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1 Simulation information 
1.1 Simulation setting 
This section summarises the key simulation settings of each global hydrological model (GHM). Note that 
more detailed information is available in the protocols of the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP) available at https://www.isimip.org/protocol. 

The following two input datasets were used for the GHM simulations, with specific model runs 
summarised in Table S1: 

1. Climate & CO2 concentration scenarios (i.e. atmospheric forcing) 
- GSWP3: observations-based dataset providing the climate forcing data. 
- RCP2.6: future climate and CO2 concentration from RCP2.6 
- RCP6.0: future climate and CO2 concentration from RCP6.0 
- HINDCAST: historical modelled climate and CO2 concentration. 

2. Human influence and land-use scenarios 
- nosoc: Naturalized runs (no human impact). No irrigation or man-made reservoirs. No 

population and GDP data prescribed.  
- varsoc: Varying historical land use and other human influences over historical period. 
- 2005soc: Fixed year-2005 land use and other human influences. 

Note that GSWP3 was used as the sole observational atmospheric forcing dataset in this investigation. We 
also used modelled atmospheric forcing datasets introduced by four global climate models (GCM): GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5. 

Table S1. Simulation set up of GHMs used in this investigation. ‘Climate’ represents atmospheric forcing 
dataset while ‘human’ represents human influence and land-use scenarios. Note that a more detailed 
inventory of available model runs is provided in Table S2.  

Model GSWP3_VARSOC GSWP3_NOSOC GCMHIND GCMRCP2.6 GCMRCP6.0 

H08 
Climate: GSWP3 
Human: varsoc Climate: GSWP3 

Human: nosoc 

Climate: HINDCAST 
Human: 2005soc 

Climate: rcp26 
Human: 2005soc 

Climate: RCP6.0 
Human: 2005soc 

LPJmL 
Climate: HINDCAST 
Human: varsoc (except 
for ORCHIDEE using 
nosoc) 

PCR-GLOBWB 
WaterGAP2 
MPI-HM Simulations not 

available ORCHIDEE 

The results of preliminary assessment over 3666 observation locations suggest minor influence of human 
influence and land-use scenarios on the characteristics of trends in streamflow extremes (see section 4 of this 
supplementary material), and thus only GSWP3_NOSOC was used in the main text (denoted as GSWP3 in 
the main text). 

1.2 Similarities and differences among participated GHMs 
Although “global hydrological models” (GHMs) has been used as a universal terminology to represent the 
participating models in this study, there are two groups of models with fundamental differences: 

- Hydrological models (HMs): this group includes H08, MPI-HM, PCR-GLOBWB, and 
WaterGAP2, which focused on quantitatively simulate the water balance components such as 
streamflow.  

- Dynamic global vegetation models (DGVMs): this group includes LPJmL and ORCHIDEE, 
which focused on the shifts in vegetation cycle under natural and anthropogenic factors.  

Table S2 summarizes the differences in schematization across the models while the following paragraphs 
highlight the key differences. The information contained in this table was synthesized by the ISIMIP 
community. We noted that adapted versions of Table S2 have been used as Supplementary of two other 
manuscripts.  

Generally, different models can potentially simulate the timing and magnitude of the streamflow differently 
due to their different structure, and the features that are included/excluded from the model schematization. 
Nevertheless, it is difficult to attribute discrepancy of simulated changes in streamflow indices for differences 



 

 

in model schematization, as there is no study that has explored the influence of specific component on 
changes in streamflow indices. Below are some key differences across models. 

Interception 

H08 and MPI-HM models do not use an interception scheme. PCR-GLOBWB simulates canopy interception 
as a function of vegetation type, which is annually prescribed by HYDE, MIRCA, and GLOBCOVER 
datasets (ESA Globcover 2005 Project, led by MEDIAS-France/POSTEL). LPJmL, ORCHIDEE, and 
WaterGAP2 models take into consideration the leaf area index. Furthermore, DGVMs also take into 
consideration the CO2 fertilization effect and the dynamic vegetation effects.  

Snow 

Four models (LPJmL, MPI-HM, PCR-GLOBWB, and WaterGAP2) use the degree-day method to simulate 
snow accumulation and melt, while H08 and ORCHIDEE models use the physically based energy balance 
method. The energy balance method generally determines lower snow water equivalent values than the 
degree-day method (Haddeland et al., 2011). However, H08 only consider a single snow layer, which means 
the model tend to produce abundant snowmelt sooner (relative to ORCHIDEE) when enough energy has 
been accumulated. 

Soil profile and groundwater 

Generally, HMs (H08, MPI-HM, PCR-GLOBWB, and WaterGAP2) have one or two soil layers, because 
they focused on matching observed and simulated streamflow rather than dynamic vegetation growth like 
DGVMs (which have six and eleven soil layers). Most HMs (except MPI-HM) have a single groundwater 
layer. LPJmL doesn’t have a groundwater layer, but its seepage is considered to have the role of groundwater 
recharge and groundwater runoff.  

Components determining surface runoff and river discharge 

Predominantly, the surface runoff is modelled as saturation excess overland flow and subsurface runoff as a 
function of soil. The streamflow routing is made wherever possible but the approach varies across models 
such as linear reservoir cascade (MPI-HM and WaterGAP2), continuity equation derived from linear 
reservoir model (LPJmL), drainage direction map 30 minutes (H08), STN-30p river network (ORCHIDEE), 
travel time routing (characteristic distance) linked with dynamic reservoir management (PCR-GLOBWB). 
Other varying features that could lead to differences in simulated runoff as well as discharge are: 

- Only MPI-HM and ORCHIDEE do not include the reservoir management.  
- H08, LPJmL, and ORCHIDEE do not include lakes in their structure.  
- H08 and LPJmL do not include wetland scheme in their structure. 

Human water management 

ORCHIDEE model does not simulate the water use sectors. Others models simulate, mainly, irrigation, but 
H08, PCR-GLOBWB, and WaterGAP2 also simulate differently water used in the domestic, industry and 
livestock sectors. 

 

 



 

 

Table S2 Hydrological processes represented in the Global Hydrological Models included in the present study.  

Models Model 
version 
ISIMIP2a / 
ISIMIP2b 

Interception 
scheme 

CO2 
fertilization 
effect 

Snow 
scheme 

Soil Layer / 
Total Soil 
Layer Depth 
(m) 

Groundwater 
scheme 

Surface 
runoff / 
subsurface 
runoff  

Routing 
scheme 

Reservoir 
operation 

Lakes 
scheme 

Wetlands 
scheme 

Water use 
sectors 
scheme 

References 

H08 Hanasaki et 
al., 
(2008a&b) / 
Hanasaki et 
al., (2018) 

no no energy 
balance 
method 

1 / 
1 

1 renewable 
and 1 
nonrenewable 
groundwater 
layer 

saturation 
excess / 
f(soil) 
runoff 
properties 
varies with 
climate zones 

based on 30‘ 
drainage 
direction map 
(DDM30) 

yes no no Irrigation, 
industry, 
domestic 
 

Hanasaki et 
al., 
(2008a&b); 
Hanasaki et 
al., (2018). 

LPJmL Version 3.5 
but with 
update of 
irrigation 
scheme in 
ISIMIP2b 

f(LAI) yes degree-day 
method with 
precipitation 
factor 

6 / 
13 

seepage 
reported as 
groundwater 
recharge and 
groundwater 
runoff 

saturation 
excess / 
f(soil) 

continuity 
equation 
derived from 
linear reservoir 
model 

yes no no irrigation  
 

Bondeau et 
al., (2007) 
Schaphoff et 
al. (2013) 

MPI-HM R44 / v1.2 no no degree-day 
method 

1 / 
01 

not included saturation 
excess / 
f(soil) 

linear reservoir 
cascade 

no dynamical 
wetland 
extent 
scheme 

dynamical 
wetland 
extent scheme 

irrigation  
 

Stacke and 
Hagemann, 
(2012) 

ORCHIDEE ORCHIDEE-
Trunk 
Rev3013 / 
ORCHIDEE-
MICT v8.4.1  
 

f(LAI) yes physically 
based snow 
module + 
energy 
balance 
method 

11 / 2 1 groundwater 
layer 

infiltration 
excess / 
f(soil) 

STN-30p river 
network 

no no wetlands act 
as floodplains 

no Guimberteau 
et al., (2014) 
and 
Guimberteau 
et al., (2018) 

PCR-
GLOBWB 

same version 
2 

f(veg) no degree-day 
method 

2 / 
1.5 

1 groundwater 
layer 

saturation 
excess / f(soil 
and gw) 

travel time 
routing 
(characteristic 
distance) linked 
with dynamic 
reservoir 
operation 

yes yes columns of 
water (no 
soil) 

irrigation, 
domestic, 
industry, 
livestock 

Wada et al. 
(2014) 
Sutanudjaja 
et al., (2018) 

WaterGAP2 2.2  / 2.2c f(LAI) no degree-day 
method 

1 / 
Depending on 
land cover 
type between 
0.1 and 4 

1 groundwater 
layer 

saturation 
excess, Beta 
function 

linear reservoir 
cascade 

yes local and 
global lakes 

local and 
global 
wetlands 

irrigation, 
domestic, 
electricity, 
manufacturing, 
livestock 

Müller 
Schmied et 
al., (2016) 

Notes:  
1: MPI-HM defines the soil storage in terms of maximum water column, varying between 0 m and 5 m; 
f(gw) = subsurface flow or interflow modelled as a function of groundwater; f(veg) = function of vegetation type;  
f(soil) = subsurface flow or interflow modelled as a function of soil moisture (soil). 
 



 

 

1.3 Model versions used in ISIMIP2a and ISIMIP2b 
ISIMIP2a was designed as an evaluation framework to improve the models for the projection phase 
ISIMIP2b. As a result, the assessment using historical simulation (from 1971-2005) may not reflect the “true” 
capacity of the model used to simulate trends in floods during the future period (2006-2099). Specifically, 
PCR-GLOBWB is the only GHM that used the same version for both ISIMIP phases (noted in Figure S2). 
Below are the main modifications that have undertaken: 

(1) LPJmL 

The LPJmL model version used for ISIMIP2b was updated compared to the one used for ISIMIP2a in 
particular regarding the implementation of a new scheme to model irrigation systems, after Jägermeyr et al. 
(2015). In simulations with irrigation, this leads to various effects (differing in space and time) on most water 
balance components including discharge. Also the albedo of bare soil is made dependent on the soil moisture 
status. 

(2) ORCHIDEE 

ORCHIDEE-MICT v8.4.1 is a branch developed from ORCHIDEE-Trunk. ORCHIDEE-MICT improved 
the representation of the interactions between soil carbon, soil temperature and hydrology, and their resulting 
feedbacks on water and CO2 fluxes at high latitude, in addition to a recently developed fire module 
(Guimberteau et al., 2018).  

ORCHIDEE-MICT focusing on high-latitude phenomena include the following non-exhaustive series of 
pivotal hydrological and biogeochemical interactions.  

- A representation of permafrost physics and seasonal freeze–thaw cycles, which determine the soil 
hydrologic and thermal budgets and the volume and timing of lateral water flows to rivers.  

- The impact of winter snow acting as an insulating “barrier” between soils and overlying air from fall 
to early spring. These have subsequent effects on soil temperature and water content, feeding back 
onto snow thickness itself. 

- The seasonal mediation of plant water availability via snowmelt water, transpiration losses and the 
depth of the permafrost table (active layer thickness), which in turn determine the availability of the 
lateral water flows that feed rivers in the warmer months.  

- The limitations on plant productivity and biomass due to acute climatic conditions in high-latitude 
regions. These primarily involve biotically prohibitive cold temperatures from fall to late spring, low 
soil moisture in dry-summer regions, and fire events caused by hot and dry conditions. 

- The buildup of large soil carbon stocks under cold conditions through the slow burial of organic 
matter in the permafrost via cryoturbation and sedimentary soil formation processes. 

- Feedbacks between high soil carbon concentrations and profiles of soil temperature, water and 
permafrost carbon content. 

(3) WaterGAP2  

Modifications of water use models compared to model version in ISIMIP2a 

Deficit irrigation with 70% of optimal irrigation was applied in grid cells, which were selected based on Döll 
et al. (2014) and have 1) groundwater depletion of > 5 mm yr-1 over 1989–2009 and 2) a >5% fraction of 
mean annual irrigation water withdrawals in total water withdrawals over 1989–2009. 

Modifications of WaterGAP Global Hydrology Model compared to model version in ISIMIP2a 

- Groundwater recharge below surface water bodies is enabled in semi-arid and arid regions. 
- Dynamic land area fractions as consequence of dynamic surface water extents. 
- Precipitation input on surface water bodies is now also multiplied with the evaporation reduction 

factor (as evaporation) to keep water balance consistent. 
- Modified routing approach where water is routed through the storages dependent upon the fraction 

of surface water bodies; otherwise water is routed directly into the river. 
- New total water capacity input based on Batjes (2012). 



 

 

- For global lakes and reservoirs (where the water balance is calculated in the outflow cell), water 
demand of all riparian cells is included in the water balance of the outflow cell and thus can be 
satisfied by global lake or reservoir storage. 

- All water storage equations in horizontal water balance are solved analytically (except for local 
lakes). Those equations now include net abstractions from surface water or groundwater. As a 
consequence, sequence of net abstractions has been changed to 1) global lakes or reservoirs, 2) rivers, 
3) local lakes. 

- Net cell runoff is strictly the difference between the outflow of a cell and inflow from upstream cells 
at the end of a time step. 

- Area correction factor (CFA) is included in water balance of lakes and wetlands. 
- In 2.2 (ISIMIP2a), local and global lake storage could vary between the maximum storage Smax and 

zero. In 2.2c (as in versions before 2.2), local and global lake storage can drop to -Smax as described 
in Hunger and Döll (2008). The area reduction factor (corresponding to the evaporation reduction 
factor in Hunger and Döll (2008), their eq. 1) has been changed accordingly (denominator: 2 x Smax). 
If lake storage S equals -Smax, the rediction factor is 1; if S equals Smax, the reduction factor is 0. 

- Modified calibration routine: an uncertainty of 10% of long-term average river discharge is allowed 
(following Coxon et al., 2015), meaning that calibration runs in four steps: 1) test if γ alone is enough 
to calibrate to ±1% of observed value; 2) test if γ alone is enough to calibrate when 10% uncertainty 
of observed values are allowed; 3) adapt observed value by 10%, and test if γ plus CFA are sufficient 
for calibration; 4) add station correction factor (CFS) if all other steps were not successful, and set 
CFS values to 1 if between 0.98 and 1.02. 

- All model parameters which are potentially used for the calibration/data assimilation integration 
(including also multiplicators) are now read from a text file in Javascript Object Notation (JSON) 
format. 

- Regional changes based on Döll et al. (2014): 1) for Mississippi Embayment Regional Aquifer, 
groundwater recharge was overestimated, and thus the fraction of runoff from land recharging 
groundwater was reduced from 80–90% to 10% in these cells; 2) groundwater depletion in the North 
China Plain was overestimated by a factor of 4, and thus runoff coefficient γ was reduced from 3– 5 
to 0.1 in this area; 3) all wetlands in Bangladesh were removed since diffuse groundwater recharge 
was unrealistically low. 

- Due to different bug fixes reducing water balance error to a global sum of <1*10-4 km³ yr-1. 
- In semi-arid/arid grid cells: In case of less precipitation then 12.5 mm day-1, groundwater recharge 

is remaining in soil column (and not handled as runoff as in the version before). 

(4) MPI-HM 

The MPI-HM versions R44 and v1.2, as used in ISIMIP 2a and 2b respectively, differ only slightly in I/O 
infrastructure together with some modifications which concern only human impact simulations (which are 
not considered in ISIMIP 2a). More specifically changes are: 

- Dynamic field allocation to allow for different model resolutions. 
- Consistent reading and writing of parameter and restart files. 
- Improvements for setup script. 
- Limit irrigation gift to a maximum of 5% of the river flow storage per time step [1 day]. 
- Fix for parameter input (not affecting ISIMIP simulations). 
- Fix for wetland water balance diagnostic (not affecting simulation results). 

(5) H08 

The newer version of the H08 model was used in ISIMIP2b (Hanasaki et al., 2018) while the older version 
used in ISIMIP2a (Hanasaki et al., 2008b). The main modifications of the updated version are: 

- Revised irrigation/industrial and municipal water allocation. 
- Inclusion of water transfer using aqueduct. 
- Inclusion of seawater desalination scheme. 
- Local reservoir implementation. 



 

 

- Revised groundwater scheme. 

Although the comparison between trends introduced by two versions of WaterGAP2 shows minor effects 
on changes in the key results of our investigation (see Section 3), simulations for other models are not 
readily available. As a result, the effect of modifications in GHMs cannot be checked in the context of this 
study. 

2 Simulated streamflow extraction  
For very large catchments, where excess rainfall takes a significant amount of time to reach the outlet, the 
routing scheme plays an important role in model performance related to high flow events (Zhao et al., 
2017) and thus routed discharge is the more appropriate measure of simulated streamflow. The same 
simulation product, however, potentially does not perform well for small catchments, partially due to the 
coarse resolution of GHMs (Hunger and Döll, 2008). To address this concern, we adopted a common 
threshold of 9,000 km2 (approximate the size of 1o×1 o grid cell) to separate the selected catchments into 
two groups and applied different procedures to extract simulated streamflow. 

2.1 Weighted-area average for stations with catchment from 0 to 9000 km2 
2.1.1 Producing weighted-area tables  
For stations with catchment area less than or equal to 9000 km2, the catchment boundary was superimposed 
to the ISIMIP grid to identify intersecting cells, and a weighted-area table was calculated for each case. 
Simulated runoff was extracted by averaging the un-routed surface runoff from all intersect cells 
(considering weight). Runoff was then converted into discharge data.  

Figure S1 provides an illustration of the weighted-area table for station US_0002282 (red dot; Merrill 
catchment of Pascagoula River, Mississippi, US) which has the total number of 15 upstream cells (dark-
grey cells). Two components of the weighted-area table were used to label intersect cells: (1) cell number 
(dark red) and (2) normalised fraction of each cell (weights) that is covered by the catchment boundary 
(dark blue). The normalisation was performed such that the weights add up to one for each catchment, and 
these weights are used to extract simulated runoff for this catchment. 

 

Figure S1. Illustration of the table of weights.  



 

 

2.1.2 Averaging approach for cases where there were more than one catchment sharing similar 
weighted-area tables 
Among catchments that have area less than 9000km2, there are many instances where two or more 
catchments have (almost) identical simulated runoff as they have similar weighted-area tables. All ISIMIP 
models have a common assumption of uniform parameterisation for runoff generation in the 0.5×0.5 grid 
area, which in concept should represent an average value of runoff at finer resolution. Note that 
ORCHIDEE in ISIMIP2b (GCMs driven) was run at 1o×1 o resolution, and the outputs were disaggregated 
evenly 0.5×0.5 resolution. Here we also treat catchments that intersect an identical set of dominant 
contributing grid-cells (total weights of at least 70%) as samples of an identical simulation domain. As a 
result, the area-weighted mean discharge of these catchments was calculated and used for model-
observation comparison.  

A search was conducted across all weighted-area tables to identify cases that have an identical set of 
intersecting cells contributing at least 70% to the total weighting. Figure S2 provides an example of these 
cases. In the top panel, boundaries of ten catchments were superimposed on top of the ISIMIP gridline 
(0.5×0.5 degree), demonstrating that they share a common cell (number 70051) which contributes at least 
70% to the total weight (showed in the bottom panel).  

 



 

 

 

Figure S2. Example of instances where there is a significant overlap in contributing cells. Top panel: 
locations of 10 catchments that share a common contributing grid-cell (cell number 70051 (in dark-grey 
colour) contributes at least 70% to the total weight of each catchment) although specific catchments have 
different contributing cells. Bottom panel: weighted-area table of these 10 catchments. 

Figure S3 illustrates another case where three different catchments share two common cells (no. 76524 and 
76525). These cells contribute 100%, 79.1%, and 76.4% to the weighted-area tables of catchment 
US_0001198, US_0001199, and US_0001203 respectively. In both examples, the identified catchments 
were considered samples of the same modeling domain.  

 



 

 

 

Figure S3. Similar to Figure S2, but here we have two contributing cells. The total weight of these 
common cells (number 76524 and 76525, highlighted in dark-grey colour) is higher than 0.7 in all cases 
and thus these three catchments were considered samples of the same modelling domain. 

For each set of n catchments with similar weighted-area tables, a single average discharge 𝑄(m3/s) was 
calculated to represent these individual time series in the model-observation comparison following below 
procedures: 

For observed discharge:   

1. Convert discharge Q (units: m3/s) to runoff rate R (units: m/day) using catchment area A 
(units: m2) for each catchment i.  

 𝑅 = 𝑄 × 24 × 3600/𝐴   (m/day) 
Average catchment size was also recorded: 

  �̅� = ∑ 𝐴   (m2) 

2. Average runoff rate across all catchments (considering area-weights) 

 𝑅 =
∑

∑
  (m/day) 

3. Back-calculate average discharge (m3/s):  

 𝑄 =
̅

×
 (m3/s) 

For simulated discharge:   

1. Extract runoff rate using weighted-area tables as described in Section 2.1 for all catchments.  
2. Follow Step 2 and Step 3 of the observation procedure. 

 

2.3 Discharge output identification for catchment with area greater than 9000 km2 
For catchments with area greater than 9000km2, the ‘discharge output’ approach was adopted to find GHM 
cells corresponding to the catchments following Zhao et al. (2017). For a specific catchment, the grid cell 
corresponding to the catchment outlet was identified by matching catchment area available in a 0.5° 
drainage direction map (DDM30 dataset, freely available at http://www.uni-



 

 

frankfurt.de/45218101/DDM30) and the reported area. The identified grid cell was then used to extract 
simulated discharge available in the ISIMIP data repository. Stations were removed if the procedure could 
not identify any DDM30 grid cell surrounding the reported geographical location with a drainage area 
discrepancy less than 30% (see supplementary of Zhao et al. (2017) for detail).  

3 Supplementary Figures 
3.1 Capacity of GHMs to reproduce observed trends at continental scale 
As stream gauges are not evenly distributed across the world, Figure S4 provides a zoomed-in map for four 
regions with relatively high number of stations (North America, Europe, South America, and Oceania). 
The most notable feature is a significantly lower strength of trends exhibited through GSWP3/GCMHIND 
ensemble average compared to GSIM observed trends. This pattern is likely the result of averaging 
technique (smoothed out variability of ensemble members) as the feature is more pronounced in 
GCMHIND (21 simulations) compared to GSWP3 (6 simulations). Visual inspection of these results 
suggests that the overall spatial pattern of observed trends seems to be preserved in GSWP3 while 
GCMHIND simulations tend to incorrectly simulate some spatial pattern of trends (e.g. over Oceania).  



 

 

 

Figure S4. Normalised Theil-Sen slope for historical trends in flood magnitude (MAX7 index) over South 
America, Europe, South America and Oceania (left panels: GSIM; middle panels: GSWP3; right panels: 
GCMHIND). Multi-model average is shown for simulated trends. Trend is expressed in % change per 
decade.   

Figure S5 illustrates the mean and standard deviation of simulated trends across all locations (% change per 
decade) for each individual ensemble member (multi-model average was showed in the manuscript). The 
mean and standard deviation of all trends (referred to as trend mean and trend standard deviation here-
after) obtained from GSIM archive were also showed as dark blue line. GSWP3 simulations generally 
produced a higher trend mean and a lower trend standard deviation across all continents compared to the 
observed trends. The discrepancy varies substantially across different regions. For instance, Oceania 



 

 

exhibited a discrepancy up to 7% per decade for the trend mean and 8% per decade for the trend standard 
deviation. This feature indicates a substantial inconsistency between simulated trends and observed trends. 
Among the six GHMs, ORCHIDEE, PCR-GLOBWB and WaterGAP2 tend to have a higher trend mean 
with the exception of Africa. This pattern potentially indicates the influence of either (i) parameterisation, 
(ii) model capacity in reproducing observed trend characteristics, or (iiI) a bias of the GSWP3 forcing 
trends.  

Figure S5 also shows relatively lower capacity of GCMHIND simulation in terms of reproducing observed 
trend mean and trend standard deviation in streamflow maxima. There is no clear ranking pattern in terms 
of the modelled atmospheric forcing being used, suggesting that uncertainty in GCM model was inherited 
differently across GHMs, likely due to the variation of parameterisation strategies.  

 



 

 

Figure S5. Mean (left panels) and standard deviation (right panels) of trends (% change per decade) 
exhibited from GSIM (horizontal blue line) observed trends and GSWP3/GCMHIND (hollow dots) 
simulated trends at the continental scale. The x-axis indicates different models. Note that y-axis range 
varies across panels. A null-hypothesis test was conducted to assess whether the mean/standard deviation 
of simulated trends is statistically different to that obtained from observed GSIM trends (horizontal blue 
line). Dark-red filled dots indicate simulations rejecting the null-hypothesis (i.e. which is that simulated 
trend mean/trend standard deviation is not statistically different to that obtained from GSIM).  

3.2 Spatial uncertainty across simulated trends forced with different modelled atmospheric 
forcing 
The assessment in section 3.3 of the main text suggests the combined GCM-GHM uncertainty has led to 
the presence of high uncertainty in terms of regions with significant projected trends in streamflow 
extremes. That is, a region could be projected by an overall increasing trend by one member and a 
decreasing trend by another member. This feature is illustrated in Figure S6, which shows a notable 
mismatch in the spatial structure of projected trends in MAX7 index between two ensemble members. 
Under the RCP2.6 greenhouse gas emission scenario, H08 forced with GFDL-ESM2M (top panels) 
projects an increasing trend for the majority of Australia and Siberia, while ORCHIDEE forced with IPSL-
CM5A-LR (bottom panels) projects an overall decreasing trend for the same regions. This spatial 
uncertainty could come from either the climate trends introduced by GCMs (differentiate across GCMs), 
different RCPs, and model characteristics. 

 

Figure S6. The magnitude (left panels) and significance (right panels) of trends in simulated MAX7 time 
series across all grid cells under RCP26 greenhouse gas emission scenario (2006-2099). Top panels: H08 
forced with gfdl-esm2m climate data; bottom panels: ORCHIDEE forced with ipsl-cm5a-lr climate data. 
These two models had the lowest value of pattern similarity (correlation of -0.17). 

3.3 Potential influence of model versions on detected trends 
As mentioned in section 1.3 of this supplementary, there are changes in model versions that were used in 
two phases of ISIMIP. Specifically, ISIMIP2a was designed as an evaluation framework to improve the 
models for the projection phase ISIMIP2b. As a result, the assessment using historical simulation (from 
1971-2005) may not reflect the “true” model capacity in simulating trends in floods during the future 
period (2006-2099).  



 

 

While some models undergone minor changes (e.g., changes and bug-fixes done in MPI-HM affect only 
the human impact simulations – and the influence is insignificant), the different versions of the other 
models might lead to substantial differences of simulated trends. Within the context of this study, we 
managed to compare trends simulated by two versions of WaterGAP2 (Figure S7), and the influence of 
model versions to trends seem minor. However, not all simulations for the other models are readily 
available, thus the influence of model versions to the results cannot be explicitly identified in this study. 

  

Figure S7. The magnitude (top panels) and significance (lower panels) of historical trends (1971-2005) in 
simulated MAX7 time series across all grid cells using two versions of WaterGAP. Left panels: 
WaterGAP2.2 (ISIMIP2a) which was used in ISIMIP2a; right panels: WaterGAP2.2c which was used in 
ISIMIP2b. Both simulations were forced with GSWP3 observed climate data.  

4 Supplementary Tables 
Considering a large number of simulations available (73 in total), the main text mostly used multi-model 
min/max/average to illustrate the results for cases where there is more than one simulation available for an 
identical GHM/spatial-domain. Table S2 provides a list of all 73 available models reported in this section 
together, with their simulation settings. Note that: 

(i) GSWP3_VARSOC simulations (listed in Table S2 as H08_GSWVAR, LPJ_GSWVAR, 
PCR_GSWVAR, and WAT_GSWVAR) were not reported in the main text as (1) there were 
only four simulations available (comparing to six simulations of GSWP3_NOSOC) and (2) the 
results obtained from GSWP3_NOSOC and GSWP3_VARSOC are similar (Table S3). 

(ii) In the main text, OBSHIS_NOSOC simulations were denoted as GSWP3. 

Table S3. Available ISIMIP streamflow simulations and associated setting. 

Seq Streamflow 
simulations 

GHM Climate Human Period 

1. H08_GSWVAR 

H08 

Observation (GSWPv3) varsoc 

1971-
2005 

2. H08_GSWNO Observation (GSWPv3) nosoc 
3. H08_HIN_G HINDCAST (GFDL-ESM2M) 

2005soc 

4. H08_HIN_H HINDCAST (HadGEM2-ES) 
5. H08_HIN_I HINDCAST (IPSL-CM5A-LR) 
6. H08_HIN_M HINDCAST (MIROC5) 
7. H08_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2006-
2099 

8. H08_RCP2.6_H RCP2.6 (HadGEM2-ES) 
9. H08_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
10. H08_RCP2.6_M RCP2.6 (MIROC5) 
11. H08_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
12. H08_RCP6.0_H RCP6.0 (HadGEM2-ES) 



 

 

13. H08_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
14. H08_RCP6.0_M RCP6.0 (MIROC5) 
15. LPJ_GSWVAR 

LPJmL 

Observation (GSWPv3) varsoc 

1971-
2005 

16. LPJ_GSWNO Observation (GSWPv3) nosoc 
17. LPJ_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
18. LPJ_HIN_H HINDCAST (HadGEM2-ES) 
19. LPJ_HIN_I HINDCAST (IPSL-CM5A-LR) 
20. LPJ_HIN_M HINDCAST (MIROC5) 
21. LPJ_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

22. LPJ_RCP2.6_H RCP2.6 (HadGEM2-ES) 
23. LPJ_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
24. LPJ_RCP2.6_M RCP2.6 (MIROC5) 
25. LPJ_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
26. LPJ_RCP6.0_H RCP6.0 (HadGEM2-ES) 
27. LPJ _RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
28. LPJ_RCP6.0_M RCP6.0 (MIROC5) 
29. MPI_GSWNO 

MPI-HM 

Observation (GSWPv3) nosoc 
1971-
2005 

30. MPI_HIN_G HINDCAST (GFDL-ESM2M) 
varsoc 31. MPI_HIN_I HINDCAST (IPSL-CM5A-LR) 

32. MPI_HIN_M HINDCAST (MIROC5) 
33. MPI_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
 
2006-
2099 

34. MPI_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
35. MPI_RCP2.6_M RCP2.6 (MIROC5) 
36. MPI_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
37. MPI_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
38. MPI_RCP6.0_M RCP6.0 (MIROC5) 
39. ORC_GSWNO 

ORCHIDEE 

Observation (GSWPv3) nosoc 
1971-
2005 

40. ORC_HIN_G HINDCAST (GFDL-ESM2M) 
41. ORC_HIN_I HINDCAST (IPSL-CM5A-LR) 
42. ORC_RCP2.6_G RCP2.6 (GFDL-ESM2M) nosoc (land 

use changes 
was 
considered) 

2006-
2099 

43. ORC_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
44. ORC_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
45. ORC_RCP6.0_G RCP6.0 (IPSL-CM5A-LR) 
46. PCR_GSWVAR 

PCR-
GLOBWB 

Observation (GSWPv3) varsoc 

1971-
2005 

47. PCR_GSWNO Observation (GSWPv3) nosoc 
48. PCR_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
49. PCR_HIN_H HINDCAST (HadGEM2-ES) 
50. PCR_HIN_I HINDCAST (IPSL-CM5A-LR) 
51. PCR_HIN_M HINDCAST (MIROC5) 
52. PCR_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

53. PCR_RCP2.6_H RCP2.6 (HadGEM2-ES) 
54. PCR_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
55. PCR_RCP2.6_M RCP2.6 (MIROC5) 
56. PCR_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
57. PCR_RCP6.0_H RCP6.0 (HadGEM2-ES) 
58. PCR_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
59. PCR_RCP6.0_M RCP6.0 (MIROC5) 
60. WAT_GSWVAR 

WaterGAP2 

Observation (GSWPv3) varsoc 

1971-
2005 

61. WAT_GSWNO Observation (GSWPv3) nosoc 
62. WAT_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
63. WAT_HIN_H HINDCAST (HadGEM2-ES) 
64. WAT_HIN_I HINDCAST (IPSL-CM5A-LR) 
65. WAT_HIN_M HINDCAST (MIROC5) 
66. WAT_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

67. WAT_RCP2.6_H RCP2.6 (HadGEM2-ES) 
68. WAT_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 



 

 

69. WAT_RCP2.6_M RCP2.6 (MIROC5) 
70. WAT_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
71. WAT_RCP6.0_H RCP6.0 (HadGEM2-ES) 
72. WAT_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
73. WAT_RCP6.0_M RCP6.0 (MIROC5) 

 

Most results of the main text only showed the multi-model average for GCMHIND simulations of each 
GHM (up to four simulations per GHM) (e.g. Table 3 of the main text, which presents the characteristics of 
trends in the MAX7 index over 1971-2005 period across 3666 locations globally). The following tables, 
therefore, provide the results of each experiment at the global scale for individual models to complement 
the key findings, in which: 

- Table S3 (adapted from Table 2 in the main text) describe the hypothesis tests. 
- Table S4 and S5 report trend mean/standard deviation, percentage of locations exhibiting 

significant trends and the correlation of simulated trends against observed trends (historical 
period from 1971 to 2005). The results of hypothesis test (described in Table S3) are also 
highlighted in Table S4 and Table S5.   

- Tables S6 and S7 report the value of simulated trend mean/trend standard deviation and the 
percentage of cells exhibiting significant trends for future period (2006-2099). Note that the 
statistical test described in Table S3 was not adopted for these results. 

As noted in the main text, trends in peak discharge exhibited from ‘naturalised runs’ (GSWP3_NOSOC) 
are similar to those obtained from ‘human impact runs’ (GSWP3_VARSOC). This is specifically 
illustrated through Table S4, in which the trends characteristic are quite similar between two settings. For 
instance, PCR_GSWVAR suggests a global trend mean (standard deviation) of 0.0 (7.7) % change per 
decade, with a spatial correlation against observed trends of 0.5. These results are very similar to that 
reported for PCR_GSWNO.  



 

 

Table S4. Summary of the hypothesis tests conducted to address the first two objectives. The significance of these tests was reported in Table S4 and S5. 

Objective Null-Hypotheses Streamflow dataset Statistical tests 

Objective 1: 
Capacity of 
GHMs to 
reproduce 
observed trends 
in flood hazards 

Hypothesis 1: Trend means obtained from 
two streamflow datasets over observation 
locations were not statistically different 
from each other. 

(i) Observed 
discharge across 
3,666 observation 
locations 
 
(ii) Simulated 
discharge across 
3,666 observation 
locations (extraction 
processes outlined in 
Section 2)  

Two-sample t-test at the 10% two-sided significance level 

Hypothesis 2: Trend standard deviations 
obtained from two streamflow datasets 
over observation locations were not 
statistically different from each other. 

Two-variance F-test at the 10% two-sided significance level 

Hypothesis 3: Percentage of significant 
trends obtained from all observation 
locations of a specific streamflow dataset 
was not produced by random chance. 

Field significance test similar to that presented in Do et al. (2017) 
was adopted. A moving-block-bootstrap (block-length 𝐿 = 2) was 
used to derive a null-hypothesis distribution of the change that 
occurred due to random chance. The null hypothesis is rejected at 
5% one-sided significance level when the true percentage falls on 
the right-hand side of the 95th percentile of the resampled 
distributions. 

Hypothesis 4: The correlation between 
trends obtained from two streamflow 
datasets was not significantly higher than 
‘0’ (i.e. zero pattern similarity). 

‘Zero pattern similarity’ was compared to the probability 
distribution function (PDF) of pairwise correlation between 
simulated and observed trends, drawn from a bootstrap procedure 
similar to that proposed by Kiktev et al. (2003). The null 
hypothesis is rejected at 5% one-sided significance level when 
zero correlation falls on the left-hand side of the 5th percentile of 
the resampled distributions. 

Hypothesis 5: The correlation between 
GCMHIND simulated trends and 
observed trends was not significantly 
lower than the correlation between 
GSWP3 simulated trends and observed 
trends 

The actual pairwise correlation between GCMHIND simulated 
trends and observed trends (denoted by 𝑟 ) was compared 
to the bootstrapped PDF of correlation exhibited from GSWP3 
simulated trends (denoted by 𝑟∗ ). If 𝑟  falls on the 
left-hand side of the 5th percentile 𝑟∗ , there is evidence to 
reject the null-hypothesis at the 5% one-sided significance level. 

Objective 2:  
The 
representativene
ss of 
observation 
locations in the 
GHM 
simulations 

Hypothesis 6: Trend mean obtained from 
observation locations was not statistically 
different to that obtained from all grid 
cells. 

(i) Simulated 
discharge across 
3,666 observation 
locations (extraction 
processes outlined in 
Section 2) 
 

Two-sample t-test at the 10% two-sided significance level 

Hypothesis 7: Trend standard deviation 
obtained from observation locations was 
not statistically different to that obtained 
from all grid cells. 

Two-variance F-test at the 10% two-sided significance level 



 

 

Hypothesis 8: Percentage of significant 
trends obtained from all grid cells of a 
specific streamflow dataset was not 
produced by random chance. 

(ii) Routed discharge 
across all landmass 
grid cells (59,033 
cells) 

Field significance test similar to that presented in Hypothesis 3 but 
trends obtained from all grid cells were the subject of the 
assessment. 



 

 

Table S5. Characteristics of trends in the MAX7 index (introduced by GHMs) over the 1971-2005 period 
averaged across the 3666 locations. Trend mean and trend standard deviation have units of %-change per 
decade. Gauge-based significant trends were identified using a Mann-Kendall test (10% two-sided 
significance level). The global significance of this result is then calculated using field significance test (5% 
one-sided significant level; highlighted in boldface text). Trend mean, trend standard deviation and trend 
spatial structure were compared against that exhibited by GSIM (see Hypothesis 1 to hypothesis 5 of Table 
S3 for description of hypothesis tests; significant values were represented in boldface text).  

Streamflow 
simulations 

Trend 
mean 

Trend  
standard 
deviation  

Percentages of significant Correlation 
against 

observed 
trends 

Increasing trend Decreasing trend 

H08_GSWVAR  -2.0 8.3 4.8 6.7 0.4 
LPJ_GSWVAR -2.6 7.5 4.6 9.2 0.4 
PCR_GSWVAR 0.0 7.7 9.4 6.1 0.5 
WAT_GSWVAR -0.7 8.5 8.4 5.8 0.5 
H08_GSWNO -1.9 8.3 4.8 6.7 0.4 
LPJ_GSWNO -2.2 7.1 4.5 7.3 0.4 

ORC_GSWNO -1.4 8.6 7 8.2 0.4 

MPI_GSWNO -2.1 8.7 5.6 7.5 0.5 
PCR_GSWNO 0.1 7.7 9.6 6.1 0.5 
WAT_GSWNO -0.3 8.2 8.5 4.2 0.5 

H08_HIN_G -0.4 8.9 6.1 7.8 0.1 

H08_HIN_H -2.8 8.4 2.2 10.8 -0.1 
H08_HIN_I 0.1 8.9 7.7 4.4 0.0 
H08_HIN_M -3.6 7.8 3.4 12.0 0.1 
LPJ_HIN_G -0.8 8.0 6.3 8.3 0.1 
LPJ_HIN_H -2.9 8.1 2.8 14.6 0.0 
LPJ_HIN_I -1.3 8.0 4.1 10.1 0.1 
LPJ_HIN_M -4.1 7.3 3.5 17.3 0.2 
ORC_HIN_G -0.9 8.6 5.2 7.6 0.0 
ORC_HIN_I 0.1 8.6 8.6 6.4 0.1 
MPI_HIN_G -1.3 9.5 5.9 7.9 0.1 
MPI_HIN_I 0.2 9.2 8.8 5.6 0.0 
MPI_HIN_M -4.2 7.3 2.3 16.3 0.1 
PCR_HIN_G -0.2 8.0 8.3 9.0 0.1 
PCR_HIN_H -2.5 7.1 2.7 11.0 0.0 
PCR_HIN_I 0.6 7.6 12.2 4.1 0.0 
PCR_HIN_M -2.1 7.0 6.9 13.5 0.1 
WAT_HIN_G 0.2 9.2 8.2 5.6 0.1 
WAT_HIN_H -2.9 8.1 2.7 10.9 -0.1 
WAT_HIN_I 0.5 8.8 6.2 4.2 -0.1 
WAT_HIN_M -2.9 7.3 4.3 11.4 0.1 

 



 

 

Table S6. Trend mean, trend standard deviation and percentage of significant trends averaged across all 
simulation grid cells. Trend mean and trend standard deviation have units of %-change per decade. Cell-
based significance was identified using the Mann-Kendall test at the 10% significance level. The global 
significance of this result is then calculated using field significance test at 5% one-sided level (highlighted 
in boldface text). Trend mean and trend standard deviation across all land mass were compared against that 
obtained across 3666 observation locations (reported in Table S4) and significant values are highlighted in 
boldface text (see Hypothesis 6 to hypothesis 8 of Table S3 for description of hypothesis tests). 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_GSWVAR -0.5 10.1 8.4 10.7 
LPJ_GSWVAR -1.6 10.4 7.2 14.0 
PCR_GSWVAR -1.1 11.0 10.4 15.0 
WAT_GSWVAR -0.3 11.4 10.8 11.0 
H08_GSWNO -0.3 9.9 8.3 9.6 
LPJ_GSWNO -0.9 9.9 7.4 11.5 
ORC_GSWNO -0.9 9.6 6.1 7.8 
MPI_GSWNO -0.7 10.2 6.4 7.5 
PCR_GSWNO -1.0 10.9 10.7 14.7 
WAT_GSWNO 0.0 11.1 10.9 10.1 
H08_HIN_G 1.5 10.8 15.4 10.4 
H08_HIN_H 0.0 8.5 7.4 9 
H08_HIN_I -0.7 9.3 7 10.7 
H08_HIN_M 0.4 8.9 8.7 8 
LPJ_HIN_G -0.3 9.3 8.9 9.1 
LPJ_HIN_H -1.1 8.7 5.1 9.9 
LPJ_HIN_I -1.1 8.7 6.1 9.2 
LPJ_HIN_M -0.8 9.1 7.7 9.4 
ORC_HIN_G 0.6 9.5 8.4 6.3 
ORC_HIN_I -0.9 8.2 3.9 6.8 
MPI_HIN_G -0.1 7.3 4.5 5 
MPI_HIN_I -0.2 10.3 10.9 11.2 
MPI_HIN_M -1.4 9.3 5.5 11.1 
PCR_HIN_G 1.3 11.3 14.9 11.1 
PCR_HIN_H -0.4 8.7 8.1 10.5 
PCR_HIN_I -1.3 10.7 7.7 12.2 
PCR_HIN_M 0.4 9 11.7 9.9 
WAT_HIN_G 1.5 10.9 15.3 7.2 
WAT_HIN_H 0.0 9.1 6.3 7.3 
WAT_HIN_I 0.0 9.4 6.9 7.5 
WAT_HIN_M 0.4 9.7 10.8 7.2 

 



 

 

Table S7. Characteristics of projected trends (GCMRCP2.6) across 18 members at the global scale. Mean 
and standard deviation have unit of %-change per decade. Note that no statistical test was conducted. 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_RCP2.6_G 0.0 2.1 10.9 9.6 
H08_RCP2.6_H 0.4 2.7 18.0 11.0 
H08_RCP2.6_I 0.0 2.3 11.5 14.2 
H08_RCP2.6_M 0.0 2.8 16.2 11.6 
LPJ_RCP2.6_G -0.1 1.8 7.5 7.4 
LPJ_RCP2.6_H 0.0 2.1 10.7 10.6 
LPJ_RCP2.6_I -0.1 2.1 9.1 10.6 
LPJ_RCP2.6_M 0.0 2.2 12.6 9.0 

ORC_RCP2.6_G -0.3 2.3 9.0 13.9 

ORC_RCP2.6_I -0.6 2.9 9.2 21.2 

PCR_RCP2.6_G 0.1 2.1 11.0 9.0 

PCR_RCP2.6_H 0.3 2.3 16.6 11.2 

PCR_RCP2.6_I 0.0 2.8 15.5 13.9 

PCR_RCP2.6_M 0.1 2.5 17.4 12.4 
WAT_RCP2.6_G 0.0 2.1 9.6 7.1 
WAT_RCP2.6_H 0.4 2.2 14.1 7.5 
WAT_RCP2.6_I 0.2 2.3 12.3 10.0 
WAT_RCP2.6_M 0.2 2.4 16.1 7.3 

  

Table S8. Characteristics of projected trend (GCMRCP6.0) across 18 members at the global scale. Trend 
mean and trend standard deviation have unit of %-change per decade. Note that no statistical test was 
conducted. 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_RCP6.0_G 0.3 3.0 19.7 17.1 
H08_RCP6.0_H 0.7 4.0 27.2 18 
H08_RCP6.0_I -0.4 3.4 15.3 27.1 
H08_RCP6.0_M 0.4 3.3 26.2 14.9 
LPJ_RCP6.0_G -0.1 2.6 17.5 15.7 
LPJ_RCP6.0_H -0.2 3.4 22.3 21.9 
LPJ_RCP6.0_I -0.6 3.1 14.0 24.8 
LPJ_RCP6.0_M 0.1 3.0 22.6 16.2 

ORC_RCP6.0_G -0.3 3.0 16.4 21.1 

ORC_RCP6.0_I -1.3 4.1 12.3 35.0 

PCR_RCP6.0_G -0.1 3.0 18.9 18.7 

PCR_RCP6.0_H 0.1 3.8 26.0 22.2 

PCR_RCP6.0_I -0.5 3.6 18.3 25.6 

PCR_RCP6.0_M 0.5 3.0 27.7 14.4 
WAT_RCP6.0_G 0.4 2.6 23.5 9.8 
WAT_RCP6.0_H 0.7 3.2 29.6 10.7 
WAT_RCP6.0_I 0.0 3.2 20.4 16.9 



 

 

WAT_RCP6.0_M 0.8 3.1 30.1 9.6 
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