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Abstract. Thermal-based two-source energy balance model-
ing is essential to estimate the land evapotranspiration (ET)
in a wide range of spatial and temporal scales. However, the
use of thermal-derived land surface temperature (LST) is not
sufficient to simultaneously constrain both soil and vegeta-
tion flux components. Therefore, assumptions (about either
soil or vegetation fluxes) are commonly required. To avoid
such assumptions, an energy balance model, TSEB-SM, was
recently developed by Ait Hssaine et al. (2018b) in order
to consider the microwave-derived near-surface soil mois-
ture (SM), in addition to the thermal-derived LST and veg-
etation cover fraction (fc) normally used. While TSEB-SM
has been successfully tested using in situ measurements, this
paper represents its first evaluation in real life using 1 km
resolution satellite data, comprised of MODIS (MODerate
resolution Imaging Spectroradiometer) for LST and fc data
and 1 km resolution SM data disaggregated from SMOS (Soil
Moisture and Ocean Salinity) observations. The approach is
applied during a 4-year period (2014–2018) over a rainfed
wheat field in the Tensift basin, central Morocco. The field
used was seeded for the 2014–2015 (S1), 2016–2017 (S2)
and 2017–2018 (S3) agricultural seasons, while it remained
unploughed (as bare soil) during the 2015–2016 (B1) agri-
cultural season. The classical TSEB model, which is driven
only by LST and fc data, significantly overestimates latent
heat fluxes (LE) and underestimates sensible heat fluxes (H )

for the four seasons. The overall mean bias values are 119,
94, 128 and 181 W m−2 for LE and −104, −71, −128 and
−181 W m−2 for H , for S1, S2, S3 and B1, respectively.
Meanwhile, when using TSEB-SM (SM and LST com-
bined data), these errors are significantly reduced, resulting
in mean bias values estimated as 39, 4, 7 and 62 W m−2

for LE and −10, 24, 7, and −59 W m−2 for H , for S1,
S2, S3 and B1, respectively. Consequently, this finding con-
firms again the robustness of the TSEB-SM in estimating
latent/sensible heat fluxes at a large scale by using readily
available satellite data. In addition, the TSEB-SM approach
has the original feature to allow for calibration of its main
parameters (soil resistance and Priestley–Taylor coefficient)
from satellite data uniquely, without relying either on in situ
measurements or on a priori parameter values.

1 Introduction

Evapotranspiration (ET) is a crucial water flux for drought
monitoring (Bhattarai et al., 2019; Gerhards et al., 2019;
Mallick et al., 2014, 2016; Mallick et al., 2018), water
resource management (Madugundu et al., 2017; Tasumi,
2019) and climate simulation (Littell et al., 2016; Molden
et al., 2010) in the semi-arid ecosystems. A precise estimate
of ET determines the crop water requirements, which subse-
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quently allows the optimization of irrigation water applica-
tions (Allen et al., 1998).

Regarding the data availability over extended areas, re-
mote sensing is the only viable technique that can provide
representative and multi-resolution measurements of ET. As
a consequence, the spatial modeling has become a dominant
means of estimating ET fluxes over regional and continen-
tal areas (Anderson et al., 2007; Fisher et al., 2017). In this
context, numerous models based on land surface tempera-
ture (LST) data have been developed, such as (i) residual
balance methods that consider ET to be the residual term
of the energy balance, like TSEB (two-source energy bal-
ance, Norman et al., 1995) and SEBS (surface energy balance
system, Su, 2002), (ii) contextual methods that estimate ET
as the potential ET times the evaporative efficiency (Moran
et al., 1994) or as the available energy times the evapora-
tive fraction (Merlin et al., 2013; Roerink et al., 2000) and
(iii) other categories of models that integrate LST into a wa-
ter balance model (Olivera-Guerra et al., 2018) or into the
Penman–Monteith energy balance (PMEB) equation to di-
rectly estimate ET (Amazirh et al., 2017; Mallick et al., 2015,
2018).

Among well-known temperature-driven energy flux mod-
els, the TSEB model proposed by Norman et al. (1995) has
been shown to be robust for a wide range of landscapes (Co-
laizzi et al., 2012; Ait Hssaine et al., 2018a). TSEB has two
key input variables, which can be derived from remote sens-
ing data. The first one is the LST and the second is the vegeta-
tion cover fraction (fc). The TSEB model adopts an iterative
procedure, in which an initial estimate of the plant transpira-
tion is given by the Priestly–Taylor (PT) formulation (Priest-
ley and Taylor, 1972). This assumption requires few input
data and allows a precise estimate of potential ET (Fisher
et al., 2008). Nevertheless, several studies (Ait Hssaine et al.,
2018b; Fisher et al., 2008; Jin et al., 2011; Yang et al., 2015)
have stressed that the PT coefficient cannot be considered
a constant value, as it is influenced by several parameters.
Other authors (Gonzalez-dugo et al., 2009; Long and Singh,
2012; Morillas et al., 2014) reported that the PT approach
may overestimate the canopy ET, especially for low soil wet-
ness, and/or sparse vegetation cover, because it does not in-
clude a reasonable reduction of the initial canopy ET under
stress conditions. Recently, Boulet et al. (2015) developed
the Soil-Plant-Atmosphere and Remote Sensing Evapotran-
spiration (SPARSE) model, which is similar to the TSEB
model in its basic assumption but with additional constraints
to improve the ET model performance in heterogeneous veg-
etation. The former first generates an equilibrium LST from
the evaporation efficiency and the transpiration efficiency es-
timates by assuming that their values are equal to 1. Then,
LST is implemented in the SPARSE retrieval mode to cir-
cumscribe the output fluxes by both limiting cases (namely
the fully stressed and potential conditions). In spite of the
good retrieval performances of ET by this model, significant

uncertainties are observed during the quasi-senescent vege-
tation period (Boulet et al., 2015).

Alternatively to the use of LST as a proxy for ET, numer-
ous studies have stressed that the soil moisture plays a criti-
cal role in the partitioning of available energy into latent and
sensible heat fluxes and is the prominent controlling factor of
actual ET (Boulet et al., 2015; Gokmen et al., 2012; Kustas
et al., 1998, 1999; Li et al., 2006). Several authors have re-
vised the well-known LST-based TSEB model and replaced
the LST with microwave-derived surface soil moisture (SM)
to estimate daily ET (Bindlish et al., 2001; Kustas et al.,
1998, 1999; Li et al., 2006). Bindlish et al. (2001) found
that the impact of SM on surface fluxes is strongly related
to the vegetation cover. The impact is high for low fraction
cover and relatively weak for the high cover fraction. More-
over, the soil evaporation is constrained by the SM through
its soil-texture-dependent coefficients (arss and brss) reported
in Sellers et al. (1992). In the same way, Li et al. (2006) in-
dicated that the model performance is sensitive to these two
coefficients, and thus they proposed averaging the output of
LST-based TSEB and SM-based TSEB models in order to
provide more consistent results over a wide range of condi-
tions.

Previous studies, either LST- or SM-based, agree with the
view that combining both LST and SM information at a
time would enhance the robustness and accuracy of ET es-
timates in various biomes and climates. Nevertheless, few
studies have simultaneously combined both observations in
a unique energy balance model. One difficulty lies in devel-
oping a consistent representation of the soil evaporation (as
constrained by SM, Chanzy and Bruckler, 1993), the total ET
(as constrained by LST, Norman et al., 1995) and the plant
transpiration (as indirectly constrained by both LST and SM,
Ait Hssaine et al., 2018b).

Gokmen et al. (2012) explicitly integrated the SM derived
from AMSR-E (Advanced Microwave Scanning Radiome-
ter for EOS) data (Owe et al., 2008) into the LST-derived
SEBS model via the kB−1 parameter, which plays an impor-
tant role in the aerodynamic resistance. The updated SEBS
model (SEBS-SM) provided a large improvement of sensible
heat flux and thus ET estimates under water-limited condi-
tions. The point is that the soil evaporation reduction parame-
ters were calibrated using in situ measurements, which limits
the validity of the approach over large areas. In the same vein,
Gan and Gao (2015) incorporated a SM-based soil resistance
term in the TSEB formalism and calibrated several parame-
ters (including the PT coefficient) using LST data. The ob-
tained results showed that the model calibrated by LST data
performed better than the non-calibrated one. Note that the
parameters of the soil resistance were set to constant values
as in Sellers et al. (1992) and Li et al. (2006). As a further
step towards the combination of LST and SM data, Ait Hs-
saine et al. (2018b) modified the TSEB formalism (Kustas
and Norman, 1999; Norman et al., 1995) (named TSEB-
SM) and proposed a new calibration strategy of the main
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PT-based TSEB-SM parameters. The TSEB-SM model was
tested using in situ measurements and provided an important
improvement in terms of latent heat flux/sensible heat flux
estimates compared to the classic TSEB all along the agri-
cultural season, especially during the crop emergence and
the senescence periods. Such improvements are attributed
to stronger constraints exerted on the representation of soil
evaporation (via SM data and the calibrated soil parameters)
and plant transpiration (via the calibrated daily PT coeffi-
cient). It should be noted that only LST and SM data are used
for the calibration of yearly arss and brss as well as daily αPT,
while the flux measurements are needed only for the vali-
dation of the TSEB-SM-simulated sensible and latent heat
fluxes.

One crucial point is that all the above studies based on
remotely sensed SM and LST have neglected the mismatch
in the spatial resolutions of readily available SM products.
Especially the global-scale SM data sets have a typical res-
olution of 40–50 km (Entekhabi et al., 2010; Kerr et al.,
2010; Njoku et al., 2003). Such spatial resolution is gener-
ally unsuitable or even incompatible with many hydrological
and agricultural applications. To fill the gap, disaggregation
approaches of AMSR-E, SMOS (Soil Moisture and Ocean
Salinity) and SMAP (Soil Moisture Active and Passive) like
SM data have been developed (Peng et al., 2017) but, to
date, there has been no application of SM-based ET models
to disaggregate SM data sets. In addition, the use of remote
sensing data would be necessary in order to avoid the time-
consuming process of calibrating the TSEB model over each
field.

Although TSEB-SM has the capability to calibrate its
main parameters from remotely sensed data, the real-life ap-
plication needs extensive evaluation and testing. The objec-
tive of this paper is thus to demonstrate for the first time this
capacity using disaggregated SMOS and MODIS (MODer-
ate resolution Imaging Spectroradiometer) data. For this pur-
pose, TSEB-SM is applied to 1 km resolution using MODIS
LST/fc data and to SMOS SM data. To make the SMOS
data spatially consistent with MODIS data, the SMOS SM
is disaggregated at 1 km resolution using the DisPATCh
(DISaggregation based on Physical And Theoretical scale
Change) algorithm (Malbéteau et al., 2016; Merlin et al.,
2013; Molero et al., 2016). The proposed methodology is
evaluated over a rainfed wheat field in the Tensift basin, cen-
tral Morocco during four agricultural seasons (2014–2018).

2 Data description and methods

2.1 Site and in situ data description

The study site is situated in the east (Sidi Rahal) of the Tensift
basin in central Morocco (see Fig. 1). The region is charac-
terized by a semi-arid Mediterranean climate, with an aver-
age yearly precipitation of about 250 mm and an atmospheric

Table 1. Characteristics of the study site.

Study period Rainfall Field status
amount (mm)

Oct 2014–Jun 2015 (S1) 608 Cultivated
Aug 2015–Sep 2016 (B1) 157 Bare soil
Sep 2016–Jun 2017 (S2) 214 Cultivated
Oct 2017–Jun 2018 (S3) 481 Cultivated

evaporative demand around 1600 mm yr−1 according to the
FAO method (Allen et al., 1998; Jarlan et al., 2015). Soil
is characterized by a fine texture with 47 % of clay, 33 %
of loam and 18.5 % of sand (Er-Raki et al., 2007). The ex-
periment has been set up in a rainfed wheat (“Bour”) field
since 2013 (Ali Eweys et al., 2017; Amazirh et al., 2018;
Merlin et al., 2018). Located within a larger area occupied by
rainfed wheat “Bour”, this field was chosen to be representa-
tive at a scale of 1 km, thus enabling the comparison between
1 km resolution satellite-derived and localized in situ mea-
surements. The field was seeded in September 2014, Septem-
ber 2016 and September 2017 for the 2014–2015 (S1), 2016–
2017 (S2) and 2017–2018 (S3) agricultural seasons, respec-
tively. However, it was not ploughed (remained as bare soil)
during the 2015–2016 (B1) agricultural season due to an un-
usual lack of precipitation in autumn–winter 2015 (Merlin
et al., 2018) (Table 1).

The field was instrumented by an eddy covariance (EC)
system at a 2 m height. EC tower includes a CSAT3 3-D sonic
anemometer that measures the wind and temperature fluctu-
ations and a krypton hygrometer, KH20, that measures the
concentration of water vapor. The EC tower is also equipped
with a CNR1 radiometer (Kipp and Zonen) to measure the
four components of the net radiation (Rn) with several heat
flux plates (HFT3-L, Campbell Scientific Ltd) to measure the
soil heat flux (G). Energy balance closure analysis indicated
that the available energy (Rn−G) was generally higher than
the EC measurements. The relative closure was about 68 %,
76 %, 79 % and 79 % for S1, S2, S3 and B1, respectively.
The sensible and latent heat fluxes (H and LE) were finally
corrected to force the closure of the energy balance by the
Bowen ratio method (Twine et al., 2000). LST is measured
at the EC station by using two Apogee IRTS-P infrared ra-
diometers, oriented downward and measuring the surface-
leaving radiance between 8 and 14 µm, set up at a 2 m height
above the ground. An estimate of LST is obtained by averag-
ing both measurements. The soil water content is measured
at various depths (5, 10, 20, 30, 50, 70 cm) using Time Do-
main Reflectometry probes (model CS616) installed in a soil
pit at the bottom of the EC tower. A weather station was set
up nearby the studied field to measure air temperature, so-
lar radiation, relative humidity, wind speed and rainfall at a
30 min time step.
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Figure 1. Location of the Sidi Rahal site (east of Marrakech) in the Tensift basin, central Morocco.

2.2 Remote sensing data

2.2.1 MODIS

Three products from the MODIS sensor onboard the
Terra and Aqua satellites are used in this study: the
(1) MODIS Terra/Aqua Land Surface Temperature product
(MOD11A1/MYD11A1), the (2) MODIS Terra Vegetation
Indices product (MOD13A2) and the (3) MODIS Albedo
(combined Terra and Aqua) product (MCD43A3). All prod-
ucts are gridded in the sinusoidal projection.

The MOD11A1 and MYD11A1 provide LST at 1 km
spatial resolution under clear-sky conditions, derived from
Terra and Aqua, respectively. Brightness temperatures from
bands 31 and 32 are used to derive LST through a general-
ized split-window algorithm. The MOD13A2 provides sev-
eral vegetation indices at 1 km resolution. One particular veg-
etation index of interest in this study is NDVI, available at 16-
day temporal intervals. This product is derived from bands 1
and 2 of the MODIS Terra satellite.

The obtained NDVI is used to derive the leaf area in-
dex (LAI) via the following formulation (Wang et al., 2013):

LAI=
(

NDVI×
1+NDVI
1−NDVI

)1/2

. (1)

The vegetation cover fraction is expressed as (Kustas and
Norman, 1997)

fc = 1− exp(−0.5LAI). (2)

Finally, the MCD43A3 product provides the surface
albedo (α) at 500 m resolution every 16 d. The latter is gener-
ated from both the Terra and Aqua products. In this work, the
shortwave broadband α is used by integrating its value over
the entire solar emission spectrum (0.3–5.0 µm). This value
is obtained as a weighted average of the directional hemi-
spherical reflectance (black-sky-α) and the bi-hemispherical
reflectance (white sky α) using their two extreme values. The
current α (called “blue sky”) is a weighted average between
these two extreme cases (Lewis and Barnsley, 1994). Herein,
the percentages of 85 % and 15 % are used for the direct and
diffuse lights, respectively.

2.2.2 SMOS

The SMOS mission measures the natural (passive) mi-
crowave radiation around the frequency of 1.4 GHz (L-band).
It aims to monitor SM at a depth of about 3–5 cm with
a spatial resolution of about 40 km and an accuracy better
than 0.04 m3 m−3 (Kerr et al., 2012). The revisiting time
at the Equator is 3 d for both ascending and descending
passes, which are Sun synchronous at 06:00 and 18:00 LT,
respectively. The SMOS level-3 1 d global SM product
(MIR CLF31A/D) posted on the ∼ 25 km Equal Area Scal-
able Earth (EASE) version 1.0 grid is used as input to the
DisPATCh algorithm.
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2.2.3 DisPATCh

The DisPATCh remote sensing algorithm combines the
coarse-scale microwave-retrieved SM with high-resolution
optical/thermal data within a downscaling relationship to
produce SM at a higher spatial resolution.

Soil (Ts,min, Ts,max) and vegetation (Tv,min, Tv,max) temper-
ature endmembers are estimated from the polygon obtained
by plotting MODIS LST against MODIS NDVI, where the
LST is partitioned into its soil and vegetation components
according to the trapezoid method of Moran (Moran et al.,
1994). Details on the DisPATCh algorithm and the method-
ology to determine dry and wet edges can be found in Mer-
lin et al. (2012). The retrieved soil temperature is then used
to estimate the soil evaporative efficiency (SEE), which is
defined as the ratio of actual to potential soil evaporation.
Finally, DisPATCh converts the high-resolution optically de-
rived SEE fields into high-resolution SM fields given a semi-
empirical SEE model and a first-order Taylor series expan-
sion around the SMOS observation. In our application, we
applied DisPATCh to 40 km resolution SMOS level-3 SM
and 1 km resolution MODIS optical/thermal data to pro-
duce SM at a 1 km resolution (Molero et al., 2016). The input
data sets are composed of MODIS LST, MODIS NDVI and
the GTOPO digital elevation model (DEM) used to correct
LST for topographic effects (Malbéteau et al., 2016; Merlin
et al., 2013).

2.3 Methods

2.3.1 TSEB-SM

The recently developed TSEB-SM is fully described in
Ait Hssaine et al. (2018b). The equations and sub-equations
used in TSEB-SM are provided in Table 2; the main equa-
tions are given below. The originality of TSEB-SM is to in-
tegrate SM observations in addition to LST and vegetation
cover fraction data in order to calibrate both the soil resis-
tance to evaporation (constant parameters) and the PT coef-
ficient on a daily basis. The model is based on the original
TSEB formalism, meaning that the energy balance for vege-
tation is the same as in TSEB using the PT formula, although
the soil evaporation is estimated as a function of SM using a
soil resistance developed by Sellers et al. (1992). The use of
the soil resistance formulation is justified by the fact that its
main parameters (arss, brss) can be adjusted based on soil tex-
ture characteristics (Merlin et al., 2016) or by combining SM
and LST data under bare (Merlin et al., 2018) or partially
covered (Ait Hssaine et al., 2018b) soil conditions.

The surface soil heat flux is estimated as a fraction
of Rn,soil:

G= cg ·Rn,soil, (3)

where cg ∼ 0.35 (Choudhury et al., 1987).

The vegetation latent heat flux LEveg is estimated via the
PT formulation:

LEveg = αPT · fg ·
4

4+ γ
·Rn,veg, (4)

where αPT is the PT coefficient, fg the fraction of green veg-
etation, γ the psychometric constant (≈ 67 Pa K−1), 4 the
slope of the relationship between saturation vapor pressure
and air temperature, and Rn,veg the vegetation net radia-
tion. Note that fg is set to 1 as the αPT coefficient is varied
(through the calibration procedure) to take into account the
fraction of transpiring vegetation. The soil latent heat flux is
estimated using the resistance formulation:

LEsoil =
ρcp

γ

es− ea

rah+ rs+ rss
, (5)

where es is the saturated vapor pressure at the soil surface,
ea the actual air vapor pressure, rah the aerodynamic resis-
tance calculated from the adiabatically corrected logarith-
mic temperature profile equation (Brutsaert, 1982) and rs the
surface-soil resistance to transport of heat between the soil
surface and a height representing the canopy estimated us-
ing (Sauer et al., 1995). Both resistances are simulated every
30 min (between 11:00 and 14:00 LT) and at Terra and Aqua
overpass times for in situ and satellite data, respectively. rss is
computed as a function of SM and is expressed as (Chirouze
et al., 2014; Li et al., 2006; Sellers et al., 1992)

rss = exp
(
arss− brss×

SM
SMsat

)
, (6)

with SM being the 0–5 cm SM, arss and brss are two empirical
parameters (to be calibrated) and SMsat is the SM at satura-
tion expressed as (Cosby et al., 1984)

SMsat = 0.1× (−108× fsand+ 49.305) , (7)

with fsand being the sand percentage of soil.
In Ait Hssaine et al. (2018b), an innovative calibration ap-

proach of αPT, arss and brss is developed from in situ SM and
LST data (Ait Hssaine et al., 2018b). The calibration method-
ology is briefly explained below.

Retrieval and calibration of rss, arss and brss

The rss is first adjusted by minimizing a cost function defined
by

Finst =
(
Tsurf,sim− Tsurf,mes

)2
, (8)

with Tsurf,sim and Tsurf,mes being the simulated and measured
LST, respectively.

The Tsurf,sim was simulated as follows:

Tsurf,sim =
(
fc ·

(
Tveg

)4
+ (1− fc) · (Tsoil)

4
)0.25

, (9)
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Table 2. Mean equations of TSEB-SM.

Variable Equation Value range

Soil latent heat flux LEsoil =
ρcp
γ

es−ea
rah+rs+rss

0–600 W m−2

Resistance to vapor diffusion in the soil rss = exp
(
arss− brss×

SM
SMsat

)
arss and brss: (1–13)

Soil moisture at saturation SMsat = 0.1× (−108× fsand+ 49.305) 0.47 m3 m−3

Cost function for minimizing rss Fins =
(
Tsurf,sim− Tsurf,mes

)2
Finst = 5 K

Vegetation latent heat flux LEveg = αPTFg
1

1+γ Rn,veg αPT (0–2) fg = 1

where Tveg and Tsoil are the vegetation and soil components
of temperature (K). The LST is simulated every 30 min (be-
tween 11:00 and 14:00 LT) and at Terra and Aqua overpass
times for in situ and satellite data, respectively. The LST at
the first calibration step is simulated with a constant value
of αPT (average value of the αPT retrieved for fc > 0.5).
Then, for the second calibration step, it is simulated using
the daily retrieved αPT.

The inverted rss is then correlated with the SM (in situ
or DisPATCh) to determine the arss and brss parameters by
considering that, when fc is lower than a given thresh-
old (fc,thres), the dynamics of total LE is mainly controlled
by the temporal variation of soil evaporation, meaning that
both soil parameters are estimated when the PT coefficient
can be set to a constant value.

Daily αPT retrieval

Once both parameters arss and brss have been estimated, the
PT coefficient is retrieved on a daily basis when fc is larger
than fc,thres, by minimizing a cost function at the Terra and
Aqua-MODIS overpass times:

Fdaily =
∑(

Tsurf,sim− Tsurf,mes
)2
. (10)

In fact, an iterative loop is run on soil (rss) and vegeta-
tion (αPT) parameters to reach convergence of all parameters.
LST and SM data are thus used for calibration, while the cal-
ibrated TSEB-SM is run on a daily basis using SM data as
forcing solely (in addition to vegetation cover fraction data).
In this paper, an improvement is made on the former ver-
sion of TSEB-SM to normalize the output fluxes using the
LST-derived available energy. Therefore, the new version of
TSEB-SM uses both LST and SM data (in addition to veg-
etation cover fraction data) as forcing on a daily basis. In
practice, the latent and sensible heat fluxes derived from the
TSEB-SM model are re-computed using the TSEB-SM de-
rived evaporative fraction (EF, defined as the ratio of latent
heat to available energy) and the LST-derived available en-
ergy. The rationale is that numerous modeling studies have
shown the regularity and constancy of EF during daylight
hours in cloud-free days (Gentine et al., 2011; Lhomme and

Elguero, 1999; Shuttleworth et al., 1989) and the EF has
a strong link with SM availability (Bastiaanssen and Ali,
2003), which is an important factor for estimating latent
heat flux. For that purpose, the LST data collected at the
Terra and Aqua-MODIS overpass times are used to estimate
the instantaneous Rn and G. A ratio between the daily (ob-
tained as an average value between Aqua and Terra overpass
times) latent heat flux LEdaily and the daily available energy
(Rn,daily−Gdaily) is used to calculate an average daily EF:

EF=
LEdaily

Rn,daily−Gdaily
. (11)

The daily EF and the instantaneous available energy (calcu-
lated using Terra and Aqua MODIS LST) are finally used
to re-calculate the instantaneous TSEB-SM output of LE
and H by the following formulas:

LE = EF× (Rn−G), (12)
H = (1−EF)× (Rn−G). (13)

2.3.2 Uncertainty in TSEB-SM input data

The LST collected by MODIS at Terra and Aqua overpass
times and the SM product derived at 1 km resolution from
the DisPATCh algorithm applied to SMOS data are used as
input to TSEB and TSEB-SM models. Validation of TSEB
and TSEB-SM input data prior to the evaluation of model
output is an important issue, because of the scale discrepancy
between the spatial resolution (1 km) of MODIS/DisPATCh
data and the footprint of the EC flux measurements that does
not exceed 100 m (Schmid, 1994).

Several studies have demonstrated the effectiveness of
DisPATCh 1 km resolution SM. Malbéteau et al. (2016) com-
pared DisPATCh SM data with the in situ measurements col-
lected in the Murrumbidgee catchment in southeastern Aus-
tralia. Their results showed that DisPATCh improved the spa-
tial representation of SM at 1 km resolution (compared to the
original 40 km resolution SMOS SM), especially in semi-
arid areas. Recently, Malbéteau et al. (2018) combined the
DisPATCh SM over the entire year 2014 (Sidi Rahal, Mo-
rocco) with the continuous predictions of a surface model in
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Figure 2. Scatterplots of MODIS versus in situ LST at the Sidi Rahal site for the S1 (2014–2015), B1 (2015–2016), S2 (2016–2017) and
S3 (2017–2018) agricultural seasons, separately, (red dashed line is the 1 : 1 line; black line is the regression line).

order to obtain a better estimate of daily SM at 1 km reso-
lution. They found that the assimilation of DisPATCh data
improved quasi-systematically the dynamics of SM.

Figure 2 shows the scatterplots of MODIS LST (at Terra
and Aqua overpass) versus in situ measurements for the four
agricultural seasons separately. The obtained R2, root mean
square error (RMSE), and mean bias error (MBE) are re-
ported in Table 3. The statistical comparison shows strong
linear correlations (0.76≤ R2

≤ 0.90) for all years. The
RMSE is around 4 K for the S2 (2016–2017) and S3 (2017–
2018) agricultural seasons, while it reaches 6 K for S1 (2014–
2015) and B1 (2015–2016), respectively. The observed scat-
ter may stem from the fact that the localized (1 or 2 m wide)
in situ LST is not fully representative of the 1 km resolution
MODIS pixel (Ait Hssaine et al., 2018a; Yu et al., 2017). For
all years (S1–3, B1), it can be seen that the MBE is negative.
Note that the MBE is the greatest when the temperatures are
largest. Such a systematic error is probably due to the non-
representativeness of the in situ LST observations when com-
pared to the corresponding scale of MODIS observations.

The DisPATCh products have been extensively evaluated,
especially over semi-arid areas like the Marrakech region

Table 3. Validation results of DisPATCh SM and MODIS LST at
the Sidi Rahal site.

Period R2 RMSE MBE

LST

S1 0.8 6.4 (K) −3.7 (K)
B1 0.76 5.6 (K) −4.6 (K)
S2 0.91 4.3 (K) −2.9 (K)
S3 0.89 4 (K) −2 (K)

SM

S1 0.55 0.07 m3 m−3
−0.04 m3 m−3

B1 0.36 0.04 m3 m−3
−0.03 m3 m−3

S2 0.27 0.09 m3 m−3
−0.05 m3 m−3

S3 0.47 0.08 m3 m−3
−0.03 m3 m−3

(Bandara et al., 2015; Colliander et al., 2017; Djamai et al.,
2015; Escorihuela and Quintana-Seguí, 2016; Escorihuela
et al., 2018; Lievens et al., 2015; Malbéteau et al., 2016,
2018; Merlin et al., 2012; Merlin et al., 2013; Merlin et al.,
2015; Molero et al., 2016; Ojha et al., 2019; Peng et al., 2017;
Sabaghy et al., 2020). Actually, the scatterplots of Fig. 3
aim to verify that the DisPATCh soil moisture is consistent,
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Figure 3. Scatterplots of the 1 km resolution DisPATCh versus in situ SM at the Sidi Rahal site for the S1 (2014–2015), B1 (2015–2016),
S2 (2016–2017) and S3 (2017–2018) agricultural seasons, separately.

during four agricultural seasons (S1, B1, S2 and S3), at the
site level where the comparison between TSEB and TSEB-
SM is undertaken. The statistical results including the co-
efficient of determination (R2), the RMSE, and the MBE
are reported in Table 3. The R2 ranges from 0.27 to 0.55,
the RMSE from 0.04 to 0.09 m3 m−3 and the MBE from
−0.05 to −0.03 m3 m−3. These results are encouraging con-
sidering the heterogeneous land use composed of rainfed
wheat, bare soil, and fallow and farm building (see Fig. 4).
In fact, the localized in situ measurements may not be per-
fectly representative of the 1 km resolution satellite data.
Note that the efficiency of DisPATCh is supposedly higher
for low SM values (Malbéteau et al., 2016), which is clearly
illustrated during the B1 season, while it is lower for high
SM values (after rain events). This can be explained by the
constraints of atmospheric and vegetation conditions on dis-
aggregation results as well as the saturation of SEE in the
higher SM range. Another major issue that can lead to differ-
ences between DisPATCh and in situ SM is that the ground
SM sensors are buried at a depth of 5 cm, while the penetra-
tion of the L-band wave varies between 2 and 5 cm depend-

ing on soil conditions (notably SM content, texture). For S2,
the SM provided by DisPATCh underestimated field mea-
surements, especially in the higher SM range. This particular
behavior could be explained by the particularly low precip-
itation amount during this year. It is especially possible that
the surrounding plots were not sown by neighboring farmers,
resulting in a soil that dried quickly compared to our field,
which retained the SM for a longer period of time.

Note that despite the relative heterogeneity within the 1 km
pixel (characterized by rainfed wheat in addition to bare soil
and fallow), the comparison between field measurements and
1 km resolution satellite data reflects acceptable accuracies.

3 Results and discussion

In this section, the arss and brss parameters and the αPT are
firstly retrieved by following the two-step calibration based
on a threshold of fc (cited in the Methods section). Then,
the obtained calibrated values are used to estimate the sur-
face fluxes using TSEB-SM. Finally, TSEB-SM fluxes are
evaluated against the eddy covariance measurements, and re-
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Figure 4. NDVI image derived from Landsat data acquired on 17 April 2018. The experimental field and the overlaying 1 km resolution
MODIS pixel are superimposed.

sults are compared with the original TSEB. To facilitate the
interpretation of the simulation results using MODIS and
SMOS/DisPATCh data as input, the calibration and valida-
tion steps are previously tested using in situ (LST and SM)
data.

3.1 Retrieving arss and brss parameters

The soil resistance rss is inverted for fc ≤ fc,thres between
11:00 and 14:00 LT and at the Terra and Aqua overpass time
step for in situ and satellite data, respectively. The result of
this inversion is correlated with the actual to saturated soil
moisture ratio SM/SMsat to determine arss and brss parame-
ters. The calibration process is applied for each season inde-
pendently. Then a pair (arss, brss) is calculated for the entire
study period for in situ and satellite data, respectively.

Figure 5a and b plot the ln(rss) versus in situ SM/SMsat
using in situ and satellite data, respectively. The mean re-
trieved values (7.62, 2.43) and (7.32, 4.58) for in situ and
satellite data, respectively, are close to the values found in
Li et al. (2006) (8.2, 4.3) and in Ait Hssaine et al. (2018b)
(7.2, 4). However, by comparing both figures (Fig. 5a and b),
one notes that the use of in situ data generates more scatter
than with satellite data. The apparent scatter in retrieved rss
could be interpreted by the impact of the daily cycle of mete-
orological (evaporative demand) conditions or soil property
differences (Merlin et al., 2011; Merlin et al., 2016; Merlin
et al., 2018). The retrieved soil parameters also vary from
year to year: the standard deviation is 0.39 and 1.69 for arss
and brss, respectively. This can be explained by the compen-
sation effects linking arss and brss parameters which prove the

empirical nature of the rss. Another major issue that can lead
to these differences is the depth of SM measurements (Mer-
lin et al., 2011). In Sellers et al. (1992), the near-surface soil
moisture is defined in the 0–5 cm soil layer, whereas in our
field, SM measurements are made at 5 cm depth. Also, the
sensing depth of SMOS observations is generally shallower
than the in situ surface measurements (Escorihuela et al.,
2010). Moreover, the variability of arss and brss in Fig. 5b
using remote sensing data can be linked to the scale differ-
ence between DisPATCh SM/MODIS products (1 km) and
the field measurements. As shown in Fig. 3, the field is sur-
rounded by trees, buildings and fallows, which causes the
spatial heterogeneity within the pixel of 1 km. This hetero-
geneity can introduce errors into the model inversion. Never-
theless, soil parameters are quite similar for in situ and satel-
lite data sets. Therefore, the heterogeneity issues within the
1 km pixel scale are minor in this study.

3.2 Time series of daily retrieved αPT

The second calibration step consists in inverting the daily αPT
when vegetation is covering a significant part of soil (fc >

fc,thres), for the three seasons of rainfed wheat (S1–S3), by
using in situ data and satellite data, separately. Herein, the
calibration of αPT is bounded by minimum (0) and maxi-
mum (2) acceptable physical values, in order to avoid un-
acceptable values of αPT that can be produced because of the
uncertainties in daily LST estimates. Such an upper bound-
ing is especially needed when vegetation partially covers the
soil.
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Figure 5. ln(rss) versus SM/SMsat (calibration step 1) using in situ (a) and satellite (b) data.

3.2.1 Using in situ data

Figure 6 plots the daily variation of αPT for each season (S1–
S3) separately, using in situ data. The mean retrieved values
of αPT are 1.26, 1.12 and 1.09 for S1, S2 and S3, respec-
tively. In all cases, the mean αPT is close to the theoretical
αPT value (1.26). It is well observed that the retrieved αPT
for S1 is slightly larger compared to those obtained for
both S2 and S3. This can be explained by the timing and
amount of rainfall during each season. Note that unexpected
low values of αPT are recorded for S3 during the first few
days (25 January–4 March) of the development stage. They
may be associated with uncertainties in retrieved αPT, as the
impact of soil surface is still significant, as well as with a
relatively low evaporative demand especially since this pe-
riod coincides with cloudy days and abundant precipitations.
Indeed, the coupling between transpiration (and hence re-
trieved αPT) and LST is expected to be lower under lower
atmospheric demand.

The retrieved αPT is then smoothed as in Ait Hssaine et al.
(2018b) to remove outliers and to reduce uncertainties at the
daily timescale. The smoothed values of αPT range from 0
to 1.54, 0 to 1.38 and 0.45 to 1.43 for S1, S2 and S3, respec-
tively. The maximum of αPT is close to 1.26 for S2, while it is
higher for S1 and S3. This result is in accordance with the to-
tal rainfall amounts, which were about 608, 214 and 421 mm
for S1, S2 and S3, respectively. Additionally, one can state

that the stability of αPT strongly depends on the rainfall dis-
tribution along the agricultural season. The daily αPT is more
stable for S1 than for S2 and S3. Indeed, the amount of rain
during S1 is very important, with two peaks of about 83 mm
that occurred at the beginning of the season and during the
growing stage. The second one coincides exactly with the
maximum value of the retrieved αPT. However, different re-
sults are obtained for S2 compared to S1 due to the lowest
precipitation amount recorded over that season. As shown in
Fig. 6, the amount of rain is concentrated at the beginning
of the growing stage (mid December), when the αPT peaks.
Afterward, the smoothed αPT tends to decrease because of in-
sufficient soil water reserve in the root zone to enable wheat
to continue growing. Rainfall is also significant for S3, and
every rainfall event causes an immediate (daily) response
of αPT (after 4 March). As mentioned before, the signifi-
cant error in αPT retrievals for S3 between 25 January and
4 March induces strong uncertainties in the smoothing func-
tion estimates.

3.2.2 Using satellite data

Figure 6 also illustrates the daily variation of αPT retrieved
from satellite data for each season separately. S1 and S2 have
a very similar distribution of the retrieved αPT as compared
to the retrieved αPT using in situ data, respectively. For S3,
only six retrieved αPT values are available because of the
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Figure 6. Time series of daily retrieved and smoothed αPT (calibration step 2 – using in situ data and satellite data) collected during S1, S2
and S3.

non-availability of MODIS products during cloudy days. For
this reason, no information linked to the variability of αPT
can be derived during this season. The retrieved values are
smoothed and superimposed with the rainfall events. It is
clearly shown that the smoothed αPT for S1 and S2 have the
same shape with a small variability when compared with the
smoothed αPT using in situ data, resulting in an error esti-
mated as the RMSE to the mean αPT ratio, of about 11 % and
19 %, for S1 and S2, respectively. For S1 the maximum of
smoothed αPT is reached at the same time as when using the
in situ data, with a value of about 1.38, while the maximum
for S2 is reached 10 d before the maximum of the αPT derived
from in situ data with little response of αPT to rainfall events.
These differences may be linked to uncertainties in disag-
gregated SMOS SM as well as to the weaker availability of
satellite data. Because of the small number of data points (re-
trieved αPT) during S3, the smoothed αPT remains at a mostly
constant value (∼ 0.7) throughout the study period, with a
significant relative difference of about 34 % when compared
with the αPT retrieved using in situ data.

3.2.3 Interpretation of αPT variabilities

Figure 7 plots variation of calibrated daily αPT, superim-
posed with NDVI and rainfall events. It is visible that the

maximum value of NDVI appears sooner than the maximum
value of αPT for both S1 and S3. Such a delay is attributed to
the high soil moisture level in the root zone during the matu-
rity stage. Later in the season, αPT decreases as NDVI starts
to decline at the onset of senescence. In contrast, the maxi-
mum value of NDVI appears later than the maximum value
of αPT for S2. This can be explained by the fact that rainfall
at the beginning of the development phase satisfies the plant
requirements, while the rainfall amount during the develop-
ment stage is relatively low compared to the crop water needs
(Kharrou et al., 2011). Large variations in αPT occur during
the agricultural season, as a result of the amount, frequency,
and distribution of rainfall along the season. In general, the
analysis of the αPT variability using satellite data illustrates
the robustness of the proposed approach, which combines
microwave and optical/thermal data to retrieve a water stress
indicator at the daily timescale.

3.3 Surface fluxes

The robustness of TSEB and TSEB-SM for partitioning
(Rn−G) into H and LE is evaluated using in situ and re-
motely sensed LST, SM, and NDVI, separately, at Terra and
Aqua MODIS overpasses.
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Figure 7. Time series of calibrated daily αPT (red – using in situ data, green – using satellite data) superimposed with NDVI and the rainfall
events during S1, S2 and S3, separately.

3.3.1 Using in situ data

Figure 8 shows an intercomparison of simulated and ob-
served LE for the four seasons separately. TSEB-SM clearly
provides improved results compared to the original TSEB.
The obtained values of RMSE by TSEB-SM are about 68 and
72 W m−2 for S1 and S2, respectively, which is significantly
lower than those revealed by TSEB (109 and 86 W m−2, re-
spectively) (see Table 4). For B1 (season of bare soil), TSEB
largely overestimates LE with a MBE of about 165 W m−2

compared to TSEB-SM, which yields a MBE of 59 W m−2.
This overestimation of TSEB is most probably related to an
inadequate value of αPT (= 1.26) for bare soil surfaces. In
fact, 1.26 is an optimum value for the potential transpiration
rate (Agam et al., 2010; Chirouze et al., 2014). In the case
of TSEB-SM, biases are reduced thanks to the calibration of
the rss resistance. Additionally, according to TSEB-SM as-
sumptions, αPT for fc ≤ 0.5 is set to the average value of the
αPT retrieved for fc > 0.5. During the B1 season (bare soil
conditions), αPT was hence obtained as an average value of
the mean αPT retrieved for all seasons S1, S2 and S3 when
fc > 0.5 (αPT ∼ 1). However, this value remains relatively

high for a bare soil, which yields a slight overestimate of
LE measurements (see the B1 case in Fig. 8).

For the S3 season, the error in daily retrieved αPT at the
beginning of the development stage has a strong impact on
LE predictions and thus yields to greater discrepancies illus-
trated in Fig. 8. To overcome this error, the threshold on fc to
separate calibration steps 1 and 2 was increased to 0.63 (arbi-
trary value). The TSEB-SM model is then run using the new
threshold. The LE simulations are improved, with a RMSE
of 73 W m−2 instead of 98 W m−2 and a relative error (es-
timated as the RMSE divided by the mean observed LE)
of about 42 % instead of 58 %. The increase in the thresh-
old is intended to decrease the uncertainties in αPT retrievals
when vegetation is not fully covering the soil. It can be con-
cluded that the errors in αPT retrievals have a strong impact
on LE estimates.

The ability of TSEB-SM to estimate the sensible heat
fluxes is also investigated. Figure 9 displays the compari-
son between TSEB and TSEB-SM for each season and Ta-
ble 4 summarizes the different statistical parameters. One
can notice that TSEB shows greater discrepancies in H es-
timation, with a RMSE of about 127, 112 and 103 W m−2

and a MBE of about −41, 1, and −71 W m−2 for S1, S2 and
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Figure 8. Scatterplot of simulated versus observed LE for (top panels) TSEB and (bottom panels) TSEB-SM models using in situ data
collected during S1, B1, S2 and S3, respectively.

Table 4. Statistical results (RMSE, R2 and MBE) between modeled and measured sensible and latent heat fluxes for S1, S2, B1 and S3, and
for TSEB and TSEB-SM models, separately (Rn and G are forced to their measured value). Bold values are the values with better statistical
results.

TSEB TSEB-SM

RMSE R2 MBE RMSE R2 MBE

Using in situ data

LE (W m−2)

S1 109 0.39 76 68 0.59 10
B1 136 0.15 165 52 0.22 59
S2 86 0.22 30 72 0.16 −24
S3 103 0.53 71 98 0.29 –7

H (W m−2)

S1 127 0.33 −41 68 0.7 –10
B1 136 0.44 −165 52 0.91 –59
S2 112 0.47 1 72 0.63 24
S3 103 0.38 −71 98 0.14 7

Using satellite data

LE (W m−2)

S1 95 0.34 119 55 0.51 39
B1 66 0.07 181 27 0.01 62
S2 67 0.02 94 41 0.08 4
S3 56 0.55 128 24 0.68 7

H (W m−2)

S1 98 0.3 −104 55 0.54 –39
B1 66 0.37 −181 27 0.52 –62
S2 73 0.33 −71 41 0.6 –4
S3 56 0.28 −128 24 0.36 –7
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Figure 9. Same as Fig. 8 but for H fluxes.

S3, respectively. Both RMSE and MBE values are generally
much reduced when using TSEB-SM, with RMSE values of
about 68, 72, and 98 W m−2 and MBE values of about −10,
24, and 7 W m−2, respectively. During B1, TSEB model un-
derestimates H . This can be explained by the low sensi-
tivity of simulated sensible heat flux to changes in surface
and atmospheric conditions, consistent with former results
obtained on different sites of irrigated wheat (Ait Hssaine
et al., 2018b). The discrepancies between TSEB-SM and in
situH during S3 are mostly rectified by using the new thresh-
old on fc: the statistical results are improved, the RMSE
is about 73 W m−2 and the relative error is 39 % (instead
of 52 %). It can be concluded that the uncertainty observed
over the αPT during the first few days of the development
stage (25 January–4 March) is mainly related to the impact
of the soil, which is not negligible during the first weeks of
the growing stage. Nevertheless, by considering the over-
all results obtained for the three seasons, the threshold of
fc,thres = 0.5 can be considered an acceptable value to cal-
ibrate the soil resistance parameters and the Priestly–Taylor
coefficient.

As a further step, the intercomparison between TSEB and
TSEB-SM is evaluated by predictingRn andG fluxes instead
of forcing them to their measured values. The statistical re-
sults of the comparison between simulated and observed Rn,
G, H and LE are listed in Table 5. The scattering obtained
when comparing turbulent flux estimations to measurements
is mainly related to the uncertainty in available energy es-
timates, mainly related to the uncertainty in soil heat flux

estimates. Indeed, as reported in Table 5, Rn is very well
simulated for both TSEB and TSEB-SM. The R2 between
simulated and observed Rn is about 0.99 during all seasons.
Meanwhile, G shows a poor correlation, with an R2 varying
from 0.05 to 0.45. This is mainly linked to the approach used
to estimate G, which requires local calibration. Kustas et al.
(1998) hence indicated that the ratioG/Rn,soil cannot be con-
sidered a constant, because it is affected by different factors
such as time of day, moisture conditions and soil texture and
structure.

3.3.2 Using satellite data

In order to gain greater insight into how TSEB and TSEB-
SM models respond to different surface conditions across
a landscape, an analysis of the spatial distributions and the
magnitude of the turbulent fluxes using remotely sensing data
produced from the two models is conducted. The compar-
isons between TSEB/TSEB-SM versus observed LE over
the four seasons are illustrated in Fig. 10. Figure 10 indi-
cates that TSEB overestimates latent heat flux. The overall
MBE values are about 119, 181, 94 and 128 W m−2 for S1,
B1, S2 and S3, respectively. The overestimation ofLE fluxes
can be explained by the fact that αPT is set to 1.26 dur-
ing the entire agricultural season including stress conditions.
This probably causes larger errors in the LE estimation, es-
pecially during the growing stage. Indeed, the saturation of
TSEB during the senescence period is precisely caused by
the PT coefficient fixed to 1.26. The errors are reduced when
using TSEB-SM. In fact, the constraint on plant transpira-
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Figure 10. Same as Fig. 8 but for satellite data.

Figure 11. Same as Fig. 8 but for H fluxes and satellite data.
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Figure 12. αPT vs. residual H and LE error.

tion, while retrieving daily αPT values improves ET esti-
mates, especially for the growing stage. Moreover, during the
senescence stage the large positive bias of LE is consider-
ably reduced. In fact, the decrease in calibrated daily αPT is
associated with the drop in NDVI during senescence (Ait Hs-
saine et al., 2018b). Additionally, the constraint on the soil
evaporation via the DisPATCh SM clearly reduces the MBE
values during the emergence period (fc ≤ fc,thres). Finally,
the constraint applied on TSEB-SM output fluxes using LST-
derived available energy and the TSEB-SM-derived evapo-
rative fraction (Eq. 8) improves the LE estimates for the
whole study period. The MBE values are about 39, 4, 7 and
62 W m−2 for S1, S2, S3 and B1, respectively.

TSEB consistently exhibits larger errors in H estima-
tion (see Fig. 11), with RMSE values up to 98, 73, 56 and
66 W m−2 during S1, S2, S3 and B1, respectively. The RMSE
is improved while using TSEB-SM, with values of about 55,
41, 24 and 27 W m−2 during S1, S2, S3 and B1, respectively.

The intercomparison between TSEB and TSEB-SM is
made by forcing the available energy to its measured value.
The statistics listed in Table 5 indicate that there are similar
differences between modeled versus measured Rn using ei-
ther TSEB or TSEB-SM. Overall, the discrepancies between
estimated and measured Rn are likely due to a greater scat-
ter between MODIS and in situ measured LST. Note that
RMSE values up to 6 K have been noted when comparing
LST MODIS with ground-based measurements. These un-
certainties are likely to be explained by the huge scale mis-
match between the 1 km resolution of MODIS LST and the
footprint size (approximately 1 m) of ground-based radiome-
ters. The uncertainties in key input data generate large differ-
ences in simulated Rn compared to the tower measurements.
The greater scatter between modeled and measured G from
the two models reflects the fact that there is a major mis-
match in scale between the area sampled by the soil heat flux
sensors and the 1 km resolution of model inputs. It appears
that the LE estimates from TSEB-SM are generally in closer
agreement with the measurements than the TSEB model

outputs. The RMSE is significantly improved from 103 to
52 W m−2, from 151 to 30 W m2, from 101 to 35 W m−2 and
from 83 to 24 W m−2, during S1, B1, S2 and S3, respectively.
For the sensible heat flux H , the difference between TSEB
estimates and EC measurements listed in Table 5 indicates
a fairly large underestimation, the MBE values varying be-
tween −56 and −240 W m−2. However, the TSEB-SM out-
put provides a quite significant improvement, with an abso-
lute MBE lower than −61 W m−2 during all seasons.

3.4 Evaluation of H and LE estimates

In this section, the residual error of the H and LE estimated
with the TSEB-SM-retrieved soil/vegetation parameters is
analyzed. Figure 12 plots retrieved αPT vs. residual H and
LE error. The retrieved αPT is poorly correlated with resid-
ual H (R =−0.27) and ET (R = 0.27) errors, especially for
seasons S1 and S2. For season S3, few retrieved αPT val-
ues were available because of the non-availability of MODIS
products during cloudy days. It is shown that the trend be-
tween αPT and residual H error is slightly negative for S1,
while it is slightly positive for S2. According to these re-
sults, no information linked to the variability of αPT versus
residual ET and H errors can be derived. Figure 13 plots
retrieved rss vs. residual H and LE error and LST for the
four study periods. The retrieved rss is negatively correlated
(R =−0.33) with residual H error (predicted–observed) for
the four seasons, while it is positively correlated (R = 0.33)
with residual LE error. The residual error covers a wide
range (between −150 and 150 W m−2) for the lower rss val-
ues, while it is biased for the higher rss values. Such a re-
sult indicates that the rss formulation as a function of near-
surface SM needs further improvements (Merlin et al., 2016;
Merlin et al., 2018) in order to reduce systematic uncertain-
ties in evaporation estimates, especially in dry (moisture-
limited) conditions. Consistent with the general decrease in
LST with SM, LST is positively correlated with retrieved rss
(R = 0.45). This is very coherent since rss decreases with the
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Figure 13. Retrieved rss vs. residual H (a) and LE (b) error and LST (c) for the four study periods separately.

Figure 14. Residual H (a, c) and LE (b, d) errors vs. DisPATCh (a, b) and in situ (c, d) SM.

increase in SM. Regarding the sensitivity analysis of resid-
ual H and LE errors to observed SM, Fig. 14 shows that
SM is positively correlated with residual H error, while it
is negatively correlated with residual LE error for the entire
study period. The correlation coefficient is about 0.3 when
using DisPATCh SM, while it is about 0.4 when using in
situ SM. This difference can be explained by the uncertainty

(including spatial representativeness issues at the localized
scale) in DisPATCh SM. The positive correlation coefficient
between residual LE error and observed SM is likely to be
due to the systematic errors in rss estimates for dry conditions
as mentioned previously. For S2, B1 and S3, the residual H
error ranges between −150 and 50 W m−2 for SM between
0 and 0.10 m3 m−3, while it is slightly overestimated for the
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Table 5. Same as Table 2 but for simulated Rn and G. Bold values are the values with better statistical results.

TSEB TSEB-SM

RMSE R2 MBE RMSE R2 MBE

Using in situ data

Rn (W m−2)

S1 35 0.99 −38 35 0.99 −38
B1 14 0.99 12 14 0.99 12
S2 20 0.99 9 20 0.99 9
S3 7 0.99 −0.46 7 0.99 −0.46

G (W m−2)

S1 19 0.32 17 19 0.32 17
B1 19 0.05 12 19 0.05 12
S2 30 0.28 −13 30 0.28 −13
S3 26 0.44 9 26 0.44 8

LE (W m−2)

S1 87 0.35 27 65 0.58 –21
B1 141 0.12 174 52 0.16 60
S2 91 0.23 35 68 0.22 –15
S3 91 0.62 54 84 0.47 22

H (W m−2)

S1 127 0.33 −44 70 0.73 34
B1 145 0.43 −177 52 0.9 –60
S2 112 0.48 2 78 0.68 36
S3 99 0.3 −64 87 0.3 –32

Using satellite data

Rn (W m−2)

S1 23 0.94 8 22 0.93 8
B1 85 0.47 32 85 0.47 32
S2 22 0.94 12 22 0.94 12
S3 17 0.97 2 17 0.97 2

G (W m−2)

S1 20 0.41 24 19 0.4 24
B1 20 0 15 20 0 15
S2 25 0.12 −15 25 0.12 −15
S3 22 0.08 10 22 0.08 10

LE (W m−2)

S1 103 0.24 86 52 0.49 28
B1 151 0.02 240 30 0.01 65
S2 101 0.07 96 37 0.06 28
S3 83 0.47 74 24 0.69 14

H (W m−2)

S1 112 0.34 −91 63 0.44 –45
B1 150 0.16 −240 28 0.49 –61
S2 97 0.4 −56 38 0.52 –4
S3 85 0.12 −83 27 0.28 –29

higher range of SM. The residual LE error is also found to
be influenced by SM, but in the opposite sense.

4 Conclusions

The microwave-derived near-surface soil moisture (SM)
from SMOS and the thermal-derived land surface tempera-
ture (LST) from MODIS are integrated simultaneously in the
TSEB formalism within a calibration procedure to invert both
the soil resistance to evaporation (constant parameters) and
the PT coefficient based on a threshold on fc. The TSEB-SM
model is applied during a 4-year period (2014–2018) over
a rainfed wheat field in the Tensift basin, central Morocco.
Significant conclusions are given below.

The constraint applied on the soil evaporation represented
explicitly as a function of SM via a soil resistance term re-
duces the errors when using TSEB-SM instead of TSEB.

– The first step of the TSEB-SM approach is to cal-
ibrate rss for (fc ≤ fc,thres) at Terra and Aqua over-
pass times. Despite the scale difference between the
MODIS/DisPATCh resolution data and the footprint
size of in situ measurements, the parameters (arss, brss)
calculated for the entire study period using satellite data
are relatively close to those derived from in situ mea-
surements.

– The second step of the TSEB-SM approach is to in-
vert the αPT on a daily basis for fc > fc,thres by using
LST and SM data. The maximum values of daily cali-
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brated αPT are 1.38, 1.25 and 0.87, when using satellite
data, for S1, S2 and S3, respectively. Those values are in
accordance with the total rainfall amounts, which were
about 608, 214 and 421 mm per wheat season for S1,
S2 and S3, respectively. S1 and S2 have the same distri-
bution of daily calibrated αPT when compared with the
αPT retrieved using in situ data, while the retrieved αPT
remains at a mostly constant value (∼ 0.7) throughout
the S3 study period because of the non-availability of
MODIS products during cloudy days.

– Finally, an analysis of the spatial distributions and the
magnitude of the turbulent fluxes using remotely sens-
ing data produced from the two models were conducted.
TSEB exhibits larger errors in H and LE estimates.
These uncertainties can be linked to the theoretical
value of αPT, which is fixed to 1.26 for the whole study
period as well as to the scale mismatch between the
1 km resolution of MODIS LST and the footprint size
(approximately 1 m) of the ground-based radiometer.

As a short-term prospect, the use of high-resolution products
from active sensors (Sentinel-1) would allow application of
the TSEB-SM approach at the field scale over heterogeneous
(e.g., irrigated) landscapes. Also, the robustness of TSEB-
SM in terms of evaporation/transpiration partitioning will be
tested by using independent flux measurements derived from
lysimeters and sap flow sensors (Rafi et al., 2019). In addi-
tion, the evaluation of ET at large scale is missing. Spatial-
ized measurements that could be collected by scintillometers
installed at various points in the region would be a solution
for that purpose.
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