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Abstract. Reliable estimates of daily, monthly and seasonal
soil moisture are useful in a variety of disciplines. The avail-
ability of continuous in situ soil moisture observations in
southern Africa barely exists; hence, process-based simula-
tion model outputs are a valuable source of climate informa-
tion, needed for guiding farming practices and policy inter-
ventions at various spatio-temporal scales. The aim of this
study is to evaluate soil moisture outputs from simulated and
satellite-based soil moisture products, and to compare mod-
elled soil moisture across different landscapes. The simu-
lation model consists of a global circulation model known
as the conformal-cubic atmospheric model (CCAM), cou-
pled with the CSIRO Atmosphere Biosphere Land Exchange
model (CABLE). The satellite-based soil moisture data prod-
ucts include satellite observations from the European Space
Agency (ESA) and satellite-observation-based model esti-
mates from the Global Land Evaporation Amsterdam Model
(GLEAM). The evaluation is done for both the surface (0–
10 cm) and root zone (10–100 cm) using in situ soil moisture
measurements collected from two study sites. The results in-
dicate that both the simulation- and satellite-derived models
produce outputs that are higher in magnitude range compared

to in situ soil moisture observations at the two study sites,
especially at the surface. The correlation coefficient ranges
from 0.7 to 0.8 (at the root zone) and 0.7 to 0.9 (at the sur-
face), suggesting that models mostly are in an acceptable
phase agreement at the surface than at the root zone, and this
was further confirmed by the root mean squared error and the
standard deviation values. The models mostly show a bias
towards overestimation of the observed soil moisture at both
the surface and root zone, with the CCAM-CABLE showing
the least bias. An analysis evaluating phase agreement using
the cross-wavelet analysis has shown that, despite the mod-
els’ outputs being in phase with the in situ observations, there
are time lags in some instances. An analysis of soil moisture
mutual information (MI) between CCAM-CABLE and the
GLEAM models has successfully revealed that both the sim-
ulation and model estimates have a high MI at the root zone
as opposed to the surface. The MI mostly ranges between 0.5
and 1.5 at both the surface and root zone. The MI is predom-
inantly high for low-lying relative to high-lying areas.
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1 Introduction

Accurate estimates1 of daily, monthly and seasonal soil
moisture are important in a number of fields including agri-
culture (McNally et al., 2016); water resources planning
(Decker, 2015); weather forecasting (van den Hurk et al.,
2012); and the quantification of the impacts of extreme
weather events such as droughts (Sheffield and Wood, 2008),
heat waves (Fischer et al., 2007; Lorenz et al., 2010) and
floods (Brocca et al., 2011). Soil moisture has been identi-
fied as one of the 50 essential climate variables (ECVs) by
the Global Climate Observing System (GCOS) and the Eu-
ropean Space Agency climate change initiative (ESA-CCI)
(McNally et al., 2016). Available soil moisture affects the
fluxes of heat and water at the surface and directly impacts lo-
cal and regional weather patterns (Dorigo et al., 2015; Raoult
et al., 2018; Yuan and Quiring, 2017).

Soil moisture is a key parameter to consider in the parti-
tioning of precipitation and net radiation. The temporal and
spatial variation in soil moisture is controlled by vegetation,
topography, soil properties and climate variability (Xia et al.,
2015). Root-zone soil moisture plays a vital role in the tran-
spiration process of evapotranspiration (ET), especially in
arid and semi-arid regions, where most of the water loss is ac-
counted for by transpiration during the dry period (Jovanovic
et al., 2015; Palmer et al., 2015). The dry period, which con-
stitutes months when the sites experience minimum rainfall,
occurs during the austral winter season, May to October. Re-
gions where soil moisture strongly influences the atmosphere
are at the transition between wet and dry climates. This is as-
sociated with the strong coupling between ET and soil mois-
ture, which is a characteristic of these regions (van den Hurk
et al., 2012; Lorenz et al., 2010).

The model evaluation in this study is achieved through
a qualitative and quantitative comparison of modelled and
in situ soil moisture products. Modelled and satellite-data-
derived soil moisture fields are at different temporal and spa-
tial resolutions while in site observations are mainly point-
based (Fang et al., 2016). Despite the in situ data being lim-
ited in coverage, they are very useful for the calibration and
validation of modelled and satellite-derived soil moisture es-
timates (Xia et al., 2015). Point-based in situ soil moisture
data that are used as a reference in this study consist of sur-
face and root-zone measurements. The fact that the in situ
data are point-based poses significant challenges in the un-
derstanding of spatial patterns in soil moisture (Yuan and
Quiring, 2017). Direct satellite observations, on the other
hand, are presently only available for the surface. To obtain
root-zone estimates of soil moisture, satellite-based surface
soil moisture data are used in conjunction with ground-based

1Estimate here refers to both process-based model simulation
and satellite-derived data products; thereafter, the term simulation
will be used for process-based model outputs while estimates will
be reserved for satellite-derived data.

observations and model estimates. The modelled soil mois-
ture data are largely dependent on accurate surface forcing
data (e.g. air temperature, precipitation and radiation) and
the parameterization of the land surface schemes (Xia et al.,
2015). This is done in the framework of physically based
models whose accuracy may vary depending on the response
of the models to the forcing data.

The study is inspired by the notion that an understanding
of soil moisture characteristic patterns for the study region
can be reliably obtained by looking at independent datasets
from simulation experiments, theoretical or analytical mod-
els, and in situ observations. In Africa, the evaluations of the
soil moisture data products, from these various estimation
approaches, are sparse mainly due to the lack of publicly
available in situ observations (Sinclair and Pegram, 2010).
The lack of publicly available long-term and complete in
situ soil moisture measurements in most parts of the world
leads to a reliance on global climate models (GCMs) to es-
timate the land surface states (Dirmeyer et al., 2013). The
data produced by land surface models, hydrological models
and GCMs have been widely evaluated for many continents
and regions (Albergel et al., 2012; An et al., 2016; Dorigo
et al., 2015; McNally et al., 2016; Yuan and Quiring, 2017).
The available studies include those conducted by McNally et
al. (2016) and Dorigo et al. (2015), who evaluated ESA-CCI
satellite soil moisture products over East and West Africa re-
spectively.

The aims of this study are twofold. The first is to evalu-
ate the ability of the process-based simulation and satellite-
derived soil moisture products to capture the observed vari-
ability in soil moisture at specific flux tower locations. The
second is to understand how the simulated results of soil
moisture from a coupled land–atmosphere model compare
against satellite-based estimates on broad landscape classes
that belong to homogenous elevation and soil types. The
evaluation is undertaken at two soil depths, namely surface
(SSM, i.e. 0–10 cm) and root zone (RZSM, i.e. 10–100 cm),
using long-term in situ measurements to determine whether
the respective soil moisture data products are representative
of local conditions. This is done for two study sites whose
data records are available on request from the Council for
Scientific and Industrial Research (CSIR) and FLUXNET,
namely the Skukuza and Malopeni flux tower sites located in
the Kruger National Park in South Africa. The two study sites
receive summer rainfall and the colder winter months over-
lap with the dry period. Of these two sites, only the Skukuza
site forms part of the global flux data network (FLUXNET).
Other international flux observation networks, such as the In-
ternational Soil Moisture Network (ISMN), have no affiliated
data sites in the study region.

We investigate how the CCAM-CABLE process-based
simulation, satellite-derived and GLEAM estimates compare
with the in situ observations. We look at the spatio-temporal
variations in simulated soil moisture data from a coupled
land–atmosphere model. The conformal cubic atmospheric
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model (CCAM) of the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) coupled to the CSIRO
Atmosphere Biosphere Land Exchange (CABLE) model,
three versions of the European Space Agency (ESA) satel-
lite observations (i.e. active, passive and combined), and es-
timates from three versions of the global land evaporation
Amsterdam Model (GLEAM) are evaluated. The central idea
is to understand how the spatial patterns compare between
process-based and satellite-based models at a regional level,
with a focus on grid points that belong to specific landscape
classes. This is done for landscapes where the availability
of in situ observations over space and time presents a ma-
jor challenge for climate model evaluation studies. We focus
on the periodic patterns of soil moisture at a point. In par-
ticular, we investigate, both quantitatively and qualitatively,
the agreement in phase and magnitude between the respec-
tive soil moisture data products with a view to establishing
whether they are representative of local conditions.

An understanding of the extent to which the climate model
simulations and GLEAM model estimates have similar pat-
terns at a regional level within inter-annual timescales is
achieved by looking at a measure of their mutual information
(MI). Model correspondence in capturing dominating pro-
cesses is investigated by looking at the modelled soil mois-
ture signal MI. This is done for different landscapes orga-
nized by dominating soil and vegetation types, as well as al-
titude ranges across the study region. The study seeks to un-
cover interesting patterns in the observed data for the study
region and highlight the strengths and aspects of the climate
model simulation and GLEAM estimates. Both the climate
model simulation and GLEAM estimates may benefit from
continuous testing and improvement.

The ability of models to capture seasonal cycles of terres-
trial processes such as soil moisture is one indication of how
well the physical processes that underlie the variability of soil
moisture over space and time are represented. A comparison
of satellite-derived products with in situ observations may
also yield useful insight into the strengths and weaknesses
of various remote sensing techniques that are used. A cli-
mate models’ ability to represent and capture the seasonality
of a system under inter- and intra-annual climate variabil-
ity could be considered more important than its agreement
with observations in absolute values (Fang et al., 2016). The
remainder of the study is structured as follows: Sect. 2 de-
scribes the datasets used, the study design and methods for
analysing the datasets. Section 3 presents the results and the
discussion, followed by the conclusions in Sect. 4.

2 Materials, methods and data

2.1 Study sites and in situ observations

In situ soil moisture measurements from the Council for
Scientific and Industrial Research (CSIR) network of eddy

covariance flux towers in the Lowveld region of the
Mpumalanga (Skukuza) and Limpopo (Malopeni) provinces
are used. Soil moisture is observed at several different loca-
tions in South Africa mainly for irrigation purposes but such
data are not publicly available.

2.1.1 Skukuza

The Skukuza flux tower site is a long-term measurement site,
located within the Kruger National Park conservation area in
South Africa (25.0197◦ S, 31.4969◦ E; Fig. 1). The Skukuza
flux tower has been operational from 2000 to the present. The
site falls within a semi-arid savanna biome at an altitude of
370 m above sea level, with a mean rainfall of 547 mm yr−1,
and average annual minimum (during the dry season) and
maximum (during the wet season) temperatures of 14.5 and
29.5 ◦C, respectively, for the averaging period from 2001 to
2014. The vegetation is dominated by an overstory of Com-
bretum apiculatum (Sond.) and Sclerocarya birrea (Hochst.),
with a height of approximately 8–10 m and a tree cover of ap-
proximately 30 % (Archibald et al., 2009). The understory is
a grass layer dominated by Panicum maximum (Jacq.), Dig-
itaria eriantha (Steud.), Eragrostis rigidor (Pilg.) and Pogo-
narthria squarrosa (Roem. and Schult.). The soil has a yel-
lowish sandy loam texture and is of the Clovelly form (Feig
et al., 2008), and the dominant soil type for the 25 km resolu-
tion grid cell where the flux tower is located is silty loam. The
Skukuza flux tower site is extensively described in previous
studies including those by Archibald et al. (2009), Scholes et
al. (2001) and Khosa et al. (2019). In situ soil moisture data
are collected 90 m north of the tower, and the measurements
are taken at two profiles which are 8 m apart. The sensors
are located at four different depths for both profiles, i.e. 5,
15, 30 and 40 cm (Pinheiro and Tucker, 2001). Time-domain
reflectometry (TDR) probes (Campbell Scientific CS615L)
are used to measure soil moisture at a 30 min temporal res-
olution. These measurements were averaged to a daily time
period (only done for days for which at least 80 % of the
half-hourly measurements was available over a 24 h period)
in order to match the resolution of the other soil moisture
products. For this study, the in situ data from the year 2001
to 2014 are used.

2.1.2 Malopeni

The Malopeni flux tower is located 130 km north-west of the
Skukuza flux tower (23.8325◦ S, 31.2145◦ E; Fig. 1), at an
elevation of 384 m above sea level. The tower has been col-
lecting data from 2008 to the present; however, data were
not collected between January of 2010 and January of 2012
due to equipment failure. The site has a mean rainfall of
472 mm yr−1, and annual average minimum and maximum
air temperatures of 12.4 and 30.5 ◦C, respectively, for the av-
eraging period from 2008 to 2014. The site is dominated by
broadleaf Colophospermum mopane, which characterizes a
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hot and dry savanna (Ramoelo et al., 2014). Combretum apic-
ulatum and Acacia nigrescens are also abundant at the site.
The grass layer is dominated by Schmidtia pappophoroides
and Panicum maximum. The soil at the site is predominantly
of the shallow sandy loam texture, and the dominant soil type
for the 25 km resolution grid cell where the flux tower is lo-
cated is silty loam. The soil moisture probes are located at
four different profiles and depths. The sensor types and depth
positioning are the same for the Malopeni and Skukuza flux
tower sites. Soil moisture is collected at four different pro-
files (i.e. 16 sensors at four depths per site) and averaged to
represent surface and root-zone soil moisture at the site; for
Skukuza only sensors at two profiles are working (i.e. 8 sen-
sors).

2.2 Datasets

2.2.1 Soils texture data

The “SoilGrids” dataset from the international soil reference
information centre (ISRIC) was used in this study to map soil
types. The data are described in detail in the study by Hengl
et al. (2017). The dataset has a spatial resolution of 250 m
and is resampled to 25 km, firstly by resampling to 1 km and
then to 25 km, using the nearest neighbour method to match
the resolution of the soil moisture products. We acknowledge
that resampling from fine to coarse resolution might intro-
duce a bias towards certain soil types. However, the nearest
neighbour method is suitable for resampling categorical data.
Soils were classified into 12 dominant types ranging between
sand and silty clay. The soil type data are available at vari-
ous depths; here we only consider the data representing the
surface (i.e. 0–5 cm).

2.2.2 Satellite observations

The European Space Agency climate change initiative (ESA-
CCI) satellite-derived soil moisture datasets are used in this
study (Dorigo et al., 2017; Gruber et al., 2019). These global
datasets are based on passive and active satellite microwave
sensors and provide surface soil moisture estimates at a reso-
lution of ∼ 25 km (i.e. 0.25◦) (Fang et al., 2016; Yuan and
Quiring, 2017). The ESA-CCI merges soil moisture esti-
mates from the active and passive satellite microwave sensors
into one dataset (http://www.esa-soilmoisture-cci.org/, last
access: 13 January 2020), using the backward-propagating
cumulative distribution function method (Dorigo et al., 2015;
Fang et al., 2016). A detailed description of the merged active
and passive sensors and their functioning is provided by Fang
et al. (2016), Dorigo et al. (2015) and Liu et al. (2012). The
merging of active and passive sensors is based on their sensi-
tivity to vegetation density, as the accuracy of these products
varies as a function of vegetation cover (Liu et al., 2012). In
this study, version 3.2 (v3.2) of the ESA-CCI soil moisture
data is used. The merged data product is used in this study as

it has better data coverage compared to the individual prod-
ucts. Missing data in satellite products are not unusual since
retrievals are normally at an interval of 2–3 d (Albergel et al.,
2012). However, data from each of the different sensor types
are also considered for the evaluation of long-term seasonal
cycles.

2.3 Models for simulating soil moisture

2.3.1 CCAM-CABLE

The variable-resolution atmospheric model CCAM devel-
oped by the CSIRO in Australia (McGregor, 2005; McGregor
and Dix, 2001, 2008) was used to dynamically downscale
ERA reanalysis data to 8 km resolution over north-eastern
South Africa (Fig. 1) for the period 1979–2014. Similar
downscaling of reanalysis data obtained over southern Africa
using CCAM are described by Engelbrecht et al. (2011),
Dedekind et al. (2016) and Horowitz et al. (2017). The abil-
ity of the CCAM model to realistically simulate present-day
southern African climate has been extensively demonstrated
(e.g. Engelbrecht et al., 2009, 2011, 2015; Malherbe et al.,
2013; Winsemius et al., 2014). The CABLE soil sub-model
expresses soil as a heterogeneous system consisting of three
constituent phases, namely water, air and solid (Kowalczyk
et al., 2006; Wang et al., 2011). Air and water compete for
the same pore space, and the change in their volume frac-
tions is due to drainage, precipitation, ET and snowmelt. In
this model, there is no heat exchange between the moisture
and the soil due to the vertical movement of water, as soil
moisture is assumed to be at ground temperature. The soil is
partitioned into six layers, with the layer thickness of 0.022,
0.058, 0.154, 1.085 and 2.875 m from the top layer. Only the
top layer contributes to evaporation, while plant roots extract
water from all layers depending on the soil water availabil-
ity and the fraction of plant roots in each layer (Wang et al.,
2011). Soil moisture is solved numerically using Richard’s
equation (Kowalczyk et al., 2006).

2.3.2 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM)
version 3.1 is a set of algorithms used to estimate surface
soil moisture, root-zone soil moisture and terrestrial evap-
oration using satellite forcing data (Martens et al., 2017).
The method is based on the use of the Priestley and Tay-
lor (1972) evaporation model, stress module, and rainfall in-
terception model (Miralles et al., 2011). Three datasets from
the GLEAM, namely v3a, v3b and v3c, were used in this
study. Version 3a is based on satellite-observed soil moisture,
snow water equivalent and vegetation optical depth, reanaly-
sis radiation and air temperature, and a multi-source precip-
itation product. Versions 3b and 3c are satellite-based with
common forcing data excluding soil moisture and vegetation
optical depth; these are based on different passive and active
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Figure 1. Maps indicating South Africa, Kruger National Park (KNP), flux tower sites (Skukuza and Malopeni) and the area considered for
grid inter-comparison (red box).

microwave sensors, i.e. ESA-CCI for v3b and Soil Moisture
and Ocean Salinity (SMOS) for v3c (Martens et al., 2017).

The different components of terrestrial processes (i.e. tran-
spiration, open-water evaporation, bare soil evaporation, sub-
limation and water loss) are separately driven in GLEAM
(Martens et al., 2017). Each grid cell in GLEAM contains
fractions of four different land cover types, namely open wa-
ter (e.g. dam, lake), short vegetation (i.e. grass), tall vegeta-
tion (i.e. trees) and bare soil. These fractions are based on the
global vegetation continuous field product (MOD44B) ex-
cept for the fraction of open water. The MOD44B product is
based on the Moderate Resolution Image Spectroradiometer
(MODIS) observations (Martens et al., 2017). Soil moisture
is estimated separately for each of these fractions and then
aggregated to the scale of the pixel based on the fractional
cover of each land cover type. Root-zone soil moisture is cal-
culated using a multi-layered water balance equation which
uses snowmelt and net precipitation as inputs, and drainage
and evaporation as outputs (Miralles et al., 2011). The depth
of soil moisture is a function of land-cover type comprising
one layer of bare soil (0–10 cm), two layers for short vege-
tation (0–10, 10–100 cm) and three layers for tall vegetation
(0–10, 10–100 and 100–250 cm) (Martens et al., 2017). An
overview of the soil moisture datasets used in this study is
presented in Table 1.

2.4 Analysis approach and data processing

2.4.1 Statistical analysis

The first part of the analysis focuses on evaluating the
monthly time series data of soil moisture products at the
site level using observations. At a monthly timescale, the
soil moisture seasonal cycle is assumed to well developed.
A data threshold of 80 %, i.e. daily values are available for at
least 80 % of the total number of days in a particular month,
was used to average daily data to monthly. Months that did
not meet the 80 % threshold were excluded from the analy-
sis. Time series data for the evaluation sites were extracted
from the soil moisture products, using the flux towers’ ge-
ographical coordinates. The satellite products present aver-
aged soil moisture data per grid cell. A distance-weighted av-
erage technique was used to interpolate the CCAM-CABLE
model simulations to estimate soil moisture values represen-
tative of observational sites. The distance-weighted average
method proved to be more representative than the nearest
neighbour method, as the distance-weighted average method
interpolates to the exact location of the tower by considering
simulated values at grid points surrounding the location.

The soil moisture products were first converted to the per-
centage of volumetric soil moisture amounts for comparison
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purposes. As in Yuan and Quiring (2017), we assume that
the soil moisture measurements at 5 cm depth are representa-
tive of the depth range 0–10 cm. In situ data at depths 15, 30
and 40 cm were combined using the depth-weighted average
method to represent the 10–100 cm depth using Eq. (1):

SM10−100 =

n∑
i=1

LT
SD
×SM(i), (1)

where SM10−100 is the weighted soil moisture, n is the num-
ber of layers, LT is the layer thickness calculated as the dif-
ference between the soil depths, SD is the total soil depth of
the soil profile and SM(i) is the daily in situ soil moisture
values at the ith layer. The depth-weighted average method
as presented in this study (Eq. 1) has been used in other
studies such as that by Yuan and Quiring (2017). Similarly,
the data at depths 2.2 and 5.8 cm and at 15.4 and 40.9 cm
from CCAM-CABLE are averaged to represent 0–10 and
10–100 cm, respectively, using Eq. (1).

The soil moisture products used in this study (Table. 1)
are under the same latitude and longitude projection. All the
soil moisture projections are at the same spatial resolution of
25 km, except for the CCAM-CABLE model with a resolu-
tion of 8 km. The bilinear interpolation method was used to
resample the CCAM-CABLE simulations from 8 to 25 km
to match the resolution of the other soil moisture products.
To evaluate how close the modelled soil moisture estimates
are to in situ measurements we use the Taylor plots (Taylor,
2001) as well as the cross-wavelet analysis.

2.4.2 Cross-wavelet analysis

The cross-wavelet method analyses the frequency structure
of a bivariate time series using the Morlet wavelet (Veleda
et al., 2012). The wavelet method is suitable for analysing
periodic phenomena of time series data, especially in situa-
tions where there is potential for frequency changes over time
(Rosch and Schmidbauer, 2018; Torrence and Compo, 1998).
The cross-wavelet analysis provides suitable tools to com-
pare the frequency components of two time series, thereby
concluding their synchronicity at a given period and time.
In this study, the cross-wavelet analysis is used to qualita-
tively compare the cyclic patterns of the observations and the
models’ estimates. In particular, it is used to assess whether
phase differences exist between dominating periodic fea-
tures of the in situ observations and the models’ estimates.
The cross-wavelet analysis algorithm used is described in
Rosch and Schmidbauer (2018) and is implemented within
the “WaveletComp” package in the R software. This method
has been used in other studies, such as that by Raj Koirala
and Gentry (2012), for investigating the climate change im-
pacts on hydrologic response.

The cross-wavelet analysis only applies to complete
datasets (i.e. without missing values). Since the in situ obser-
vations have missing data, the multiple-imputation method as

discussed in studies by Rubin (1987, 1996) has been used to
gap-fill the in situ time series. The multiple imputation pro-
cedure is implemented in the “Amelia” package, also avail-
able in the standard repository for R packages. The number
of imputed datasets was set to five and combined using Ru-
bin’s rules (Rubin, 1996). The multiple-imputation method
is only applied to the Skukuza dataset for both the surface
(Appendix Fig. A1a) and root zone (Fig. A1b). This is be-
cause the Skukuza data have fewer gaps compared to Mal-
openi data (Fig. B1). The imputed soil moisture observations
are shown in Appendix A together with the statistics of the
measures of the distribution for both the gap-filled and non-
gap-filled datasets. The cross-wavelet analysis (Appendix C)
is applied to non-stationary data using the default method
(i.e. white noise) with the simulations repeated 10 times.

2.4.3 Seasonal soil moisture pattern

Six sub-regions are selected, based on a homogeneity as-
sumption of climatic types (Fig. 2a), altitude (Fig. 2b) and
soil types (Fig. 2c). The sub-regions are named based on
their climate and vegetation types, namely oceanic savanna
(OcSa), humid subtropical savanna and hot semi-arid sa-
vanna (HuSuSa-HoSeSa), hot semi-arid savanna (HoSeSa),
hot semi-arid grassland (HoSeGr), and cold semi-arid grass-
land (CoSeGr). Each sub-region is characterized by an at-
tribute (i.e. soil, vegetation and climate types) with the high-
est frequency. The dominant frequency is represented by
at least 56 % of the 16 grid points for each attribute and
for all sub-regions. This is with the exception of HuSuSa-
HoSeSa, where the climate type humid subtropical and hot
semi-arid have equal frequency. The selected subregions are
summarized in Table 2 and plotted in Fig. 2. The vegeta-
tion types for the study area used here are presented in a
study by Khosa et al. (2019). The sub-regions are selected to
demonstrate how the models represent the patterns of daily
soil moisture distribution at a regional scale. For each model
and sub-region, seasonal distributions of modelled daily soil
moisture values spanning the austral summer (December–
February), winter (June–August), autumn (March–May) and
spring (September–November) for the period 2011–2014 are
summarized through a box-and-whisker plot. In summary,
each sub-region data distribution consists of 16 grid points
with each grid point having daily soil moisture values for
each month of the respective seasons. Topographic features
of the landscapes (i.e. slopes) of different aspect: north (N),
east (E), south (S) and west (W) are also used to filter the re-
spective seasonal distributions, thus revealing the soil mois-
ture distributions’ variation with thermal exposure or slope
direction.

The second part of the analysis inter-compares model sim-
ulations and satellite estimates of soil moisture at a regional
scale. The MI is calculated between the residuals of the de-
trended and de-seasonalized time series at a regional scale
between the CCAM-CABLE simulations and GLEAM esti-
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Table 1. Overview of soil moisture datasets: satellite (normal font) in percentage, modelled (bold and italic), simulation (italic) and in situ
observations (bold) presented as a ratio (m3 m−3) of soil to moisture per unit area.

Soil moisture product Spatial resolution (km) Spatial coverage Soil depth (cm) Period

ESA combined 25 Global 0–10 1978–2015
ESA active 25 Global 0-10 1991–2015
ESA-Passive 25 Global 0–10 1978–2015
CCAM-CABLE 8 Regional 2.2, 5.8, 15.4, 40.9, 108. 5, 287.2 (bedrock) 2000–2014
Skukuza Point data Point 5, 15, 30, 40 2000–2017
Malopeni Point data Point 5, 15, 30, 40 2008–2017
GLEAM v3a 25 Global 0–10, 10–100 1980–2016
GLEAM v3b 25 Global 0–10, 10–100 2003–2015
GLEAM v3c 25 Global 0–10, 10–100 2011–2015

Table 2. A detailed description of the selected sub-regions indicating elevation (https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html, last
access: 14 December 2019), climate (http://koeppen-geiger.vu-wien.ac.at/present.htm, last access: 14 December 2019), and vegetation and
soil types (https://soilgrids.org, last access: 14 December 2019).

Sub-region labels Elevation range (m) Climate type Dominant vegetation type (s) Dominant soil types

OcSa 57–1127 Oceanic Savanna Clay
HuSuSa-HoSeSa 386–846 Humid subtropical and Savanna Clay

Hot semi-arid
HoSeSa 845–1298 Hot semi-arid Savanna Clay
HoSeGr 1116–1327 Hot semi-arid Grassland Silt-loam
CoSeGr(I) 1189–1317 Cold semi-arid Grassland Silt-loam
CoSeGr(II) 1459–1658 Cold semi-arid Grassland Silt-loam

mates. The data are first de-trended and de-seasonalized be-
fore the MI is calculated to ensure that the computed MI is
not attributed to the similarities in the trend and cyclic com-
ponents of the signal.

The trend and cyclic components could be correlated and
it is necessary to ensure that the MI is based on the residual
components, which are the uncorrelated features of the soil
moisture signal. In this way, the MI calculation presents a
comparison matrix for inter-model soil moisture spatial pat-
tern comparison. In particular, the MI gives a sense of sim-
ilarity between the models, indicating the level of coinci-
dence or overlap in the distribution of the residuals between a
pair of CCAM-CABLE simulations and each of the GLEAM
model estimates per grid point. In the case that MI values
between models are low, the inter-model data reflect uncer-
tainty in how the models capture the modelled processes.

The de-trending and de-seasonalizing of the time series
removes the systematic components of the signal including
bias. This is achieved through an approach reported in a study
by Cleveland et al. (1990) where the “stl” package, avail-
able in the standard package repository in R, is used to de-
trend the time series into its components. The MI calculation
is described in Kraskov et al. (2004) and is applied in this
study using the “varrank” package which is also available
in the R CRAN repository. The MI measure calculated from
the residual components of the respective soil moisture sig-

nals presents a robust way of assessing whether the respec-
tive models have a correspondence in spatial patterns of soil
moisture across landscapes. In this paper, the MI is used as
an index for classification of the models according to the co-
incidence in the distribution of residuals at the regional level.
The MI is calculated for the daily time series ranging be-
tween 2011 and 2014.

3 Results and discussion

3.1 Evaluation of the satellite- and model-simulated
seasonal cycle soil moisture

In this section, we discuss how the respective outputs reflect
the key features of the observed soil moisture. As highlighted
in the introduction, the variability of the simulation output,
satellite-derived data and satellite-based model estimates are
studied relative to the observations. Much focus is placed on
investigating how well the periodic features of the soil mois-
ture are reflected by the respective soil moisture datasets. The
patterns of soil moisture at the study sites are mainly driven
by rainfall, which is predominantly higher during the sum-
mer season and low in winter, as shown in Fig. 3. The long-
term surface soil moisture for both the sites follows a pattern
comparable to that of rainfall, as can be seen in Fig. 3.
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Figure 2. (a) Köppen–Geiger climate types (CT) across the study region at a 50 km resolution (http://koeppen-geiger.vu-wien.ac.at/present.
htm, last access: 14 December 2019). Sub-regions are selected based on homogeneous climate types and named based on the vegeta-
tion and climate types, such as oceanic savanna (OceaSa), humid subtropical and hot semi-arid savanna (HuSuSa-HoSeSa); hot semi-arid
savanna (HoSeSa), hot semi-arid grassland (HoSeGr) and cold semi-arid grassland (CoSeGr); (b) altitude (Alt, m) at the study region
at a 25 km resolution (https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html, last access: 14 December 2019); and (c) dominant soil types
(https://soilgrids.org, last access: 14 December 2019) per grid cell, at a resolution of 25 km.

3.1.1 Long-term seasonal cycles

The soil moisture patterns presented in Fig. 3 show that the
study sites mainly contain higher soil moisture at the sur-
face than at the root zone; this is shown by both the mod-
elled soil moisture and the observations. This is indicative of
water at these study sites being lost mostly through runoff
and ET, and only a small fraction infiltrates the soil and is
stored at the root zone. There is an acceptable similarity in
the seasonal cycle of soil moisture (Fig. 3) between the var-
ious product outputs and the observations in terms of phase,
especially at the surface. Notably, the observed soil mois-
ture seasonal cycle at the surface at both Skukuza and Mal-
openi surface displays a local maximum in April and shows
an increase from September to January. The cyclic qualita-
tive features of the observed signal are captured by all the
models. The soil moisture amplitudes are less pronounced in
the root zone, but with November and October maxima at
Skukuza and Malopeni respectively. In some instances, there
is a lag such as the one presented by GLEAM v3c (i.e. max-
ima in October instead of November) at the surface, at both
Skukuza and Malopeni. The soil moisture patterns are con-
sistent with the observed rainfall cycle, which undergoes an

onset in October and a cessation in April. The root-level soil-
moisture pattern displays a signature of soil moisture reten-
tion, which relates to the persistence of dry and wet peri-
ods at various soil depths (Seneviratne et al., 2006). In light
of this, it would be interesting to see how both the CCAM-
CABLE simulation and the GLEAM soil moisture products
depict the onset and cessation of the wet season; this will
be discussed in Sect. 3.2. The CCAM-CABLE model out-
puts reflect that soil moisture reaches its highest values in
March rather than April for Skukuza at the surface. The out-
put does not reproduce the recorded elevated soil moisture
for Malopeni in April at the surface. This is probably since
the CABLE soil-moisture scheme does not take soil resis-
tance into account (Whitley et al., 2016). Despite this, the
long-term CCAM-CABLE monthly means of soil moisture
are relatively comparable to the observation even in terms of
magnitude (Fig. 3).

GLEAM v3c agrees with in situ measurements on the ex-
istence of an April soil moisture maximum, but it reflects the
observed soil moisture increase, in November, a month ear-
lier (i.e. in October). The satellite observations and GLEAM
models (Fig. 3) display the same soil moisture signal as
observed at the respective sites, indicating that the April
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maximum, in particular, is not an artefact of the point ob-
servations. We can safely deduce that the bias in GLEAM
v3c is not induced by satellite-based forcing data; however,
this calls for further investigations into the sensitivity of the
model to its driving data at a high resolution. We anticipate
that at high temporal resolution there is a strong variability
in the in situ soil moisture signal which may not entirely
be captured by both CCAM-CABLE and GLEAM, possibly
due to their relatively low spatial resolution. The relatively
low resolution (8 km in the horizontal) in the case of CCAM-
CABLE, in particular, potentially has strong implications for
how representative the effective drivers of soil moisture such
as soil texture and vegetation covers are in terms of observa-
tions at specific sites.

The GLEAM models (Fig. 3) are generally consistent with
in situ measurements in estimating soil moisture in terms
of phase, at both the surface and root zone. The magni-
tude of GLEAM v3a root-zone estimates is lower than those
of the other GLEAM models at the Skukuza site. This can
be attributed to the unique multi-source weighted ensem-
ble precipitation (MSWEP) data used to force GLEAM v3a
(Martens et al., 2017), which are different to the precipita-
tion forcing data used in GLEAM v3b and v3c. We further
observe that the GLEAM models, ESA and in situ observa-
tions have the same length of the dry period (i.e. about 4
months), except for the ESA active observation which has a
shorter dry period (i.e. about 3 months).

The ESA active satellite product is known to work best
for moderate to densely vegetated areas as opposed to sa-
vanna sites such as Skukuza and Malopeni, where tree cover
is sparse (Dorigo et al., 2015). There is a minimal differ-
ence between the ESA-Passive and ESA combined satellite
products in terms of both phase and magnitude. Generally,
the ESA combined and ESA-Passive datasets have the least
difference during the dry period for all sites. A number of
studies evaluated the ESA products at a regional and global
scale using in situ data and concluded that passive sensors
displayed improved performance over bare to sparsely veg-
etated regions, whereas the active sensors perform better in
moderately vegetated regions (Al-Yaari et al., 2014; Dorigo
et al., 2015; Liu et al., 2012; McNally et al., 2016).

Using long-term monthly averages, both the CCAM-
CABLE and GLEAM models can capture the intrinsic sea-
sonality of the soil moisture signal for the sites as reflected
by both the in situ and satellite observations. This is despite
their being different in both the forcing data and model struc-
ture. Studies by Wang and Franz (2017) and Seneviratne et
al. (2010) suggest that local factors (e.g. vegetation, soil and
topography) mostly control soil moisture variability at spatial
scales less than 20 km, rather than meteorological forcing.
For a 14-year averaging period, undoubtedly the monthly
means are sensitive to anomalously high precipitation, and
hence soil moisture in some months. It is therefore instruc-
tive to investigate how well the simulated and estimated pat-

terns of soil moisture compare with the in situ data monthly
for the respective years.

3.1.2 Intra- and inter-annual variability in soil
moisture

This section presents a quantitative evaluation of the soil
moisture time series from the soil moisture products at a
monthly time resolution. The level of agreement of the short-
term seasonal cycles between the various outputs and ob-
servations is quantified in Fig. 4 using the Taylor plot. The
Taylor plot presents three evaluation metrics, namely (1) the
standard evaluation, which evaluates the amplitudes of the
modelled soil moisture relative to the observations; (2) the
centred root mean squared error (RMSE) measuring the dis-
tance in magnitude between the various products and the ob-
servations; and (3) the correlation coefficient measuring the
agreement in phase.

Based on the correlation coefficient in Fig. 4a, we learn
that there is an acceptable correlation between the observed
and modelled soil moisture products at the surface ranging
between 0.7 and 0.9. At the root zone, the correlation coeffi-
cients for the site range between 0.6 and 0.8. This indicates
that there is more agreement in the soil moisture patterns at
the surface than at the root zone. The disparity in the ampli-
tude of variation at Skukuza and Malopeni, as reflected by
the standard deviation and the normalized bias in Fig. 4a and
b respectively, shows that it remains difficult for the models
to predict the magnitude of in situ soil moisture and its evo-
lution over time, especially for the root zone, where all the
models bear very little coherence with observations. The co-
efficient of determination (Fig. C1) also shows that the mod-
els are able to explain at least 50 % of the observed soil mois-
ture variability at the root zone and the surface for both sites.
At the root zone, the models can only explain between 38 %
and 53 % of the variability in the observed soil moisture at
Skukuza and Malopeni respectively. On account of missing
values, the R2 values presented in Fig. C1 are based on differ-
ent sample sizes. Therefore, their interpretation is made with
this issue in mind. In particular, it is inconclusive whether the
simulations and estimates are more comparable at Malopeni
relative to Skukuza.

For the Skukuza site, we learn in Fig. 4a that the standard
deviation for the surface and root-zone soil moisture obser-
vation is around 4.5 % and 4.7 % respectively. The standard
deviation values for the surface and root-zone time series,
for the various modelled soil moisture products, are mostly
within the ranges 4 %–5 % and 2.7 %–5 % at the respective
depths. In general, the standard deviation for modelled data
is not at the perfect overlap with that from observation. The
GLEAM products mainly present relatively closer standard
deviations with the observations, while the CCAM-CABLE
and ESA combined products show standard deviation val-
ues slightly lower than those of the observations, indicating
a slight underestimation by these products. At the root zone
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Figure 3. Seasonal variation in the long-term mean monthly rainfall (mm), surface (i.e. 0–10 cm) and root-zone (i.e. 10–100 cm) soil moisture,
based on in situ observations and a variety of soil moisture products. The in situ data are collected from two sites, namely Skukuza (2001–
2014) and Malopeni (2008–2013).

the soil moisture standard deviation is relatively lower (i.e.
about 1.5 %) for the observations while all other soil mois-
ture projects reflect much higher standard deviation, indicat-
ing an overestimation of the root zones soil moisture by these
products. At Malopeni, we learn that the standard deviation
for observed soil moisture values is about 4.7 % at the surface
and 3.2 % at the root zone. In both cases the models present a
standard deviation with a range closer to that of the observed
root-zone values. For this particular site, the agreement be-
tween the various products and the observations is more pro-
nounced at the root zone (RMSE ranges between 1.8 % and
2.3 %) than at the surface (RMSE ranges between 2.1 % and
3.5 %).

On the basis of a comparisons of standard deviations, we
can conclude that the pattern variations for different soil
moisture products are not of the right amplitude at both the
surface and root zone for the two respective sites. The am-
plitude of the pattern of variation among most of the mod-
els at the root zone, particularly at Skukuza, is relatively
incoherent with that of the observations. At the root zone,
this is consistent with that of the models at Malopeni but

not Skukuza. We learn from Fig. 4b that the models are
mostly biased towards an overestimation (i.e. values above
the horizontal line) of the observed soil moisture. The over-
estimation is more pronounced at the root zone relative to the
surface. This is mostly true at both Skukuza and Malopeni.
We also learn that the models mainly present a pronounced
overestimation bias at Malopeni compared to Skukuza. The
GLEAM and ESA combined products predominantly show
higher bias towards overestimation compared to the CCAM-
CABLE model. The CCAM-CABLE model shows the least
bias relative to the other soil moisture products at both the
surface and the root zone. At the Skukuza site, the CCAM-
CABLE and ESA combined products show an underestima-
tion of the observed soil moisture at the surface.

The ESA combined satellite product presents a similar per-
formance to the GLEAM products at both Skukuza and Mal-
openi. The ESA data have been shown to generally capture
soil moisture in different regions and climatic zones of the
world (Loew et al., 2013; McNally et al., 2016; Wang et al.,
2016; Zeng et al., 2015). Our study confirmed (Fig. 4) that
the ESA combined product captures local (i.e. South African
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semi-arid) conditions within an acceptable amount of cer-
tainty. A study conducted by Yuan and Quiring (2017) as-
sessing the performance of CMIP5 models at both the surface
and root zone concluded that the models performed better at
the root zone relative to the surface. These results contradict
the findings of this study, where we generally observe better
agreement between soil moisture products and in situ mea-
surements at the surface than at the root zone. Based on the
general picture of the extent to which the soil moisture prod-
ucts proved to be representative of the quantitative features of
the soil moisture signal, as driven by precipitation at the site,
it is compelling to further resolve qualitatively, for each peri-
odic soil moisture feature, how the various outputs compare
with the in situ observations. To that effect, the next section
will present the results from a cross-wavelet analysis of the
soil moisture output and the in situ observation.

3.1.3 Cross-wavelet analysis

In this section, a cross-wavelet transform constructed from
two continuous wavelet transforms applied to the modelled
and observed time series respectively is studied. The cross-
wavelet analysis is instrumental in depicting the relationship
in time and frequency space between two time series. This
is achieved by analysing localized intermittent oscillations in
the respective time series. By looking at the regions in time
and frequency space with relatively large common power
(represented by red colours; Fig. 5) and a consistent phase
relationship (depicted by arrows), we gain a sense of whether
there is a physical relationship between the observed and
modelled soil moisture fields. Looking at Fig. 5 we learn that
the soil moisture signal components with a common power
are immediately identifiable and are portrayed as having pe-
riods (y-axis values) that lie between 8 and 15 months. This
is depicted by dark red regions bound by white lines, which
mark the region with 10 % significance level (i.e. 90 % confi-
dence level). On comparing the surface and root-zone cross-
wavelets, we can conclude that the statistically significant
cyclic components with the dominating common power are
generally between the periods of 8 and 15 months. This can
be associated with seasonal soil moisture variation as driven
by meteorological drivers, most of which have a return pe-
riod of about a year.

From Fig. 5a we can see based on the alignment of the
arrow (Fig. C1) that the most common high-power signals
between modelled and observed data are in phase, in some
instances with a time lag. This is identified by the direction of
the arrows which are inclined either upwards or downwards.
See Fig. C1 in Appendix C for an interpretation of the direc-
tion of the arrows. From the graph of the phase difference,
we can see that there is an interchange of years in which the
modelled fields are leading or lagging in phase; however, the
phase difference is mostly very small. There is a time lag of
2 d on average between CCAM-CABLE simulations and in
situ observations at the period of about 12 months, and a lag

of about 6 d on average between GLEAM v3a and the in situ
observations at the surface. At the root zone, we observe a
wider lag of between 14 and 24 d between the soil moisture
products (i.e. CCAM-CABLE and GLEAM v3a) and the ob-
servations. This further confirms that there is a better agree-
ment between the soil moisture products and the observation
at the surface than at the root zone.

In all models, precipitation is a source of soil moisture at
the surface while heat and wind are sinks of moisture from
the surface. As mentioned earlier the models introduce differ-
ent assumptions about dominating drivers of root-zone soil
moisture for instance, which may potentially explain the ex-
istence of broader time lags at the root zone. We further
observe, in Fig. 5, that there is an agreement between the
models and observations on the seasonal and intra-annual
signal of soil moisture at Skukuza; this is shown by orange
depicted regions on the cross-wavelet graphs. These are the
signal components mainly ranging between the periods of 2
to 6 months. This could be associated with anomalous years
where the transition periods between the austral winter and
summer may have months with below (dry) or above (wet)
normal soil moisture conditions. Despite these periods hav-
ing a relatively high common power, they are not demarcated
as statistically significant.

It would be interesting to establish how the qualitative in-
sight gained in understanding the models’ ability to capture
the observed soil moisture signal at the two respective sites
will translate to a regional level. An upscaling of the eval-
uation done at a point is not possible in the absence of site
observations at a regional level. The rest of the discussion
in this paper is dedicated to an inter-comparison of process-
based model outputs and satellite-derived model outputs. The
idea is to discuss the model outputs in connection with the
broader landscape classes within the region.

3.2 Linking soil moisture patterns to landscapes

So far we have investigated the capabilities of the models in
capturing the temporal features of soil moisture at the flux
tower sites. An interesting question to address is, to what ex-
tent do the respective models compare in capturing soil mois-
ture organization across different landscapes as characterized
by altitude range, climatic zone, dominant soil, biome types
and slope aspect within the considered 25 km resolution. In
the case where there are no in situ soil moisture fields, we
may not reliably tell which product is the most representa-
tive of the soil moisture organization; however, we can clas-
sify the models on the basis of their shared patterns at the
selected landscapes.

Fig. 6 summarized the pattern of daily moisture distribu-
tion for the chosen six sub-regions for the austral summer
(DJF), winter (JJA), autumn (MAM) and spring (SON) for
the year 2011 to 2014. Each sub-region is represented by 16
grid points with each grid point having daily soil moisture
values that span the respective season for the years 2011–
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Figure 4. (a) Taylor plots quantitatively comparing monthly modelled soil moisture to observations at Skukuza (2001–2014) and Malopeni
(2008–2013), at both the surface (0–10 cm) and root zone (10–100 cm). The vertical solid grey lines represent the correlation coefficient. The
broken black line cutting through the semi-circle broken black lines represents the standard deviation of the in situ observation. The semi-
circle broken black lines represent the centred root mean squared error. (b) Normalized mean bias (NMB) of surface (0–10 cm) and root-zone
(10–100 cm) soil moisture, computed between the various soil moisture products and the in situ observations at Skukuza and Malopeni.

2014. By looking at the interquartile ranges of the box-and-
whiskers plot we can see that the characteristic seasonal fea-
ture of soil moisture signal is reflected by all models at all
landscapes. In particular, all models are consistent in reflect-
ing soil moisture distribution interquartile ranges, and hence
the median, as highest in DJF and lowest in JJA.

By comparing the spread and the median of soil moisture
distribution across models, we can conclude that for the re-
gion OcSa, which is characterized by predominance of clay
soil and relatively low elevation range, there is no clear vari-
ation of soil moisture spread that could be associated with
models or the respective south- and east-facing slopes in
the humid (HuSuSa-HoSeSa) and hot semi-arid (HoSeSa,
HoSeGr) regions; the soil moisture spread is comparable be-
tween CCAM-CABLE and ESA but relatively lower to that
of the GLEAM models. It is worth reiterating at this point
that GLEAM models also show higher soil moisture val-
ues relative to the in situ observations at the Malopeni and
Skukuza flux tower sites, which share the same elevation
range and climate type as region (HuSuSa-HoSeSa). For the
three landscapes, there is no clear pattern which distinguishes
the organization of soil moisture according to slope direction.
In the case regions (OcSa, HoSeSa, HoSeGr, CoSeGr(I))
highly overlapping distributions indicate that soil type, to-
pographic or thermal exposure indices used could not be in-
stantly associated with dominant or identifiable soil moisture
patterns among the respective models. For the cold and high-

lying semi-arid regions, CoSeGr(I) and CoSeGr(II), CCAM-
CABLE shows a noticeable variation in soil moisture with
slope aspect, in which case north-facing slopes turn out to
have lower soil moisture than south- and west-facing ones.
For the north-facing slopes of the two regions, the relatively
lower soil moisture values for CCAM-CABLE are corrobo-
rated by that of the ESA combined model, which generally
portray comparatively low soil moisture values for the two
high-lying cold semi-arid regions. It is a well-known fact that
along the Drakensberg range, which is close to the regions
CoSeGr(I) and CoSeGr(II), north- and east-facing slopes
have more sunshine exposure than the south- and west-facing
slopes (Bristow, 2019). Notably, the CCAM-CABLE, ESA
combined and GLEAM models reflect contrasting patterns
with slope aspect for the high-lying areas. Whereas all mod-
els produce overlapping soil moisture distribution or rela-
tively flat terrains (i.e. OcSa, HuSuSa-HoSeSa, HoSeSa and
HoSeGr) with consistent seasonal variations, we note that the
soil moisture distribution reflects a delineation with slope di-
rection on high-lying areas. This points to a possibility of
the existence of dominant drivers such as thermal exposure.
This calls for model evaluation against observations in these
regions and driver-specific sensitivity tests. Such an evalu-
ation could potentially yield valuable information on which
model assumptions or schemes could benefit from further re-
finements, taking into account dominant drivers and slope-
dependent soil moisture processes for the landscape.
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Figure 5. Cross-wavelet power spectrum of surface (SSM, 0–10 cm) and root-zone (RZSM, 10–100 cm) soil moisture between in situ
observations, CCAM-CABLE (a, b) and GLEAM v3a (c, d) at Skukuza respectively. The white contour lines indicate periods of significance
at 10 %. The arrows pointing to the right indicate that the models and in situ observation are in phase while arrows pointing left reflect that
the models are anti-phase. The case where in situ observations are leading either CCAM-CABLE or GLEAM v3a is indicated by arrows
pointing straight down. The dome shape (shaded areas) represents the cone of influence between 2001 and 2014. The red colour indicates
weak variation while blue indicates the strong variation between the respective time series.

For the selected landscapes, we have learnt that the three
GLEAM models mostly reflect a spread of soil moisture
values which is largely overlapping, while CCAM-CABLE
shows the existence of distinct moisture distributions that
could be associated with slope aspect, especially in high-
lying regions. A clear continuous picture of how CCAM-
CABLE compares with GLEAM models across the entire
study domain can be obtained by investigating how dif-
ferent joint distributions of a pair of CCAM-CABLE and
GLEAM residuals per grid point compare to a product of
their marginal distributions. This is best quantified by the
MI, which is an information theory function that can be used
as a measure of similarity between a pair of time series of
residuals. The compared time series are computed on a com-
mon grid point for the respective models. The MI is equal to
zero when the joint distribution of the pair coincides with the
product of the marginal for the respective models. This sug-
gests that the respective models are portraying independent
signals. For the studied datasets we expect that the MI values
should be greater or equal to 2 in the extreme case when the
two pairs are identical. Figure 7 depicts the MI which is cal-
culated from a pair of de-trended and de-seasonalized time
series of monthly averaged soil moisture for CCAM-CABLE
and each of the three versions of GLEAM. The de-trending

and de-seasonalizing of each pair also lead to the removal of
systematic biases. The obtained MI values are mostly equal
to or greater than 0.5. This is true for both the surface and root
zone. It is desirable to have the MI for all satellite-derived
products; however, the ESA products did not have enough
spatial data points to yield a fair comparison.

We can also see in Fig. 7 that the MI at the root zone is
higher than at the surface; this could be suggestive of the sen-
sitivity of soil moisture to the driving processes being com-
parable between both GLEAM and CCAM-CABLE models
at the root zone. The MI pattern for both the surface and root
zone complement the box-and-whisker plot, indicating that
the coincidence in the soil moisture values is highest in the
proximity of the lowest-lying OcSa, which is dominated by
the clay soil. For this region, the MI values mainly range be-
tween 1 and 2. CCAM-CABLE has been depicted as having
low soil moisture values relative to all versions of GLEAM
on part of the humid savanna region (HuSuSa-HoSeSa) for
the surface. We can also see that, on the humid savanna which
includes region (HuSuSa-HoSeSa), that the models predom-
inantly have low MI values ranging between 0 and 1 at the
surface. The lowest MI values at the surface are also no-
ticeable on the cold semi-arid high-lying grasslands in the
neighbourhood of regions CoSeGr(I) and CoSeGr(II). From
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Figure 6. Comparison of modelled soil moisture patterns across sub-regions, namely oceanic savanna (Ocsa), humid subtropical and hot
semi-arid savanna (HuSuSa-HoSeSa), hot semi-arid savanna (HoSeSa), hot semi-arid grassland (HoSeGr), and cold semi-arid grassland
(CoSeGr). The sub-regions are also based on increasing altitude and slopes of different aspect, i.e. north (N; red), east (E; green), south (S;
blue) and west (W; purple). The box plots show the distribution of the seasonal (i.e. summer, DJF; autumn, MAM; winter, JJA; and spring,
SON) soil moisture data points per model within the respective regions. Each of the sub-regions consist of 16 grid cells for various slope
aspects; therefore, each box plot contains 30 data points for each month of the 3-month season for the 4-year period (2011–2014) for each
product and slope aspect, i.e. n=SP·3(30) · 4, where SP is the number of points for each slope aspect.

Fig. 7, we can conclude that the study region is dominated by
grid points with relatively high MI values that fall within the
range [0.5–2). Lower MI values for the high-lying regions are
indicative of a pronounced model uncertainty when it comes
to the models’ response to processes that drive soil moisture
for the region. While higher MI values, as seen in the rest
of the regions, gives an indication that the respective models
comparably responds to the dominating processes that drive
soil moisture variation. This is the case at least qualitatively.

4 Conclusions

In this study, the ability of a process-based simulation
model (CCAM-CABLE), satellite data-driven model esti-
mates (GLEAM) and satellite observations (ESA active,
passive and combined) are evaluated against site-specific in
situ observations from two flux tower sites, namely Skukuza
and Malopeni. The evaluation was done for two soil depths,
namely the surface (i.e. 0–10 cm) and root-zone soil moisture
(i.e. 10–100 cm), to understand how the respective data prod-
ucts capture the characteristic patterns of soil moisture. The
evaluation included an assessment of qualitative features of
long-term (i.e. multi-year) and short-term (i.e. monthly) av-
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Figure 7. Mutual information (MI) computed on the residuals of monthly time series (2011–2014) of surface (SMsurf, 0–10 cm) and root-
zone (RZSM, 10–100 cm) soil moisture, between CCAM-CABLE simulations and GLEAM models estimates. The studied sub-regions of
interest are represented by different shapes on the maps, namely oceanic savanna (Ocsa), humid subtropical and hot semi-arid savanna
(HuSuSa-HoSeSa), hot semi-arid savanna (HoSeSa), hot semi-arid grassland (HoSeGr), and cold semi-arid grassland (CoSeGr).

erages of the soil moisture signal relative to the in situ mea-
surements. All the models have a correlation that is greater
than 0.6 at all soil depth and sites; however, not all models
are able to capture the soil moisture magnitudes and their as-
sociated change over time at the root zone specifically, where
the there is a pronounced incoherence as reflected by the
bias score. All GLEAM soil moisture products presented a
higher soil moisture magnitude range compared to observa-
tions while CCAM-CABLE and ESA combined outputs turn
out to be relatively closer in magnitude to the observation
at all depths at both Malopeni and Skukuza. The systematic
difference in magnitude between the model output and obser-
vation may emanate from the difference in spatial scale be-
tween in situ measurements and the rest of the products. We
also learn from this study that all GLEAM models compare
well with the in situ observations in reflecting the seasonality
of soil moisture. This is despite the noted systematic bias of
the soil moisture magnitudes in the GLEAM products. The
models mostly show a bias towards overestimation of the ob-
served soil moisture at both the surface and root zone, with
the CCAM-CABLE showing the least bias.

A wavelet analysis was used to reveal, at a qualitative
level, how periodic features compare between the CCAM-
CABLE model, GLEAM models and in situ observations.
We learned that at the surface, high-power common features

of the surface soil moisture signal are in phase with observa-
tions and come at a periodicity of about 12 months. We also
learned that high-power common soil moisture signals at the
root zone have a relatively pronounced time lag. The time lag
is of a timescale not exceeding a month at all soil depths (i.e.
it lies between 5 and 20 d) for the periods ranging between
2001 and 2014 between CCAM-CABLE and GLEAM v3a.

The study also investigated, through the use of mutual
information (MI), how different joint distributions of pairs
of grid points among CCAM-CABLE and the respective
GLEAM models compare with a product of their marginal
distributions. This gave a basis for classifying the models ac-
cording to their similarity or dependence in capturing soil
moisture responses to the underlying drivers. In this case,
the emphasis is on evaluating the extent to which both ap-
proaches have a joint variation or shared MI. The analysis
has successfully revealed that both the simulation and model
estimates have a high similarity at the root zone as opposed to
the surface for all GLEAM model outputs. The difference in
the surface soil moisture between the CCAM-CABLE simu-
lation and GLEAM model outputs in high-lying areas opens
up interesting questions relating to the extent to which the
influence of different drivers of soil moisture is represented
by the two approaches. To understand this, future research
will benefit from investigating the sensitivity of the models to
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changes in soil moisture drivers, particularly change in vege-
tation cover and soil type, on soil moisture memory. It would
also be interesting to unearth the soil moisture organization
for the respective models at much higher spatial resolution
so that processes that drive soil moisture may be reliably at-
tributed to the patterns of the soil moisture signal. Despite
CCAM-CABLE and GLEAM having relatively high MI for
the majority of landscapes, application of these model out-
puts should take into account that systematic biases do ex-
ist and that there is a high model uncertainty, particularly in
high-lying areas.
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Appendix A: Multiple imputation

Table A1. Statistics of the distribution of the imputed and observed
time series of surface and root-zone soil moisture at the Skukuza
site.

Surface soil moisture Original data Imputed data

Mean 15.59 15.76
Median 13.33 13.83
Standard deviation 6.21 6.10
Variance 38.68 37.22

Root-zone soil moisture

Mean 7.45 7.55
Median 6.49 6.69
Standard deviation 2.18 2.17
Variance 4.76 4.74

Figure A1. Daily (a) surface and (b) root-zone soil moisture time
series at Skukuza showing the imputed parts (red) of the time series
and the observed parts (blue).
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Appendix B: Comparison of modelled and in situ soil
moisture

Figure B1. Quantitative monthly comparison between soil moisture products and observations at Skukuza (black; 2001–2014) and Malopeni
(red; 2008–2013), at the surface (0–10 cm) and root zone (10–100 cm), using the coefficient of determination (R2 ) depicted by the numbers
in the top left of the plots.
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Appendix C: Cross-wavelet analysis

Figure C1. Phase interpretation between two time series x and y.
When series x leads, y lags and vice versa. This figure is inspired
by a study by Rosch and Schmidbauer (2018).

Figure C2. Phase difference between surface soil moisture simulated using CCAM-CABLE, and GLEAM v3a at Skukuza between 2001
and 2014 at period 12 at the surface.
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Data availability. Daily in situ flux tower data for the towers owned
and operated by the CSIR (i.e. Skukuza and Malopeni) are avail-
able on request for scientific purposes from Humbelani Thenga
(hthenga@csir.co.za). The SoilGrids (global gridded soil informa-
tion) soil texture data are available online from the International Soil
Reference Information Centre (ISRIC) (https://www.isric.org/ IS-
RIC, 2013). The daily CCAM-CABLE simulated data are available
on request for scientific purposes from the CSIR via Rebecca Gar-
land (rgarland@csir.co.za). The ESA-CCI (version 3.2) satellite-
derived daily surface soil moisture data are available via the website
of the European Space Agency Climate Change Initiative (https://
www.esa-soilmoisture-cci.org/, Dorigo, 2018). The modelled daily
soil moisture data using the Global Land Evaporation Amsterdam
Model (GLEAM, version 3.1) are available online (https://www.
gleam.eu, Martens, 2018). Analysis scripts have been published
by Rpubs (https://rpubs.com/FKhosa/hess-2018-546, Khosa et al.,
2020a), and the data for reproducing the plots can be accessed from
https://doi.org/10.17632/yvsncwrbws.1, https://data.mendeley.com/
datasets/yvsncwrbws/1 (Khosa et al., 2020b).
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