

Supplement of

Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling

Shufen Pan et al.

Correspondence to: Shufen Pan (panshuf@auburn.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. Spatial distributions of mean annual ET derived from (a-d) remote sensing-based physical models, (e-f) machine learning algorithms, and (g-t) TRENDY LSMs.

Figure S2. Spatial distribution of uncertainty of ET (standard deviation) for each category. (a)-(d) show the results of remote sensing-based physical models, machine learning algorithms, benchmark data and LSMs.

Figure S3. Spatial distributions of ET trends derived from (a-c) remote sensing-based physical models, (d) machine learning algorithm, and (e-r) TRENDY LSMs. The study period is from 1982 to 2011. Regions with non-significant trends were excluded.

Figure S4. Spatial distributions of the inter-annual variability in global ET derived from (a-d) remote sensing-based physical models, (e-f) machine learning algorithms, and (g-t) TRENDY LSMs.

Figure S5. Spatial distributions of the LAI trend. (a-b) show the result of remote sensing data and the ensemble mean of TRENDY models. (c-p) show the results of TRENDY models.

Fig S6. Spatial distributions of environmental controls on inter-annual variation of ET derived from (a-d) remote sensing-based physical models, (e-f) machine learning algorithm, and (g-t) TRENDY LSMs. (The legend is the same with that in Figure 6).

Datasets	Global terrestria	1 FT	Temporal extent	Barren included	References
Datasets	(mm / yr)	$\frac{1121}{(\times 10^3 \text{km}^3/\text{vr})}$	Temporal extent	Darren merudeu	References
SDD DM	(IIIII / yI) 562	(×10 Kiii / yl)	1084 2007	Vac	Vipukallu at al. (2011)
	J02 470	75 61	1904-2007	168	v illukollu et al. (2011)
	470 514	67	1964-2007		
SND SEDS	502	07	1964-2007		
SKB _{qc} PM	592	11	1984-2007		
SRB _{qc} PT	497	65	1984-2007		
SRB _{qc} SEBS	562	73	1984-2007		
Mean of 15 GSWP-2 models	488		1986-1995	Yes	Dirmeyer et al. (2006)
Mean of 4 reanalysis data	563		1989-1995	Yes	Mueller et al. (2013)
Mean of 29 LSMs	423		1989-1995		
Mean of 29 LSMs,	493		both 1989-1995		
4reanalysis and 7			and 1989-2005		
diagnostic products					
Remote sensing	485		1985-1989	Yes	Trenberth et al. (2009)
and reanalysis	100		2000-2004	100	
Mean of 4 I SMs 3	~579		1994	Unknown	Iimenez et al. (2011)
reanalysis and 5	-517		1774	Clikilowii	Jinienez et al., (2011)
diagnostia products					
Magnostic products	(0)(1090 1005	N.	$M_{\rm exc} = 1 - 1 - (2011)$
Mean of 6	000		1989-1995	NO	Mueller et al. (2011)
diagnostic products					
Mean of 19 LSMs	544				
Mean of 5	631				
reanalysis products					
Mean of 19 LSMs,	569				
6 diagnostic and 5					
reanalysis products					
Mean of 11 IPCC	602				
AR4 GCMs					
NCEP RS PM	539		1983-2006	No	Zhang et al. (2010)
JULES		~65	1950-2000	Unknown	Alton et al. (2009)
Mean of 6		~75	1982-2011	No	Zeng et al. (2018)
diagnostic products					8
SVM-merged	472		2003-2005	Yes	Yao et al. (2017)
algorithm	172		2003 2003	105	1 uo et ul. (2017)
argoriann					
WB_MTE	503	71	1082-2000	No	Zeng et al. (2014)
WB-based	575 604	/1	1982-2009	No	Zeng et al. (2014)
ampirical model	004		1702-2007	110	Zeng et al. (2012)
		(2)	2000 2006	N.	Mr. et al. (2011)
MODIS new		03	2000-2006	NO	Mu et al. (2011)
algorithm		16	2000 2007	N	
MODIS old		46	2000-2006	No	Mu et al. (2007)
algorithm					
Empirical model	452		1985-1995	Yes	Wang and Liang
					(2008)
RF		72.9	2001-2011	No	This paper
MTE		64.3			
P-LSH		72.5			
GLEAM		67.5			
MODIS		63.8			
PML-CSIRO		63.1			
CABLE		63.5			
CLASS-CTEM		68.7			
CLM45		68.9			
DLEM		62.3			
ISAM		67.2			
ISTIN		07.2			

Table S1. Summary of global ET estimates given by different models

ICDACII	
JSBACH	04.4
JULES	75.7
LPJ-GUESS	65.4
LPJ-wsl	50.7
LPX-Bern	50.7
OCN	69.4
ORCHIDEE	65.9
ORCHIDEE-	70.8
MICT	
VISIT	62.2

References

Alton, P., Fisher, R., Los, S., and Williams, M.: Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology, Global biogeochemical cycles, 23, 2009. Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.: GSWP-2: Multimodel analysis and implications for our perception of the land surface, Bulletin of the American Meteorological Society, 87, 1381-1398, 2006.

Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote sensing of Environment, 111, 519-536, 2007.

Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 115, 1781-1800, 2011.

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P., Dolman, A., Fisher, J., Jung, M., Ludwig, F., and Maignan, F.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrology and Earth System Sciences, 2013. 2013.

Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J., and Guo, Z.: Evaluation of global observations - based evapotranspiration datasets and IPCC AR4 simulations, Geophysical Research Letters, 38, 2011.

Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget, Bulletin of the American Meteorological Society, 90, 311-324, 2009.

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sensing of Environment, 115, 801-823, 2011.

Wang, K. and Liang, S.: An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture, Journal of Hydrometeorology, 9, 712-727, 2008.

Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z., Fisher, J. B., and Mu, Q.: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms, Agricultural and forest meteorology, 242, 55-74, 2017.

Zeng, Z., Peng, L., and Piao, S.: Response of terrestrial evapotranspiration to Earth's greening, Current Opinion in Environmental Sustainability, 33, 9-25, 2018.

Zeng, Z., Piao, S., Lin, X., Yin, G., Peng, S., Ciais, P., and Myneni, R. B.: Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models, Environmental Research Letters, 7, 014026, 2012.

Zeng, Z., Wang, T., Zhou, F., Ciais, P., Mao, J., Shi, X., and Piao, S.: A worldwide analysis of spatiotemporal changes in water balance - based evapotranspiration from 1982 to 2009, Journal of Geophysical Research: Atmospheres, 119, 1186-1202, 2014.

Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite - derived global record of land surface evapotranspiration from 1983 to 2006, Water Resources Research, 46, 2010.