the calibrated model.  

3 Calibration variants 

3.1 RS variant: Calibration using remote sensing data   

Irrigated area in Lake Urmia basin used in the standard version of WaterGAP is larger than the MODIS-based irrigated area until 

2010, and smaller afterward (Fig. S3). The largest differences, in 2004 and 2011, exceed 20%, or 1,000 km2, and the strongly 

increasing trend is not represented in WaterGAP. The constant value of the irrigated area in WaterGAP is due to the fact that the 

Food and Agricultural Organization of the UN does not provide more recent estimates of irrigated area in Iran (see 

http://www.fao.org/nr/water/aquastat, last access: 13 February 2018). To utilize the MODIS-based time series, consumptive 

irrigation water use in the whole basin of WaterGAP in year i was first adjusted by multiplying it by a correction factor CF1(i), 

with: 

𝐶𝐹1(𝑖) =
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

 (S1) 

where 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(𝑖) is irrigated area from MODIS in year i and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖) is irrigated area from WaterGAP database. The modified 

consumptive irrigation use was then added to the consumptive use of WaterGAP for the other sectors to obtain an updated basin-

wide NA for each year. Then, modified monthly NAg and NAs in year i were calculated by multiplying, for each grid cell, the 

standard WaterGAP NAg and NAs values with the ratio of modified over standard basin-wide NA in year i. Then, WGHM was 

run using GA algorithm until achieving a good fit to monthly time series of basin-average GRACE TWSA (Fig. 4, mustard lines). 

http://www.fao.org/nr/water/aquastat
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3.2 RS_Q_GW_NA variant: Calibration using remote sensing data, inflow into the lake, groundwater level, and 

net abstractions  

In this calibration variant, statistical data on water withdrawals in 2009 (Table S1) was used together with information on return 

flow to compute a consumptive irrigation water use 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠 in the basin of 3,520·106 m3. To estimate irrigation use in all other years, 

with different climatic conditions, the per area consumptive irrigation water use from WaterGAP was used to compute, for each 

year, a climatic correction factor CF2(i) as 

𝐶𝐹2(𝑖) = (
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

−
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (2009)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (2009)

) (S2) 

where 𝐶𝐹2(𝑖) is represents the difference in the per area consumptive irrigation use in year i and the year 2009, 𝐶𝑢𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖) is 

consumptive irrigation use in year i obtained in standard WaterGAP. Finally, Eq. S3 was used for estimating water consumption 

time series over Urmia basin: 

𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) = (
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(2009)

) × 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠(2009) + 𝐶𝐹2(𝑖) × 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖) (S3) 

where 𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) is consumptive irrigation water use in year i. Consumptive use of the other sectors was added based on withdrawal 

data in Table S1 and a return flow fraction of 60%, resulting in total NA. Keeping total NA(i) constant, correction factors 𝛼(𝑖) and 

𝛽(𝑖) were  determined , with: 

𝑁𝐴(𝑖) = 𝛼(𝑖) × 𝑁𝐴𝑠(𝑖) + 𝛽(𝑖) × 𝑁𝐴𝑔(𝑖) (S4) 

Then, values for correction factors 𝛼(𝑖) and 𝛽(𝑖) (Eq. S4) were identified by trial-and-error, and model parameters were modified 

to obtain a good fit to the data also used in the RS_Q_GW_NA variant. 

4 Results of modifying NAs and NAg 

In variant RS, annual time series of irrigated area in Lake Urmia basin derived from MODIS (Fig. S3), which were applied in both 

calibration variants, lead to a more strongly increasing trend of NA (consumptive water use) and NAs, as compared to the standard 

WaterGAP version (Fig. S4). Due to the dominant irrigation with surface water assumed in the standard version of WaterGAP, 

return flows from irrigation are larger than groundwater withdrawals, and there is a net recharge of groundwater by irrigation, i.e. 

a negative NAg. Therefore, a more strongly increasing irrigation with surface water in variant RS leads to return flows to 

groundwater that increase more strongly over time, i.e. NAg becomes increasingly negative with time (Fig. S4). Average NA in 

2003-2010 decreased from 4,185·106 m3/yr in the standard version to 3,815·106 m3/yr, and increased from 4,233·106 m3/yr to 

4,781·106 m3/yr in 2011-2013. However, increased net recharge of groundwater by return flows was found to be incompatible with 

decreasing observed groundwater storage (Fig. 7c). Positive NAg values were found to be necessary to simulate the observed 

lowering of groundwater storage from 2003 to 2013.  

 

Figure S4: Time series of net abstractions from surface water (a) and groundwater (b), as well as total net abstractions (i.e. consumptive 

use) (c) in Lake Urmia basin in the standard version of WaterGAP as well as both calibration variants. 
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5. Supplement tables and figure 

Table S2: Correction factors for modifying NAs and NAg (see Eq. S4). 

Year  𝛼 𝛽 

2003  0.39 -0.41 

2004  0.37 -0.39 

2005  0.39 -0.46 

2006  0.38 -0.43 

2007  0.42 -0.43 

2008  0.29 -0.63 

2009  0.38 -0.57 

2010  0.43 -0.41 

2011  0.56 -0.49 

2012  0.49 -0.52 

2013  0.47 -0.54 

Table S3: Parametrization of GA and NSGA-II used in two calibration variants.  
Parameter GA NSGA-II 

Population 50 80 

Generation 100 150 

Selection function Roulette wheel Tournament 

Crossover fraction Two-point crossover Two-point crossover 

Crossover function 0.65 0.70 

Mutation rate Uniform Uniform 

Mutation function 0.05 0.05 

 

 
Figure S5: Simulated groundwater storage in each of the 22 0.5° grid cells in Lake Urmia basin under anthropogenically altered (Fig. 

S5a) and naturalized conditions (Fig. S5b). 
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