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Abstract. In urban hydrology rainfall time series of high res-
olution in time are crucial. Such time series with sufficient
length can be generated through the disaggregation of daily
data with a micro-canonical cascade model. A well-known
problem of time series generated in this way is the inadequate
representation of the autocorrelation. In this paper two cas-
cade model modifications are analysed regarding their abil-
ity to improve the autocorrelation in disaggregated time se-
ries with 5 min resolution. Both modifications are based on a
state-of-the-art reference cascade model (method A). In the
first modification, a position dependency is introduced in the
first disaggregation step (method B). In the second modifica-
tion the position of a wet time step is redefined in addition
by taking into account the disaggregated finer time steps of
the previous time step instead of the previous time step itself
(method C). Both modifications led to an improvement of
the autocorrelation, especially the position redefinition (e.g.
for lag-1 autocorrelation, relative errors of − 3 % (method
B) and 1 % (method C) instead of −4 % for method A). To
ensure the conservation of a minimum rainfall amount in the
wet time steps, the mimicry of a measurement device is sim-
ulated after the disaggregation process. Simulated annealing
as a post-processing strategy was tested as an alternative as
well as an addition to the modifications in methods B and C.
For the resampling, a special focus was given to the conser-
vation of the extreme rainfall values. Therefore, a universal
extreme event definition was introduced to define extreme
events a priori without knowing their occurrence in time or
magnitude. The resampling algorithm is capable of improv-
ing the autocorrelation, independent of the previously ap-
plied cascade model variant (e.g. for lag-1 autocorrelation

the relative error of −4 % for method A is reduced to 0.9 %).
Also, the improvement of the autocorrelation by the resam-
pling was higher than by the choice of the cascade model
modification. The best overall representation of the autocor-
relation was achieved by method C in combination with the
resampling algorithm. The study was carried out for 24 rain
gauges in Lower Saxony, Germany.

1 Introduction

For many applications in hydrology high-resolution rainfall
time series are crucial (see the review of Cristiano et al.,
2017) to match the scale of the underlying processes (Blöschl
and Sivapalan, 1995). Schilling (1991) concludes that for ur-
ban hydrology, in particular for overland flow, a temporal res-
olution of 5 min is acceptable. Berne et al. (2004) point out
that the required temporal resolution depends on the catch-
ment size and recommend for urban catchments with area
sizes of about 1000 ha a temporal resolution of 6 min and
for 10 ha or smaller a temporal resolution of 1 min. Unfortu-
nately, lengths of time series with such a high temporal res-
olution are insufficient for most applications. However, for
the non-recording stations (registration of daily values) the
time series lengths are usually sufficient, but the temporal
resolution is not fine enough to cope with the dynamics in
urban hydrology (Ochoa-Rodriguez et al., 2015). A possible
solution for this data scarcity is rainfall disaggregation. In-
formation of short, high-resolution time series is used to dis-
aggregate coarser time series. The disaggregation results in
high-resolution time series with sufficient lengths as well as
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a higher network density in most cases. Several methods ex-
ist for the temporal disaggregation, e.g. method of fragments
(Wójcik and Buishand, 2003; Westra et al., 2012; Breinl et
al., 2015; Breinl and Di Baldassarre, 2019), rectangular pulse
models (Koutsoyiannis and Onof, 2001) and cascade mod-
els. Cascade models are well-known disaggregation mod-
els for the generation of high-resolution rainfall time series
and were developed originally in the field of turbulence the-
ory (Mandelbrot, 1974). Based on Koutsoyiannis and Lan-
gousis (2011), the canonical version of the cascade model
(conservation of rainfall amount on average during the disag-
gregation, e.g. Molnar and Burlando, 2005; Paschalis et al.,
2012) represents a downscaling technique, while the micro-
canonical version (exact rainfall amount conservation for
each time step, e.g. Olsson, 1998; Güntner et al., 2001; Licz-
nar et al., 2011, 2015; Müller-Thomy et al., 2018; Müller-
Thomy and Sikorska-Senoner, 2019) represents a disaggre-
gation technique. However, for urban hydrology the majority
of investigations with cascade models focus on the disaggre-
gation of quasi-daily time series (with time step durations
of 1280 min instead of 1440 min, e.g. Licznar et al., 2011,
2015; Molnar and Burlando, 2005; Paschalis et al., 2014) to
achieve a final temporal resolution of 10 or 5 min. This en-
ables use of the same branching number (that determines the
number of finer time steps with equal duration resulting from
one coarser time step) of b = 2 throughout the disaggregation
process with intermediate resolutions of {640, 320, 160, 80,
40, 20, 10, 5 min}. Since time series with 1280 min do not
exist as observations, these studies are theoretical rather than
practical from an engineering point of view. Of course, by
the application of an additional transformation process a de-
sired temporal resolution can be achieved, whereby the trans-
formation process affects the characteristics of the disaggre-
gated time series. To overcome this issue, Müller and Haber-
landt (2018) developed a micro-canonical cascade model,
which enables the rainfall disaggregation from daily values
to 5 min. Müller and Haberlandt (2018) evaluated the disag-
gregated rainfall time series in terms of rainfall character-
istics and showed good performances regarding continuous
(average intensity, fraction of dry intervals) and event-based
rainfall characteristics (wet and dry spell duration, wet spell
amount) as well as extreme values. An additional validation
with an urban hydrological model led to comparable results
for event-based combined sewer overflow volume as well as
manhole flooding volume when forced with observed and
disaggregated rainfall time series, respectively.

Müller and Haberlandt (2018) also show that the autocor-
relation of the disaggregated time series is underestimated.
This is critical, because the autocorrelation describes the
memory of a process. So for continuous applications espe-
cially, deviations can be expected whether e.g. an urban hy-
drological model is forced with observed or disaggregated
rainfall time series. The underestimation of the autocorrela-
tion in the generated time series has been identified before
when micro-canonical cascade models were used for the dis-

aggregation by e.g. Olsson (1998), Güntner et al. (2001) and
Paschalis et al. (2012, 2014). Lisniak et al. (2013) divided
the study period into a calibration period and a validation pe-
riod. While for the calibration period the autocorrelation was
underestimated, a good representation was achieved for the
validation period. Rupp et al. (2009) and Pohle et al. (2018)
analysed four and three different kinds of cascade models,
respectively. Depending on the choice of the model, under-
estimations and overestimations of the autocorrelation func-
tion were identified. A good representation of the lag-1 au-
tocorrelation was achieved by Hingray and Ben Haha (2005)
with two micro-canonical cascade models. However, since
only four disaggregation steps were applied (from hourly to
7.5 min time steps), it remains unclear whether the good rep-
resentation would have been achieved for more disaggrega-
tion steps.

Summarising the previous findings, an adequate repro-
duction of the autocorrelation function by the multiplica-
tive micro-canonical cascade model can be difficult. The rea-
sons for overestimation and underestimation differ depend-
ing on the choice of the cascade model. For example, in Ols-
son (1998) and Müller and Haberlandt (2018) the underes-
timation is caused by the generation of dry time steps in-
side rainfall events, causing shorter wet spells in the disag-
gregated time series in comparison with the observed time
series. In Pohle et al. (2018) an overestimation of the auto-
correlation is identified for a cascade based on Menabde and
Sivapalan (2000), which disables the generation of dry finer
time steps from one wet coarser time step.

In this study, I investigate modifications of the cascade
model itself, but also a post-processing strategy after the dis-
aggregation procedure to improve the representation of the
autocorrelation in the disaggregated time series. The basis for
all investigations in this study is the multiplicative random
cascade model as proposed by Müller and Haberlandt (2018).
According to Marshak et al. (1994) it is a bounded cascade
model with a single parameter set for each disaggregation
level. The parameters are estimated by the aggregation of ob-
served, high-resolution time series (Carsteanu and Foufoula-
Georgiou, 1996). The modifications are based on the intro-
duction of position dependencies with two different degrees
of complexity. The first, less complex modification includes
taking into account the position of the wet day in the time
series. The second, more complex modification follows an
idea of Lombardo et al. (2012, 2017). Lombardo et al. anal-
ysed which time steps are most worth considering to generate
highly correlated time series under the burden of computa-
tional efforts. Their conclusion is adapted in this investiga-
tion. Both modifications are expected to improve the auto-
correlation function and lead with the basis model to three
different cascade model variants in this study. It should be
pointed out that Lombardo et al. (2012) showed that the dis-
aggregation process of discrete multiplicative random cas-
cade models is non-stationary, “because the autocorrelation
structure depends on the position in time in an undesirable
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manner”. Since the aim of this study is to improve the overall
representation of the autocorrelation function (as an average
over time), the extent to which the non-stationarity issue is
solved by the introduced methods is not analysed.

Simultaneously, a second general issue of the cascade
model is solved: the generation of time steps with very small
rainfall intensities. Molnar and Burlando (2005) identified a
fraction of rainfall intensities lower than the measurement
resolution of the investigated time series of 48 % for 10 min
time series, starting with the disaggregation from quasi-daily
values. Müller and Haberlandt (2015) found for a disaggrega-
tion from daily to hourly values a fraction of underestimated
rainfall intensities of 35 %. Koutsoyiannis et al. (2003) argue
that it is unclear whether the values generated by the cascade
model are too small in comparison to the observed minimum
intensities or whether the resolution of the measurement de-
vice is not fine enough to observe the very small rainfall in-
tensities generated by the cascade model. From a practical
point of view, these low-intensity time steps are not impor-
tant, but they have an impact on the autocorrelation function.
To enable comparisons between the autocorrelation of ob-
served and disaggregated rainfall time series a novel method
is applied in this study to ensure a minimum rainfall intensity
in the disaggregated time series.

In addition to the modifications of the cascade model itself,
a resampling algorithm as a post-processing strategy is anal-
ysed to improve the autocorrelation. A similar approach has
been investigated by Bárdossy (1998), who used a simulated
annealing algorithm to resample time series generated with a
Markov chain Monte Carlo method. Bárdossy (1998) inves-
tigated temporal resolutions of 1 h and 5 min; the autocorre-
lation function could be reproduced well for both. For this
investigation, the proposed resampling algorithm of Müller
and Haberlandt (2015) will be modified to include the auto-
correlation function in the optimisation process.

As a summary from the introduction, the main research
question of this study is, “How can the autocorrelation in the
disaggregated time series be improved?”.

2 Rainfall data

In this study, 24 stations in and around Lower Saxony, North-
ern Germany, are used (see Fig. 1). The same data set has
been used before by e.g. Callau and Haberlandt (2017) for
rainfall generation.

There are three dominating topographical regions with a
coastal area around the North Sea, followed by the flatland
around the Lüneburger Heide and the Harz middle mountains
with altitudes up to 1141 m a.s.l. (from north to south).

Due to the climate classification following Köppen–
Geiger (Peel et al., 2007), the study area can be divided into
a temperate climate in the north and a cold climate in the
mountainous region. Both climates exhibit no dry seasons,
but hot summers. For the Harz mountains, average annual

Figure 1. Study area of Lower Saxony (and its location in Germany)
with 24 recording stations and the cities of Hamburg, Bremen and
Brunswick for orientation (based on the digital elevation model of
the Shuttle Radar Topography Mission – Jarvis et al., 2008).

precipitation amounts greater than 1400 mm can be identi-
fied.

In Fig. 1, the 24 recording stations operated by the German
Weather Service (DWD) with long term time series ranging
from 9 to 20 years and a temporal resolution of 5 min are
shown. The validation of the cascade model modifications
is based on these 24 stations with a focus on the autocorre-
lation, but also on overall characteristics (average intensity,
fraction of dry time steps), event characteristics (dry spell
duration, wet spell duration, wet spell amount) as well as
extreme values. The definition for a single event is accord-
ing to Dunkerley (2008); having a minimum of one dry time
step before and after the rainfall occurrence. For the defini-
tion of a dry time step the accuracy of the measuring instru-
ment is not applied here, instead a threshold of zero rain-
fall is used. This enables comparisons between observed and
disaggregated time series, since also smaller values resulting
from the disaggregation process are included (see e.g. Mol-
nar and Burlando, 2005). The rainfall time series character-
istics along with further information of the rain gauges are
provided in Table 1.
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Table 1. Attributes of all 24 rainfall stations, based on a temporal resolution of 5 min.

ID Name Altitude Mean annual Fraction of Average wet Average wet Average dry Autocorrelation
(m a.s.l.) precipitation wet 5 min spell duration spell amount spell duration lag 1

(mm) intervals (%) (min) (mm) (min) (–)

1 Braunlage 607 1397 8.1 15.5 0.51 175.3 0.66
2 Braunschweig-Voel. 81 638 4.4 15.7 0.43 336.8 0.62
3 Cuxhaven 5 869 6.2 19.1 0.51 291.9 0.61
4 Diepholz 39 690 4.6 15.2 0.43 314.8 0.56
5 Emden 0 825 5.2 15.5 0.47 281.2 0.55
6 Freiburg/Elbe 2 888 6.4 18.5 0.49 272.9 0.57
7 Gardelegen 47 581 6.2 22.7 0.40 340.2 0.63
8 Göttingen 167 631 4.3 14.1 0.40 315.3 0.62
9 Hannover 55 641 3.9 13.2 0.41 323.0 0.63
10 Harzgerode 404 612 7.3 23.9 0.38 304.3 0.65
11 Jork-Moorende 1 727 5.7 18.4 0.44 302.0 0.58
12 Leinefelde 356 942 8.0 25.5 0.57 291.1 0.60
13 Lingen 22 789 5.5 16.6 0.46 286.6 0.60
14 Lüchow 17 569 3.9 14.3 0.39 349.3 0.61
15 Magdeburg 76 496 5.5 22.1 0.38 373.3 0.62
16 Norderney 11 744 4.5 14.6 0.46 309.5 0.56
17 Oldenburg 11 809 6.4 18.1 0.43 263.1 0.63
18 Osnabrück 95 874 5.4 14.8 0.45 258.3 0.56
19 Bad Salzuflen 135 825 5.0 13.5 0.42 253.0 0.63
20 Soltau 76 804 5.3 15.4 0.44 274.1 0.61
21 Uelzen 50 643 5.5 17.5 0.39 300.1 0.58
22 Ummendorf 162 549 5.9 23.6 0.41 367.2 0.60
23 Wendisch Evern 62 686 5.8 18.0 0.40 290.2 0.55
24 Wernigerode 234 625 7.1 23.6 0.39 305.1 0.68

3 Methods

The overall aim of this study is the improvement of the au-
tocorrelation rt1,t2 of the disaggregated time series with a
temporal resolution of 5 min. The autocorrelation function
(Eq. 1) describes the memory of a process (here: rainfall)
by the comparison of time series with itself in the future
(shifted time series), whereby the future is represented by
a certain number of λ future time steps in the time series
(lags). For rainfall time series Pearson’s autocorrelation and
Spearman’s rank autocorrelation are applied in the literature
(e.g. Pohle et al., 2018). Using Pearson’s autocorrelation has
two advantages: (i) it enables comparisons with results from
the literature, since it is applied more often than Spearman’s
rank autocorrelation, and (ii) in terms of the later introduced
resampling as an optimisation algorithm (see Sect. 3.2), for
Pearson’s autocorrelation no rank analysis of the whole time
series has to be performed, since it can be calculated straight
forwardly from the absolute values of the time series, which
essentially quickens the optimisation. Hence, Pearson’s au-
tocorrelation is applied throughout this study.

The autocorrelation function is based on two elements: the
covariance st1,t2 of the original and the shifted time series (t1
and t2, shifted by the lag λ with λ= t2− t1), which describes
the relation of both time series, and the standard deviations
of both time series, st1 and st2, for the standardisation of

the covariance. While t1 consists of n time steps, the rain-
fall amount at a single time step i is represented by x.

rt1,t2 =
st1,t2

st1st2
=

∑n−λ
i=1 (xi − x)(xi+λ− x)√∑n−λ

i=1 (xi − x)
2
∑n−λ
i=1 (xi+λ− x)

2
(1)

To improve the autocorrelation of the disaggregated time
series, several methods are introduced. A flowchart of the
methods is presented in Fig. 2. The method chapter is divided
into three subsections, which will be briefly described. Sec-
tion 3.1 includes the model description of the cascade model
and two modifications to improve the representation of the
autocorrelation in the disaggregated time series. These three
cascade model variants are compared at the end of Sect. 3.1.
In Sect. 3.2 a resampling algorithm to increase autocorre-
lation as a post-processing strategy after the disaggregation
process is explained. The evaluation strategy for the disag-
gregated time series based on rainfall characteristics is ex-
plained in Sect. 3.3.

3.1 Disaggregation model

3.1.1 General scheme (method A)

The principle of the micro-canonical, bounded cascade
model applied in this study is illustrated for the first two
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Figure 2. Overview of applied methods (dashed rectangles) and the resulting data sets (bottom line). In the brackets behind the applied
methods the subsection with the method description is referenced. Std refers to “standard” (no modification of the disaggregated time series),
MMD is the “mimicry of the measurement device” to avoid too small rainfall intensities, and res refers to “resampled” time series.

Figure 3. Scheme for position definition in non-preceding (a) and
preceding (b) cascade models. The dashed boxes indicate the time
steps taken into account for position definition of the time stepZ2,1.

disaggregation steps in Fig. 3 (top) and was introduced by
Müller and Haberlandt (2018). A coarse time step is disag-
gregated into b finer time steps, with b named the branching
number.

Starting with daily values, b = 3 is applied and three time
steps with 8 h duration are generated (similar to Lisniak et
al., 2013). The choice of b = 3 in the first disaggregation
step has no physical reason and is only applied to achieve
with b = 2 in the subsequent disaggregation steps a final
temporal resolution of 5 min (see Sect. 1). The daily rain-
fall amount can occur in only one (0/0/1 splitting), in two
(0/ 1

2/
1
2 ) or in all three of the finer time steps, whereby the

rainfall amount is distributed uniformly on the wet time steps
(as can be seen from the numbers in brackets that identify
the fractions of the daily rainfall amount). The required pa-
rameters for this splitting are the probabilities P for one
(P(0/0/1)), two (P (0/ 1

2/
1
2 )) and three (P ( 1

3/
1
3/

1
3 )) wet 8 h

intervals in a day. The parameters P(0/0/1) and P(0/ 1
2/

1
2 )

have no influence on the position of the wet boxes, only on
the number. The position is assigned randomly. The prob-
ability of P( 1

3/
1
3/

1
3 ) can be determined by P( 1

3/
1
3/

1
3 )=

1−P(0/0/1)−P(0/ 1
2/

1
2 ). The possible splittings and the

distribution of the daily rainfall amount on the finer time
steps are summarised in the cascade generator for b = 3 (see
Eq. 2). By multiplying the rainfall volume V of the coarser
time step by the so-called multiplicative weightsW1,W2 and
W3, the rainfall amounts of the finer time steps are derived.
The sum of the weights is equal to 1 in each split, so the
rainfall amount is conserved exactly throughout the disag-
gregation process.

W1,W2,W3

=


{1,0,0;0,1,0 or 0,0,1} with P(0/0/1){

1
2 ,

1
2 ,0;

1
2 ,0,

1
2 or 0, 1

2 ,
1
2

}
with P(0/ 1

2/
1
2 )

1
3 ,

1
3 ,

1
3 with P( 1

3/
1
3/

1
3 )

(2)

Also, a volume dependency of the parameter was identi-
fied for b = 3. Müller and Haberlandt (2015) have shown
that for days with high rainfall amounts (above an empir-
ical quantile q0.998) the probability of two and especially
three wet 8 h time steps is much higher than for lower daily
rainfall amounts. Without a consideration of this volume de-
pendency of the parameters, the probability is too high that
high daily rainfall amounts are put into one 8 h time step,
which will lead to an overestimation of extreme rainfall val-
ues. Hence, parameters are estimated for a lower and an up-
per volume class, with the quantile q0.998 of all daily total
rainfall amounts as the threshold (see Müller and Haberlandt,
2015, for more details).

After the first disaggregation step, only b = 2 is applied.
The generated intermediate time series have temporal reso-
lutions of 1t = {4 h, 2 h, 1 h, 30 min, 15 min, 7.5 min}. The
rainfall amount of the coarser time step can be assigned ei-
ther to the first (1/0 splitting) or to the second (0/1) finer
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time step only or to both finer time steps (x/(1− x)). Again,
all probabilities (P(0/1), P(1/0) and P(x/(1− x))) sum up
to 1. For the x/(1− x) splitting, the relative fraction of the
rainfall volume that is assigned to the first of the two finer
time steps is considered a random variable x with 0<x<1.
An empirical distribution function is used to represent f (x),
with a maximum of 14 equidistant bins (based on the number
of available splittings; see Storm, 1988, p. 86). The cascade
generator for b = 2 is given in Eq. (3):

W1,W2 =


0 and 1 with P(0/1)
1 and 0 with P(1/0)
x and 1 − x with P(x/(1− x));

0< x < 1.

(3)

The parameters for the splitting with b = 2 depend on both
the position and the volume class of the current time step to
disaggregate in the time series (see e.g. Olsson, 1998; Günt-
ner et al., 2001). The position of a time step is defined by
the wetness state of the surrounding time steps, so starting
(time step before is dry, time step afterwards is wet, dry–
wet–wet), enclosed, ending and isolated positions can be dis-
tinguished (see Fig. 4 for an illustration). For each position
two volume classes are defined, whereby the lower and upper
volume classes are separated by the mean rainfall volume of
each position.

All parameters for b = 2 and b = 3 splittings can be es-
timated by aggregating observed time series with the same
temporal resolution (Carsteanu and Foufoula-Georgiou,
1996). As mentioned before, a bounded cascade model is ap-
plied (Marshak et al., 1994). In bounded cascade models the
weights W depend on the temporal resolution to allow the
disaggregation process to become smoother with finer reso-
lutions (e.g. Menabde et al., 1997; Lombardo et al., 2012).
The need for particular parameter sets for each temporal res-
olution arises from the wide temporal range (from daily to
5 min time steps) and hence the underlying processes, which
differ between the temporal scales.

To summarise the previous explanation regarding param-
eter estimation: for each temporal scale two fine time steps
are aggregated (or three finer time steps for b = 3, respec-
tively) to one coarser time step, whereby the position and the
volume class of the coarser time step determines to which
position–volume class combination the current splitting be-
longs. The cascade model parameters are then estimated over
all splittings of a position–volume class combination, so all
parameters and distribution functions included in the disag-
gregation process are estimated empirically.

A final temporal resolution of 5 min is achieved via uni-
form transformation (Müller and Haberlandt, 2018). The
rainfall amounts of time steps with 1t = 7.5 min are dis-
tributed uniformly on 2.5 min time steps and afterwards ag-
gregated non-overlapping to 1t = 5 min.

As mentioned in Sect. 1, the cascade model tends to gener-
ate too many time steps with too low intensities. To overcome
the issue, rainfall amounts smaller than the minimum resolu-

Figure 4. Comparison of position classes definition for methods
A, B and C. For method A, no position classes differentiation is
applied for b = 3. The dashed boxes indicate the time steps, which
are analysed regarding their wetness state for the definition of the
position class. Blue boxes indicate a wet time step, white boxes a
dry time step.

tion of the measurement device are summated in the chrono-
logical order of the time steps until the sum Sthr exceeds this
threshold. The former wet time steps with smaller intensities
are set to 0 mm, while Sthr is moved to the last time step of
the summation. Afterwards, Sthr is set back to 0 mm. This
process is carried out over the whole disaggregated time se-
ries and is referred to as “mimicry of a measurement device”
(MMD). If applied, Sthr is set to 0.01 mm in this study, which
is identical to the minimum resolution of the measuring de-
vices of the observed time series.

3.2 Introduction of position dependency in the uniform
splitting (method B)

For method B, only the first disaggregation step (uniform
splitting) is modified from method A in terms of the intro-
duction of a position dependency. All further disaggregation
steps remain identical to method A and are not changed.

For the disaggregation of daily values into 8 h, the cas-
cade model is applied with a branching number of b = 3. Al-
though the number of wet 8 h intervals depends on estimated
probabilities, their position is chosen randomly in method A.
This is assumed to cause deviations of the autocorrelation.
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Therefore, in addition to the volume classes, the position
of the daily time step in the time series is also taken into
account for the parameter estimation in method B. The same
positions are applied for the further disaggregation steps with
b = 2 (starting, enclosed, ending and isolated positions; see
also Fig. 4). For each position, the probability of possible
placements of wet and dry 8 h intervals is estimated. The
daily rainfall amount is split uniformly between the wet 8 h
intervals. Based on the possible placements, the resulting
cascade generator for the first disaggregation step is shown
in Eq. (4) and substitutes for Eq. (2).

W1,W2,W3 =



1,0 and 0 with P(1/0/0)
0,1 and 0 with P(0/1/0)
0,0 and 1 with P(0/0/1)
1
2 ,

1
2 and 0 with P( 1

2/
1
2/0)

1
2 ,0 and 1

2 with P( 1
2/0/

1
2 )

0, 1
2 and 1

2 withP(0/ 1
2/

1
2 )

1
3 ,

1
3 and 1

3 with P( 1
3/

1
3/

1
3 )

(4)

3.3 Introduction of a preceding cascade model (method
C)

In the modification called the preceding cascade model, the
position dependency for the whole disaggregation process is
extended. Hence, the modifications for method C affect all
disaggregation steps. Since only method C is referred to as
a preceding cascade model, methods A and B can be con-
sidered non-preceding cascade models. Besides the modi-
fied position classes’ definition, the disaggregation process
remains identical to method A.

An example of the position-dependency extension is illus-
trated in Fig. 3 (bottom) and will be used for explanation.
The indices f and g of each time step Zf,g represent an in-
dex for each time step (f = 1, 2, . . . , nwith n= length of the
time series) and each disaggregation level (g = 1, 2, . . . , 7),
respectively.

For a time step Z (Z2,1) the wetness state of the time steps
before (Z1,1) and afterwards (Z3,1) of the same disaggrega-
tion level are taken into account for the identification of the
position so far (so-called “non-preceding” in Fig. 3). Hence,
the type of splitting (1/0, 0/1 or x/(1− x)) is chosen inde-
pendently from the wetness state of two already disaggre-
gated time steps (Z1,2 and Z2,2) in the next disaggregation
level. For the position definition in the preceding cascade
model, the information about the wetness state of the two
finer, already disaggregated time steps (Z1,2 and Z2,2) and
the following, coarse time step (Z3,1) is taken into account
(according to Lombardo et al., 2012, 2017).

Due to the new definition, the number of positions is ex-
tended from four in the non-preceding cascade model po-
sitions (starting, ending, enclosed, isolated) to eight in the
preceding cascade model (see also Fig. 4): one starting ({0,
0}, 1,1 with 0= dry and 1=wet and { } indicating the wet-
ness state of the preceding, already disaggregated time steps),

Table 2. Comparison of model parameters for methods A, B, and C
in dependence of the applied branching number.

Method

A B C

b = 3 Basic parameters 3 7 7
Position classes – 4 16
Volume classes 2 2 2
Parameters per disaggregation 6 56 224
step

b = 2 Basic parameters 4 4 4
Position classes 4 4 8
Volume classes 2 2 2
Parameters per disaggregation 32 32 64
step

three enclosed ({0, 1}, 1, 1; {1, 0}, 1, 1 and {1, 1}, 1, 1),
three ending {0, 1}, 1, 0; {1, 0}, 1, 0 and {1, 1}, 1, 0) and
one isolated position ({0, 0}, 1, 0) for b = 2.

3.4 Comparison of cascade model variants

Due to the new introduced position definitions a compara-
tive overview of the different position classes (Fig. 4) and
the resulting number of cascade model parameters (Table 2)
is provided. For the sake of comparability, the empirical dis-
tribution function used for the x/(1− x) splitting for b = 2
is considered simplified as an additional parameter, since the
complexity of the disaggregation method is higher with f (x)
than without. Nevertheless, it remains an empirical distribu-
tion function and is not a single parameter value.

From Table 2 it is visible that the introduction of a po-
sition dependency for b = 3 for cascade model B and the
refinement of the position definition for cascade model C
leads to an increase in cascade model parameters. Especially
for method C the number of possible distributions of rain-
fall amounts in the already disaggregated time step before
the current time step to disaggregate (see Fig. 4) leads to a
strong increase in model parameters. Since all model param-
eters are estimated directly from observations, no parameter
calibration is required and there is no problem with equifi-
nality.

However, especially for the b = 3 splitting for the upper
volume class in method C, the number of parameters is crit-
ical. Since only days with rainfall amounts higher than the
q0.998 quantile are taken into account, only a few days ex-
ist for the parameter estimation if the observed time series
for parameter estimation is not long enough. This will lead
to probabilities with P = 0 for several splittings. While for
some splittings P = 0 seems reasonable from a physical in-
terpretation (e.g. P(1/2/0/1/2)= 0 is reasonable, since the
highest daily rainfall amounts have no dry spell in between
with a minimum of 8 h in the observed data set), for other
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probabilities this can result from the too small population for
parameter estimation. To ensure the applicability of method
C in practice, a cross-validation is carried out (see Supple-
ment).

3.5 Resampling algorithm

A different way to increase the autocorrelation is a post-
processing resampling of the disaggregated time series, in-
dependent of the method used for disaggregation. In a re-
sampling process, two elements (here: relative diurnal cycles
of the disaggregated time series) are swapped to improve an
objective function (here: minimising the deviation of the au-
tocorrelation function of the disaggregated time series from
the observed time series). In a relative diurnal cycle, the di-
urnal cycle with absolute rainfall amounts per time step is
transformed by dividing the single rainfall amounts by the
total rainfall amount of that day. With the simulated anneal-
ing algorithm as a resampling method it is possible to find the
global optimum of an objective function. Simulated anneal-
ing has been used before for the optimisation of the autocor-
relation of rainfall time series by Bárdossy (1998). However,
these time series were simulated by a different rainfall gener-
ator. The resampling algorithm is applied with the following
restrictions.

a. The structure of position and volume classes in the dis-
aggregated time series generated by the cascade model
should be conserved.

b. The daily rainfall amount should be conserved exactly.

For (a) the restriction is fulfilled by allowing only swaps of
time series elements among subsets of the same position and
volume class. Restriction (b) is fulfilled by swapping only
relative diurnal cycles as time series elements, which does
not affect the daily rainfall amount.

The objective function of the simulated annealing algo-
rithm applied in this study is

Oauto =
∑NoLags

i=1
(r(i)− r(i)∗)2. (5)

The quantities indicated by ∗ are the prescribed values for
each lag from observed time series for each station, the other
quantities are the current values. NoLags represents the num-
ber of lags analysed for the representation of the autocorrela-
tion function. The number and selection of lags was carried
out in a sensitivity analysis before by Föt (2015), resulting
in 72 lags, whereby every second lag from lag 1 (5 min) to
lag 144 (12 h) is taken into account (lag 1, lag 3, . . . , lag
143). After 12 h, the values of the autocorrelation of the ob-
served time series show an asymptotic behaviour indicating
a very low process memory. As proven by Müller and Haber-
landt (2018), the resampling does not affect the scaling be-
haviour of the disaggregated time series (see Sect. 3.4), be-
cause the total rainfall amount as well as the number of wet
time steps are kept.

Figure 5. Scheme for extreme rainfall event definition.

In a prior study the effect of the resampling algorithm
on the extreme rainfall values was analysed (Legler, 2017).
Without taking the extreme values into account explicitly in
the objective function, the resampling leads to a decrease in
the extreme rainfall values over all scales. Since the extreme
rainfall values are represented well after the disaggregation
(Fig. 10), they would be underestimated after the resampling.
Since the occurrence date and the magnitude of the extreme
rainfall values differ among the investigated durations, for
their identification an event-independent, general scheme has
to be applied in order to take them into account in the objec-
tive function. The applied scheme is illustrated in Fig. 5. A
threshold intensity Itr is chosen for the whole time series,
whereby the first and last time steps of each day exceeding
Itr determine the event and its durationDevent. During the re-
sampling, swaps are only allowed if the following restrictions
R are fulfilled.

RI The total rainfall amount of the extreme event must not
decrease.

R II The number of dry time steps inside the extreme event
must not decrease.

If Itr is chosen too high, extreme rainfall events of higher
durations and most often lower intensities are not considered.
If Itr is chosen too low, too many rainfall events are consid-
ered extreme events, which leads to a rejection of too many
swaps during the resampling and hence only minor improve-
ments of the autocorrelation function.

Hence, the choice of an appropriate Itr is essential for a
successful resampling. Since it shall be possible to estimate
Itr a priori without a calibration of this parameter, a trans-
ferable method was required. Müller and Haberlandt (2018)
identified the existence of dry time steps inside extreme
events of the disaggregated rainfall time series, while the
observed extreme events consisted only of wet time steps.
Since an event-based simulation of extreme rainfall events
withD = 30 min in an urban hydrological model led to satis-
fying results regarding flooding volume and combined sewer
overflow volume in Müller and Haberlandt (2018), for the
identification rainfall extreme events with D = 60 min are
considered in this study. For the observed time series of all
stations, the average intensity of the extreme rainfall event
with D = 60 min and the empirical return period closest to
Tn = 1.5 years was calculated. It is assumed that the re-
sults regarding underestimation or overestimation for the re-
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turn period Tn = 1.5 years are representative of typical re-
turn periods for dimensioning purposes in urban hydrology
(Tn = {1, 2, 5, 10 years}, DWA-A 531, 2012). The resulting
average intensity Itr = 1.0 mm/5 min of the aforementioned
extreme rainfall events is applied throughout the resampling
and represents the 0.99 quantile for 25 % of all stations (rang-
ing from ∼ 0.987 to ∼ 0.994 between all stations). Similar
thresholds have been applied before in the literature for track-
ing of convective cells in radar images (Itr>0.7 mm, Handw-
erker, 2002).

Since the number of diurnal cycles is limited in the dis-
aggregated time series, the degree of improvement is limited
as well, which can be a serious problem if only short daily
rainfall time series are available. A possible solution is to en-
able the swapping of relative diurnal cycles between differ-
ent realisations of disaggregated time series to increase the
number of possible swap elements by additional realisations.
Here the time series length was found to be sufficient and the
resampling was carried out for each realisation separately.

The simulated annealing is carried out singular for each
station as follows.

1. For each wet day the relative diurnal cycles are con-
structed. Subsets y for each applied position–volume
class combination are created with y = 1, . . .,S.

2. A subset y is identified randomly. The probability of
being identified is based on the number of elements m
in the subset:

Py,i=
mi∑S
i=1mi

. (6)

3. Two days are drawn randomly from the identified sub-
set, their diurnal cycles are swapped. If RI and R II are
not fulfilled, the swap is retracted and the algorithm pro-
ceeds with step 2.

4. Oauto (Eq. 5) is updated.

5. The updated value Oauto,new is compared with the for-
mer value Oauto,old. If Oauto,new<Oauto,old, the objec-
tive function value has improved and the swap is ac-
cepted.

6. If Oauto,new ≥Oauto,old, the swap is accepted with the
probability π :

π = exp
(
Oauto,old−Oauto,new

Ta

)
, (7)

where Ta is the annealing temperature that controls the
acceptance of bad swaps. Local optima can be left by
the acceptance of bad swaps and the global optimum
can be found. The decrease in the annealing tempera-
ture during the resampling (see step 8) leads to a lower
probability of accepting non-improving swaps, enabling
the identification of the global optimum.

7. Steps 2–6 are repeated K times.

8. Reduction of the annealing temperature:

Ta = Ta× dt with 0< dt < 1. (8)

9. After reducing the temperature, the algorithm proceeds
to step 2.

10. Steps 7 and 8 are repeated until the algorithm converges,
expressed byM swaps which do not lead to an improve-
ment of Oauto higher than a certain threshold thrOauto .

The following setup was chosen for the resampling: Ta,start =

1× 10−4, dt = 0.99, K = 500, M = 200 and thrOauto = 1×
10−9.

The different variants of the cascade model can be com-
bined with the resampling approach for the improvement
of the autocorrelation. A summary of the combinations and
their abbreviations used throughout the paper are presented
in Fig. 2.

3.6 Validation of the results

For the evaluation of the disaggregation process, the disag-
gregated rainfall time series are analysed regarding their scal-
ing moments, different event-based and continuous rainfall
characteristics and their extreme values. Since the cascade
model is based on the scaling theory, it is proven if the disag-
gregated time series show the same scaling behaviour as the
observations. Scaling behaviour is analysed with the relation

Mq = λ
K(q) (9)

with momentsM , moments order q, the moments scaling ex-
ponent K(q) and the scale ratio λ. The scale ratio represents
a dimensionless ratio of two temporal resolutions of one time
series. Dry time steps are neglected as well as time steps
with rainfall intensities < 0.1 mm to reduce the impact of too
small rainfall intensities and the transformation applied af-
ter the disaggregation to reach a final temporal resolution of
5 min. It is common to analyse the scaling behaviour with
log–log plots of Mq and λ (Over and Gupta, 1994; Svens-
son et al., 1996; Burlando and Rosso, 1996; Serinaldi, 2010;
Müller and Haberlandt, 2018). Moments are estimated as
probability-weighted moments (Yu et al., 2014; Ding et al.,
2015) due to their robustness against large rainfall intensities
(Kumar et al., 1994; Hosking and Wallis, 1997). According
to Kumar et al. (2014) and Lombardo et al. (2014) only the
first three moments 1≤ q ≤ 3 are analysed.

For an event-based evaluation, first the rainfall events are
identified and then the characteristics of these events are
determined. Event-based rainfall characteristics include wet
and dry spell duration as well as wet spell amount.
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For a continuous-based evaluation, the whole time series
is considered, without differentiation into single events. As
continuous time series characteristics, the average intensity,
the fraction of dry intervals and the autocorrelation are anal-
ysed.

For the extreme rainfall event analyses, the event defini-
tion differs to ensure the independence of the extreme events.
The definition depends on the extreme event duration under
investigation. For extreme event durations shorter than 4 h,
a minimum of 4 dry hours before and after the event ensure
the independence of the event (Schilling, 1984). For longer
extreme event durations, the same duration as under investi-
gation has to be dry before and after the event. To increase
the population of extreme events, partial duration series are
extracted from the time series instead of annual maxima. Par-
tial duration series are similar to the peak-over-threshold ap-
proach, whereby the threshold is defined in order to select
three extreme rainfall events on average per year. Since the
lengths of the time series of the analysed stations differ, theo-
retical distribution functions are fitted to enable comparisons
for the same return periods among the stations. Following the
DWA-A 531 (2012), which is a technical standard in Ger-
many, an exponential distribution is fitted to the median of
the realisations for each station.

To enable comparisons of rainfall characteristics at the
same location, observed 5 min time series (Obs) are aggre-
gated to daily values and then disaggregated back to 5 min
time series (Dis). A split-sampling into calibration and vali-
dation periods was not carried out to keep the time series as
long as possible for the parameter estimation (see also the
discussion in Sect. 3.1.4).

The disaggregation is a random process. Depending on the
choice of the random number generator initialisation differ-
ent realisations are generated. This uncertainty is taken into
account by performing 30 realisations for each station. By
30 realisations the random behaviour of the disaggregation
process is fairly well covered. The mean and the range of
the event-based and continuous rainfall characteristics were
plotted against the number of realisations used for their es-
timation, and an asymptotic behaviour was identified with
increasing numbers of realisations after 30 realisations.

For the validation the relative error rE and relative absolute
error rAE are calculated to quantify the direction and amount
of the deviation of the rainfall characteristic RC with i as a
control variable of all realisations n:

rE=
1
n
×

∑n

i=1

RCDis,i −RCObs,i

RCObs,i
, (10)

rAE=
1
n
×

∑n

i=1

|RCDis,i −RCObs,i |

RCObs,i
. (11)

4 Results

4.1 Modifications to the cascade model

For an improved representation of the autocorrelation func-
tion, two modifications of the multiplicative cascade models
following Müller and Haberlandt (2018) have been analysed,
namely method B and method C. The resulting probabilities
are shown for the uniform splitting in Table 3 (columns with
position-dependent entries) in comparison to the position-
independent probabilities estimated for method A (first prob-
ability column). For starting positions, splittings with wet 8 h
intervals at the end of a day have the highest probabilities (for
both one and two wet intervals). For ending positions, a vice
versa relationship can be identified, with the highest proba-
bilities of wet 8 h intervals at the beginning of a day. For en-
closed positions, probabilities of a wet 8 h interval at the be-
ginning or ending of the day, so with a temporal connection
to another wet day, are higher if one interval is wet. All of
these findings are similar to the findings from Olsson (1998)
and Güntner et al. (2001) for a splitting with b = 2. Also,
independent of the position, it can be identified that proba-
bilities for two connected wet intervals (1–1–0 and 0–1–1)
are higher than the combination with an enclosed dry time
step (1–0–1). The probability that three intervals are wet is
highest for an enclosed position and lowest for an isolated
position.

The scaling behaviour of observed and disaggregated time
series is shown in Fig. 6 for station Cuxhaven. The results
are similar among the stations and the analysed moments.
The disaggregated time series show an identical scaling be-
haviour down to a temporal resolution of 120 min. For finer
resolutions slight overestimations occur for methods A and B
and even slighter for method C. These deviations are presum-
ably caused by fragments of the linear transformation applied
after the disaggregation to achieve a final temporal resolution
of 5 min. Overall, with a mean deviation of all three methods
A–C from the observations of 0.08 for q = 1 and a tempo-
ral resolution of 5 min, the scaling behaviour is represented
well.

The rainfall characteristics of the disaggregated time series
are shown in Fig. 7 in comparison to observations. A quan-
titative analysis of the deviations is provided in Table 4 with
relative rE and absolute errors rAE (see Eqs. 10 and 11) for
the mean values of rainfall characteristics. Method A repre-
sents the original model proposed by Müller and Haberlandt
(2018) and will be referred to as reference for the evaluation.
Since the MMD approach is investigated for the first time, its
influence on the rainfall characteristics of the disaggregated
time series is analysed. If the too small rainfall intensities
lower than the instrumental resolution of the measurement
device are kept after the disaggregation (hence, MMD is not
applied), the results are referred to as “A/B/C-standard”. If
the too small rainfall intensities are eliminated by the MMD
approach, the results are referred to as “A/B/C-MMD”.
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Table 3. Position-dependent and position-independent probabilities for one, two and three wet 8 h intervals in the uniform splitting (mean of
all 24 stations for the lower volume class, all values in percent – %). The combination of “1” (wet) and “0” (dry) illustrates the order of wet
and dry 8 h intervals in a day.

Number of wet Position-
intervals independent Position-dependent

starting position enclosed position ending position isolated

001 010 100 6 001 010 100 6 001 010 100 6 001 010 100 6

1 40 33 9 8 50 13 6 12 31 9 10 28 47 21 19 20 60

starting position enclosed position ending position isolated

011 101 110 6 011 101 110 6 011 101 110 6 011 101 110 6

2 35 20 5 9 34 14 9 13 36 9 5 22 36 14 3 14 31

starting position enclosed position ending position isolated

111 111 111 111

3 25 17 33 16 9

Figure 6. Scaling behaviour of observed and disaggregated time se-
ries for station Cuxhaven for q = 1. Each value represents the mean
of 30 realisations.

While for method A-standard a slight overestimation for
the average intensity is identified (rE= 11 %), for wet spell
duration (−3 %) and amount (8 %), dry spell duration (8 %),
fraction of dry intervals (1 %) and lag-1 autocorrelation
(−4 %) a good representation is achieved.

With the introduction of a position dependence in the dis-
aggregation step from daily values to 8 h values in method
B-standard an improvement of all rainfall characteristics can
be achieved. The improvements of the wet and dry spell du-
rations are direct consequences of the better representation of
the wetness state of 8 h intervals as is indicated by the param-
eter values in Table 3. For the average intensity with rE= 3 %
a major improvement from an overestimation of rE= 11 %
(A-standard) is identified.

For method C-standard, a worsening of the majority of
rainfall characteristics is identified. Wet spell duration is
overestimated with rE= 399 %. This is caused by the high

probability of x/(1− x) splitting for enclosed boxes in the
preceding cascade model, which decreases the probability of
splitting one event into two events by the generation of dry
time steps. This leads to a high number of wet time steps (un-
derestimation of fraction of dry time steps rE=−15 %) and
consequently to an underestimation of average rainfall inten-
sities (rE=−71 %) due to the exact mass conservation of the
cascade model.

Too small intensities can be avoided by the MMD ap-
proach. For methods A and B, the exclusion of small rain-
fall intensities leads to a worsening of rainfall characteris-
tics (Fig. 8, Table 4). This indicates that the aforementioned
good representation of rainfall characteristics by method A-
standard and B-standard is biased by wet time steps with
rainfall amounts lower than the observed minimums (de-
pending on the instrumental resolution of the measurement
device). Since time steps with these rainfall intensities are
negligible from a hydrological point of view, the line of
MMD in Fig. 7 provide a more useful insight into the dis-
aggregated data.

The overestimation of the average rainfall intensity by
methods A and B increased to rEMMD = 40 % and 32 %, re-
spectively, while the underestimation by method C is reduced
to rEMMD =−35 %. An improvement for wet spell duration
is also identified (rEMMD =−16 %). Although the fraction of
dry intervals improved with MMD (rE=−3 %), a worsening
of the dry spell duration is identified (rEMMD =−47 %), in-
dicating a higher fraction of short dry spells inside former
events on a coarser timescale.

Methods A and B result in similar values for wet spell du-
rations to method C for MMD. For wet spell amount and
duration, average intensity, dry spell duration and fraction of
dry intervals a decrease in performance is identified by MMD
in comparison to the standard approach.
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Figure 7. Rainfall characteristics of observed and disaggregated time series as x-y plots for all 24 stations (WSD=wet spell duration,
ACF= autocorrelation function; note the different scales for wet spell duration).

Figure 8. Autocorrelation of observed and disaggregated time se-
ries using the standard approach for each method with no modifi-
cation regarding too small rainfall intensities. The range for each
method results from 30 realisations, and the solid line represents
the median.

Since the focus of this study is the improvement of the au-
tocorrelation, the impact of MMD on methods A, B and C is
investigated as well. From a visual inspection of the lag-1 au-
tocorrelation in Fig. 7, a systematic underestimation as men-
tioned in Sect. 1 is not visible, since for some stations even
overestimations occur. However, a comparison between ob-
servations and disaggregated time series resulting from dif-
ferent methods until lag 144 (representing a time shift of
720 min= 12 h) shows differences and a clear underestima-
tion by the disaggregation for station Braunlage (Fig. 8). For
other stations the relationship is similar, although for some
the differences between methods A and B are smaller. In
Fig. 9 the relative error between the median of the autocorre-
lation function of all 30 realisations for each method and the
observed time series is shown for all stations regarding lags
1 (5 min), 6 (30 min) and 36 (180 min). Independently of the
applied methods, the deviation is increasing from lag 1 to
lag 6, while for lag 36 the deviation has decreased. Also, the
range of deviations is decreasing for an increasing number
of lags. This is visually confirmed by the results for station
Braunlage (Fig. 8), where the autocorrelation of the disaggre-
gated time series decreases strongly with the first lags, while
it decreases much more smoothly for the observed time se-
ries. The choice of the disaggregation method (methods A,
B or C) has a higher impact on the resulting autocorrelation
than the choice of treatment of the too small rainfall inten-
sities (Standard or MMD). In fact, the MMD approach has
only a slight effect on the autocorrelation function values.
The smallest deviations of the autocorrelation function are
achieved with method C, independently of the treatment of
the too small rainfall intensities.
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Figure 9. Deviations of autocorrelation from disaggregated to observed time series as relative error for lags 1, 6 and 36. The red dashed line
indicates a rE= 0 (Std is used as abbreviation for Standard).

The results of the extreme rainfall value analysis are il-
lustrated in Fig. 10 for two durations D (5 min and 1 h) and
two return periods T (1 and 5 years). For the extreme events,
only methods A, B and C are differentiated between. The
modifications regarding the minimum rainfall intensity are
not taken into account since they do not affect the rainfall
extreme events.

For a return period of 1 year extreme rainfall values are
slightly overestimated by less than rE= 10 % for the half of
all stations and less than approximately rE= 20 % for 75 %
of all stations for both analysed durations, independent of the
applied modification of the cascade model. For 5 years, the
range of results is increasing, leading to a worse represen-
tation in comparison to 1 year. While for a temporal dura-
tion of D = 5 min a slight overestimation of approximately
rE= 10 % for half of all stations can still be identified, for
1 h an underestimation of rE= 50 % is identified for half of
all stations. However, increasing deviations with increasing
return periods can be expected, since for a few of the time se-
ries with lengths of only 9 years the return period is limited to
T = 3 years (1/3 of time series length) to ensure plausibility
from a hydrological point of view.

Nevertheless, it should be noted that over all return periods
and durations, method C led to the smallest range of relative
errors over all stations in combination with the best fit to the
distribution of the observed extreme rainfall values. The cas-
cade model parameter transferability in space was confirmed
by a cross-validation for method C (see Supplement).

4.2 Resampling results

For the resampling, only disaggregated time series modified
by the MMD approach are used due to their slightly better
representation of the autocorrelation. The autocorrelations of
the disaggregated time series before and after the resampling

are shown in Fig. 11 for lag 1, lag 6 and lag 36. A general
increase in the autocorrelation along with smaller deviations
for the median of all stations compared to before the resam-
pling can be identified for all three methods A, B and C. Only
for the lag-1 autocorrelation of the rainfall time series disag-
gregated with method C does the resampling lead to a wors-
ening regarding the median value. However, the range of the
lag-1 autocorrelation results is reduced, indicating that the
underestimations and overestimations were reduced by the
resampling approach.

As mentioned before, the improvement of the autocorre-
lation depends on the chosen threshold for extreme rainfall
value definition, Itr. An increase in Itr leads to a decrease in
the number of rejected swaps during the resampling, since
fewer time steps are involved in the extreme value analy-
sis. An unrealistically high value of Itr (identical to leaving
out both restrictions RI and R II regarding extreme rain-
fall values) leads to almost perfect fits for lag 1 and lag 36
(|rE|< 1 % for the majority of the stations), and for lag 6 de-
viations of up to |rE|< 3.5 % occur (not shown here). How-
ever, the extreme rainfall values are underestimated strongly
if Itr is chosen too high.

Hence, both restrictions RI and R II are applied during
the resampling by the choice of Itr =1 mm. In Fig. 12, the
extreme rainfall event series for station Osnabrück is shown
for D = 5 min. Although the extreme event series changed
slightly after the resampling, the overall extreme series char-
acteristics regarding range, underestimation and overestima-
tion in comparison to the observations remain the same for
all return periods.

For extreme rainfall events with longer durations (D =
{15 min, 1 h, 2 h}) the impact of the resampling is quanti-
fied in Table 5. The impact of the resampling depends on
the analysed duration of the extreme rainfall events. While
for D =15 min the median of rE has decreased after the re-
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Figure 10. Mean relative errors of extreme values of the disaggregated time series for all stations (the dashed line represents an error of 0).
Results are shown for durations of 5 min (a, c) and 1 h (b, d) and for return periods of 1 year (a, b) and 5 years (c, d).

Figure 11. Deviations of autocorrelation from disaggregated to observed time series before and after the resampling as relative error for lags
1, 6 and 36. All results are based on the MMD approach. The red dashed line indicates a rE= 0, results for the resampled time series are
labelled with “res”.

sampling with smaller |rE| for the smaller return periods
(Tn = {1, 2 years}) and higher |rE| for Tn = 10 years, for
D = 2 h the median of rE has increased after the resampling
with higher |rE| for the smaller return periods and smaller
|rE| for Tn = 10 years.

Since these findings are independent from the disaggre-
gation method, the differences are caused only by the re-
sampling. Extreme rainfall events with D = 15 min repre-

sent convective events with only a few wet time steps pre-
ceding and succeeded by dry time steps. Due to the short
event duration, the possibility of dry time steps in between
is small and RI is the active restriction, which requires the
total rainfall amount not to decrease, resulting in an increase.
Extreme rainfall events with D = 2 h originate from long-
lasting, stratiform events with a high fraction of wet time
steps in the current day. Since this fraction of wet time steps
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Figure 12. Extreme rainfall values for D = 5 min for station Osnabrück based on 30 disaggregation realisations with method B before (a)
and after (b) the resampling.

can also be found in the disaggregated time series, the rainfall
amount will be distributed on more wet time steps to fulfil the
active restriction R II to increase the autocorrelation.

However, the majority of rE values presented in Table 5 is
smaller than 10 %, which indicates a good representation of
the extreme rainfall events in the disaggregated time series
in general, independent of the application of the resampling
algorithm.

5 Discussion

5.1 Impact of the cascade model modifications

The two new introduced micro-canonical cascade model
variants methods B and C differ regarding their way of how
the disaggregation process depends on a position of a wet
time step in a rainfall time series and how it is defined. Both
the position dependency in the first disaggregation step with
b = 3 for method B and the position definition following
Lombardo et al. (2012, 2017) for method C are based on
additional parameters of the disaggregation model (see Ta-
ble 2). However, all new parameters are process-based and
physically interpretable, since they describe the rainfall de-
pendency of past time steps. Hence, an improvement of the
autocorrelation, which describes the process memory, was
expected. While method B differs from method A only in
the first disaggregation step, a smaller improvement of the
autocorrelation can be identified, while method C differs in
every disaggregation step, and thus a higher improvement is
identified.

To reduce the increase in the number of parameters by
methods B and C, several possibilities exist. Olsson (1998),
Güntner et al. (2001) and Müller and Haberlandt (2018) iden-
tified similarities between cascade model parameters of dif-
ferent position classes which can be used for simplification.
These similarities are e.g. P(0/1) for starting and P(1/0)
for ending positions (and vice versa) as well as P(0/1)
and P(1/0) for both enclosed positions and isolated posi-
tions. Another possibility is to apply a semi-bounded cas-
cade model instead of a bounded cascade model. While in a
bounded cascade model for each step of the disaggregation
process the corresponding parameter set is used (as is done
in this study), in a semi-bounded cascade model the same pa-
rameter set could be applied over a range of disaggregation
levels as long as a mono-fractal scaling behaviour can be as-
sumed. Based on Veneziano et al. (2006), typical ranges for
mono-fractal behaviour are from daily to hourly resolution
and from hourly to 5 min resolution.

It should also be noted that the analyses of only the lag-
1 autocorrelation is not sufficient, since it provides a lim-
ited insight into the process memory. Here, for some stations
an overestimation of the lag-1 autocorrelation was identified,
but underestimations for lag-6 and lag-36. Hence, a multi-lag
analyses is recommended for further studies.

Especially for method C, the general problem of the micro-
canonical cascade model of generating time steps with too
small rainfall intensities (Molnar and Burlando, 2005; Müller
and Haberlandt, 2018) worsened. The MMD approach is in-
troduced to solve this issue. MMD simulates the behaviour of
a measurement device (minimum rainfall amount required to
cause a registration) after the disaggregation process, elim-
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inating too small rainfall intensities by summing them up
to future time steps until the minimum rainfall amount is
achieved or exceeded. The MMD approach has a smaller im-
pact on the resulting rainfall characteristics than the choice
of methods A, B or C. However, the application of MMD
leads to disaggregated time series with a slight better repre-
sentation of the autocorrelation function. Hence, for the sub-
sequent analyses only the MMD approach is considered. This
selection also has the additional advantage that the process of
the rainfall measurement itself is simulated.

5.2 Impact of the resampling

To conserve these extreme values a priori without any infor-
mation about their date of occurrence or their magnitude, a
universal definition of extreme rainfall values is introduced.
This definition and the connected restrictions for the resam-
pling can be modified in multiple ways to improve the con-
servation. For example, the applied threshold intensity Itr can
be based on a different or an additional (required) return pe-
riod or duration. Also, a definition of Itr as a quantile of all
wet time steps of a disaggregated time series instead of an
absolute value would be helpful if there is a high variation of
mean rainfall intensities among the investigated stations for
an extreme event with a certain duration and return period
(which was not the case in this study). However, the extreme
values were conserved during the resampling process. The
autocorrelation was improved for almost all lags, indepen-
dent of whether method A, B or C was applied before for the
disaggregation. Also, a higher improvement was achieved by
the resampling than by the modifications of method B or C.

5.3 Study limitations

This study is focused on the methodological development of
the micro-canonical cascade model and on the improvement
of the disaggregated time series by a resampling approach
as a post-processing strategy. Hence, the study is limited in
several aspects.

First of all, the rainfall data set, with 24 rain gauges, is
rather small. Although the study area covers different topo-
graphical region and climate classes, the resulting time se-
ries characteristics are similar and do not cover a wide range.
A generalisation of the results has to be proven for regions
which are very different from this study area. To draw general
conclusions from the point of comparative hydrology future
research should include rain gauges from different climate
regions and topologies.

Second, based on the similar rainfall characteristics and
extreme values, the introduction of the universal extreme
value definition was possible and representative for all sta-
tions in the study. If stations from different climate regions
and topologies are studied as recommended before, it has to
be proven (i) if the introduced universal extreme value defi-
nition still has the potential to conserve the extreme rainfall

Hydrol. Earth Syst. Sci., 24, 169–188, 2020 www.hydrol-earth-syst-sci.net/24/169/2020/



H. Müller-Thomy: Temporal rainfall disaggregation 185

Table 5. The median of rE of extreme rainfall events (over all stations and realisations) for different return periods and disaggregation
methods before and after the resampling.

rE (%)

D 15 min 1 h 2 h

Tn Before res. After res. Before res. After res. Before res. After res.

Method A 1 17 4 6 19 2 24
2 13 −3 −2 7 −4 12
5 10 −9 −8 −2 −7 4

10 8 −11 −10 −6 −9 0

Method B 1 13 2 4 17 0 21
2 10 −4 −3 6 −5 11
5 8 −9 −7 −2 −8 3

10 7 −11 −9 −6 −9 0

Method C 1 10 3 3 15 −1 18
2 8 −2 −4 4 −5 8
5 6 −5 −8 −3 −9 2

10 5 −7 −10 −7 −10 −1

values throughout the resampling process and (ii) if Itr has to
be redefined (see also the discussion in Sect. 5.2).

Third, as mentioned in Sect. 1, Pearson’s autocorrelation
is a measure of linear dependency. It only captures the com-
plete dependence structure between random variables if they
are jointly Gaussian. An alternative criterion would be Spear-
man’s rank correlation (capturing monotonic but not nec-
essarily linear relationships). In both cases, autocorrelation
as a function of lags is only meaningful in the context of
second-order stationary stochastic processes (or weakly sta-
tionary processes). Rainfall intensities are not normally dis-
tributed. Also, rainfall time series present a mixture of pro-
cesses due to the high intermittency of rainfall amplified by
the disaggregation process, changing between the two states
of rainfall, occurrence and non-occurrence. Still, every kind
of autocorrelation measurement can provide a measure for
the similarity of e.g. two time series. Pearson’s autocorrela-
tion coefficient is widely used for autocorrelation analyses in
hydrology. It is applied in this study to achieve a compara-
ble similarity in the disaggregated time series as is estimated
from the observations. Besides the mixture of processes and
the limitations of Pearson’s autocorrelation as a measure of
dependence, the Hurst phenomenon might also offer an addi-
tional perspective for the analysis at hand (see Koutsoyiannis,
2009, for an introduction).

Fourth, although method C is based on a finding in Lom-
bardo et al. (2012, 2017), the disaggregation method differs
from the additive cascade model in Lombardo et al. (2012,
2017). Hence, the identified problem of non-stationarity of
the disaggregation is not solved by the introduced cascade
model variants and remains an open challenge for further
studies.

Finally, the simulated annealing was implemented in
a computationally efficiently way suggested by Bár-
dossy (1998). After each swap the objective function is not
completely newly calculated, but rather updated only for the
modified elements of the time series affected by the swap.
Nevertheless, the resampling process remains very time-
demanding, depending on the chosen parameter setup. More
recently published optimisation algorithms are very promis-
ing regarding less computational times, e.g. the quantum
annealing approach (Heim et al., 2015; Crosson and Har-
row, 2016), enabling the optimisation of longer disaggre-
gated rainfall time series or more realisations in the same
time.

6 Conclusions

Three variants of the micro-canonical cascade model
(method A, reference from Müller and Haberlandt, 2018, B
and C) were assessed regarding their ability to represent the
autocorrelation in the disaggregated, 5 min rainfall time se-
ries, starting from daily totals. The methods differ regarding
the position dependency in the first disaggregation step and
the definition of a wet time step during the disaggregation
process. The following conclusions are drawn based on the
results.

1. The introduction of a position dependency in the first
disaggregation step (method B) and especially the intro-
duction of the position dependency (method C) follow-
ing Lombardo et al. (2012, 2017) lead to an improve-
ment of the autocorrelation.
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2. While method A and B lead to quite similar event-based
and continuous rainfall characteristics, the results from
method C differ significantly.

3. Method C leads to a high fraction of time steps with too
small rainfall intensities in the disaggregated time se-
ries, which can be corrected using the MMD approach.

For the following investigations, only method combinations
with MMD were analysed, since the results indicated a
slightly better representation of the autocorrelation function.

After the disaggregation process the simulated annealing
resampling algorithm was applied to improve the autocorre-
lation. The following conclusions are drawn.

4. The resampling leads to an improvement of the auto-
correlation, independent of the applied disaggregation
method or the investigated lag.

5. The improvement of the autocorrelation by the resam-
pling was higher than by the choice of the cascade
model modification.

6. The extreme rainfall values have to be considered dur-
ing the resampling, otherwise they will be underesti-
mated after the resampling process.

7. With the newly introduced universal definition the ex-
treme rainfall events can be considered without the a
priori knowledge of their occurrence and magnitude.
Hence, the extreme rainfall values are represented after
the resampling process as well as before.

The overall best representation of the autocorrelation was
achieved by method C in combination with a resampling ap-
proach as post-processing strategy. Urban hydrological sim-
ulations would provide additional information about the im-
pact of the different disaggregation methods and the resam-
pling process on simulated hydrographs and flood events, but
this is beyond the scope of this study.
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