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Abstract. A set of complex processes contribute to gener-
ate river runoff, which in the hydrological sciences are typi-
cally divided into two major categories: surface runoff, some-
times called Hortonian flow, and baseflow-driven runoff or
Dunne flow. In this study, we examine the covariance of
global satellite-based surface water inundation (SWI) obser-
vations with two remotely sensed hydrological variables, pre-
cipitation, and terrestrial water storage, to better understand
how apparent runoff generation responds to these two domi-
nant forcing mechanisms in different regions of the world.
Terrestrial water storage observations come from NASA’s
Gravity Recovery and Climate Experiment (GRACE) mis-
sion, while precipitation comes from the Global Precipitation
Climatology Project (GPCP) combined product, and surface
inundation levels from the NASA Surface WAter Microwave
Product Series (SWAMPS) product. We evaluate the statisti-
cal relationship between surface water inundation, total water
storage anomalies (TWS; TWSAs), and precipitation values
under different time lag and quality control adjustments be-
tween the data products. We find that the global estimation
of surface inundation improves when considering a quality
control threshold of 50 % reliability for the SWAMPS data
and after applying time lags ranging from 1 to 5 months.
Precipitation and total water storage equally control the ma-
jority of surface inundation developments across the globe.
The model tends to underestimate and overestimate at loca-
tions with high interannual variability and with low inunda-
tion measurements, respectively.

1 Introduction

There is a long history of research concerning the mecha-
nisms that control runoff generation at the terrestrial land sur-
face (e.g., Beven and Kirkby, 1976; Pearce et al., 1986; Lyon
et al., 2006; Vivoni et al., 2007; Kirchner, 2009). In brief,
it is generally well accepted that two major mechanisms are
responsible for surface water formation: (1) excess precipi-
tation and the limitation of infiltration causing surface runoff
or (2) the rising of the water table and deeper soil moisture
to push more water into stream networks at a low topogra-
phy. If precipitation rates exceed infiltration rates, then pre-
cipitation dominates surface inundation development and is
typically defined as Hortonian flow. If precipitation success-
fully infiltrates and soils become saturated, then subsurface
soil water storage will dominate surface water formation,
typically described as Dunne flow. These are core concepts
within terrestrial hydrology; however, there are limited ob-
servational studies on these runoff generation mechanisms
at scales larger than a catchment. We are not aware of any
studies that have assessed the contributions to surface wa-
ter formation over a global domain. However, using existing
data on global precipitation and water storage and consider-
ing how these two mechanisms influence surface inundation
development, it is now possible to examine surface runoff
mechanisms across a range of land surface conditions.

Satellite observations offer a means to observe changes in
hydrology over a global domain, presenting a distinct ad-
vantage over in situ observations in representing a variety
of hydrological mechanisms and processes across ecosys-
tems and land cover types. Previously published work has
utilized a variety of measurements of catchment or basin an-
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tecedent conditions, such as soil moisture or vertically in-
tegrated water storage, to assess the influence of soil water
on runoff generation (e.g., Koster et al., 2010; Reager et al.,
2014). NASA’s Gravity Recovery and Climate Experiment
(GRACE) mission (Tapley et al., 2004) offers a 15+-year
observational record on the state of terrestrial water stor-
age globally. GRACE measures a change in the gravitational
potential that is often linearly related to the amount of wa-
ter stored at the land surface beneath the satellites. While
these measurements are increasingly uncertain at resolutions
beneath 150 000 km2, they offer a robust and highly accu-
rate means to measure changes in storage for areas larger
than 150 000 km2 (e.g., Wahr et al., 2006; Wiese et al.,
2016) and offer a globally gridded dataset of total water
storage anomalies (TWSAs) that is relatively easy to use.
Previously, GRACE observations have been applied to de-
velop a flood potential index and to characterize the inten-
sity of certain flood events based on storage precondition-
ing or “flood potential” (Reager and Famiglietti, 2009; Rea-
ger et al., 2014). These studies serve as proof that integrated
basin water storage is significant in understanding surface in-
undation changes.

There is also extensive literature relating to the influ-
ence of precipitation on surface inundation (Guo et al.,
2012; Kirchner, 2009). The Global Precipitation Climatol-
ogy Project (GPCP) offers a globally gridded precipitation
dataset that optimally combines satellite, in situ, and land
radar measurements into a single best product (Adler et al.,
2003). This precipitation dataset can be used to assess the
relationship between rainfall and surface water inundation
(SWI) globally.

The satellite observations of TWSA and precipitation can
be related to observations of surface water formation from
the Surface WAter Microwave Product Series (SWAMPS)
(Schroeder et al., 2014a) dataset to better understand runoff
generation. SWAMPS was created based on optical and ra-
diometric observations of surface reflectance that are often
associated with water. These observations are expressed in
terms of fractional inundation, i.e., the percentage of land
occupied by surface water at a 0.25◦ grid resolution globally.
Schroeder et al. (2014a) provide a quality control map ex-
pressed as likelihood or confidence that allows a user to mask
out unreliable data at the quality threshold of their choosing.

For this study, we imagine a global land surface model,
typically run at 1◦ globally (or at best, 0.25◦ globally),
for which topographic processes are represented empirically
and in which surface water formation follows Beven and
Kirkby’s TOPMODEL (a TOPography based hydrological
MODEL) formulation (Beven and Kirkby, 1976). In this, to-
pography and topographic heterogeneity are represented sta-
tistically, and there are truly still aggregated (or “lumped”)
runoff generation processes that occur at a coarse resolution.
At those scales, topography is never explicitly represented,
but instead, it is represented implicitly as a grid cell level
characteristic that can influence lumped runoff generation.

Here we have taken the same conceptual approach, for which
we examine the aggregated runoff generation across the en-
tire 0.25◦ grid cell, and those results can be associated with
topographic information but without an explicit representa-
tion of topography in the regression. This is a simple and
valid approach that is observation focused, in order to later
diagnose processes and mechanisms statistically.

There are no previous studies on the hypothesized linear
relationships between precipitation, storage, and surface in-
undation across the globe. We conduct such a study here to
(1) assess the viability of satellite data to quantify this rela-
tionship, (2) determine which mechanism has the more con-
siderable influence in different regions, and (3) characterize
general behavior. We approach these goals through the ap-
plication of a simple linear regression model of inundation
based on remote sensing observations.

2 Data and methods

The datasets downloaded for this work include surface in-
undation (Surface WAter Microwave Product Series), global
precipitation estimates (Global Precipitation and Climatol-
ogy Project), and groundwater storage (Gravity Recovery
and Climate Experiment).

SWAMPS is available from Columbia University at an
approximately 0.25◦× 0.25◦ (approx. 25 km×25 km) spa-
tial resolution and daily temporal resolution from 1 Febru-
ary 1992 to 31 January 2017. The SWAMPS dataset reports
a quality control map that represents the reliability of their
published fractional surface water, which is influential in our
reported results (Schroeder et al., 2014a) (Fig. 1a). Desert
land covers have low reliability in their inundation measure-
ments. The Sahara has explicitly poor measurements due to
limestone deposits. Other variables that were reported to in-
terfere with the SWAMPS signal were snow and precipitating
clouds.

GPCP is available from the National Oceanic & Atmo-
spheric Administration’s (NOAA) Earth System Research
Laboratory at a 2.5◦× 2.5◦ (approx. 250 km×250 km) spa-
tial resolution and monthly temporal resolution from Jan-
uary 1979 to present (Adler et al., 2003). GPCP provides
global precipitation measurements in mm d−1 (Fig. 2a).

GRACE measures the gravity anomaly detected by the or-
biting satellites; the JPL (Jet Propulsion Laboratory) GRACE
Tellus group processes the anomalies and provides the
change in total water storage across the globe (cm) (Fig. 2b).
GRACE is available at a 3.0◦× 3.0◦ (approx. 300km×
300km) spatial resolution and monthly temporal resolution
from April 2002 to June 2017 (Watkins et al., 2015; Wiese
et al., 2016).

After data acquisition, our preliminary step was to regrid
each dataset using linear interpolation to a common 0.5◦×
0.5◦ spatial resolution. Also, we averaged daily surface in-
undation measurements from SWAMPS to achieve monthly
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Figure 1. (a) SWAMPS quality control map. (b) Example of
monthly SWAMPS measurements for August 2007. (c) Figure 1b
after locations less than 50 % probability of validity are removed.

values. The timeframe for this work spanned April 2002 to
October 2015, the common period amongst these products.
This work involved assessing the viability of a single-linear
regression (Eqs. 1 and 2) or multi-linear regression (Eq. 3)
model based on GPCP and GRACE to represent surface in-
undation estimated by SWAMPS. Precipitation and water
storage long-term anomalies, a component of the total sig-
nal, are known to be globally correlated with a known lag
(Humphrey et al., 2016). We utilize full signal in the regres-
sions to ensure levels of orthogonality between precipitation
and water storage that avoid collinearity.

SWAMPS=m(GPCP)+ b (1)
SWAMPS=m(GRACE)+ b (2)
SWAMPS=m1(GPCP)+m2(GRACE)+ b (3)

Figure 2. (a) Example of monthly GPCP measurements for Au-
gust 2007. (b) Example of monthly GRACE total water storage
anomaly (TWSA) measurements for August 2007.

Using the correlation coefficients (R2) and regression co-
efficients (slope values; m, m1, and m2), we can statisti-
cally determine which mechanism will have a stronger influ-
ence on surface inundation developments. To further capture
the long-term variability across the globe, we utilized each
dataset’s climatology.

To develop these climatology datasets, we calculate the
long-term monthly average values. The resulting dataset
would be a single value at each cell for each month, reflecting
the average monthly signal occurring through the historical
record. Using the climatology, we can observe the average
annual hydrologic cycle anywhere across the globe.

After completing the regressions, multiple grid cells had
negative regression coefficients. Negative regression coeffi-
cients are of concern because it should generally be impos-
sible to have an inverse relationship between surface inunda-
tion and precipitation or groundwater storage. In most cases,
time lags between forcing and response (for example, a high
TWSA due to snow which only manifests as surface water
3 months later) are responsible for negative regression coef-
ficients within the regressions and applying optimal correla-
tions corrected for time lag improved our statistical strengths.
We conducted iterative cross-correlations between TWSA
and inundation and between precipitation and inundation to
statistically determine the most appropriate time lag correc-
tion at each cell location across the globe (Fig. 4). We applied
two time lag thresholds: 0 to 5 months and 0 to 11 months.
Time lag corrections occur at each grid cell, which shifts the
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Figure 3. Methodology flowchart.

climatology signal of GRACE or GPCP within the phase of
SWAMPS.

The final step in preprocessing the datasets is the removal
of low-quality data from the SWAMPS dataset. Schroeder
et al. (2014a), issued a quality control (QC) map for the
SWAMPS dataset (Fig. 1a), and thus we set the quality
threshold at 50 % confidence or higher. As previously stated,
desert regions (i.e., the Sahara, southern Africa, and west-
ern Australia) and snow-dominated regions (i.e., the Rocky
Mountains and central Asia) have poor reliability in measure-
ments, likely due to erroneous reflectivity, and are largely fil-
tered out from the study domain (Fig. 1b and c).

In total, nine regression models were validated by calcu-
lating surface inundation and comparison to the SWAMPS
dataset. Pearson’s R2, the root mean squared error (RMSE),
and a ratio between R2 and coverage were used to deter-
mine each model’s strength. Coverage is considered the num-
ber of SWAMPS grid cells with numerical values within
the global coastline; for example, analysis excluded Antarc-
tica and Greenland, because there are no SWAMPS data for
these regions. A model with a ratio closer to one describes
a stronger model; this ratio is important because it consid-
ers maximizing coverage and correlation to observations. In

choosing the “best” model, we are considering two things:
(1) overall model performance at estimating surface inun-
dation and (2) the global coverage retained. With the final
model, historical GRACE and GPCP measurements are used
to estimate surface inundation (referred to as modeled sur-
face inundation). A best-fit line is applied to display the rela-
tionship between modeled surface inundation and measured
SWAMPS data.

After selecting the best model, we assessed model perfor-
mance on a basin and global scale. Correlation statistics (R2

and RMSE) between measured and model climatologies and
scatterplots are used to present model performance at four
highly studied basins: the Amazon River in South Amer-
ica, Mackenzie River in Canada, Mississippi River in the
USA, and Ob River in Russia. The difference between mod-
eled and measured surface inundation highlights locations of
over- and underestimations across the global domain. We es-
timated the root mean squared error between modeled and
measured surface inundation for our entire observational pe-
riod to evaluate our model’s error in estimations across the
historical record. Finally, the relative error of SWAMPS was
calculated using Eq. (4) to determine the error between mod-
eled and measured SWAMPS relative to measured SWAMPS
long-term average (LTA).

We took the difference between normalized GPCP and
GRACE slopes to determine whether groundwater storage
or precipitation is relatively more influential in surface in-
undation developments. These variables were standardized
to compare them on the same scale (Eq. 5). Equation (6) is
used to compare the standardized slopes. Flows were classi-
fied as Horton flows if the value was positive (i.e., precipita-
tion was dominant in runoff generation). Flows were classi-
fied as Dunne flows if the value was negative (i.e., TWSA
was dominant in runoff generation). Values closer to zero
will show that both groundwater storage and precipitation are
both equally important in surface inundation developments at
that location. The methodology is displayed as a flowchart in
Fig. 3 to clarify our process further.

Error (%)=
RMSE
LTA

(4)

Standardizedvalues=
x−µ

σ
(5)

Controlvariable= |GPCPslope| − |GRACEslope| (6)

3 Results

Lag maps display the signal lag between SWAMPS and
GRACE or SWAMPS and GPCP for 0 to 11 months (Fig. 4a
and b) and 0 to 5 months (Fig. 4c and d). Locations in the
white represent no lag or no data, and areas in red repre-
sent long delays. The color axis range is from 0 to 5 months
of lag. We can see minimal differences comparing the lags
maps with a time lag correction of 0 to 11 months and 0 to
5 months. The majority of the GRACE and GPCP signal is
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Figure 4. Maps display the number of months between the SWAMPS, GRACE, and GPCP signal that were statistically determined by
cross-correlations. (a) GPCP lag map with a time threshold of 0 to 11 months. (b) GRACE lag map with a time threshold of 0 to 11 months.
(c) GPCP lag map with a time threshold of 0 to 5 months. (d) GRACE lag map with a time threshold of 0 to 5 months.

only out of phase with SWAMPS by at most 5 months. This
is statistically supported in Table 1 because R2 and RMSE
from all scenarios representing 0 to 11 months match their
time lag counterpart of 0 to 5 months. We no longer consid-
ered all models of 0 to 11 month beyond this point.

Measured and modeled SWAMPS data are displayed using
scatterplots (Fig. 5). The x-axis displays modeled SWAMPS
data, while the y-axis represents measured SWAMPS data.
These plots reveal global surface inundation measurements
from April 2002 to October 2015 without the consideration
of quality control (Fig. 5a) and with QC (Fig. 5b). The red
line displays the best-fit relationship as determined by MAT-
LAB’s statistical toolbox. We can statistically and visually
see the significance of removing locations with less than
50 % QC. The R2 increased (0.732 to 0.900), and RMSE
decreased (3.830 to 1.890) after QC was applied (Fig. 5).
There is a large spread of surface inundation from the model
(Fig. 5a), but after masking there is a clear trend line be-
tween modeled and measured SWAMPS data (Fig. 5b). Fur-
ther comparing the validation statistics between single- and
multi-linear models, we can see there is not much improve-
ment (Table 1). However, we know that a model with both
GRACE and GPCP better represents the world compared
to just considering one variable. A multi-linear regression
model with a time lag correction improves in both RMSE and
R2 compared to one without a time lag correction. Therefore,
a multi-linear regression model with a time lag correction be-

tween 0 to 5 months is the most rigorous model for further
analysis.

Modeled SWAMPS data using GRACE and GPCP
(Fig. 6a) and measured SWAMPS data (Fig. 6b) are dis-
played with a time lag correction between 0 and 5 months
during August 2007. Green locations are reported to have
high inundation values, while white spots have low inunda-
tion values or no available data. The percent difference be-
tween these two maps (Fig. 6c) identifies locations of over-
and underestimation. The red, grey, and blue locations repre-
sent overestimations, minimal differences, and underestima-
tions, respectively, between modeled and measured inunda-
tion. The majority of the domain is grey because the differ-
ences between small values of inundation are insignificant.
Modeled SWAMPS data have the largest limitations at loca-
tions with snow or ice (around the Great Lakes and northern
parts of Russia) and in areas that experience seasonal mon-
soons (Bay of Bengal and west coast of South Africa).

Regional model performance is assessed through corre-
lation statistics between climatologies and scatterplots for
measured and modeled inundation (Fig. 7). The Amazon
(Fig. 7a–c), Mackenzie (Fig. 7d–f), Mississippi (Fig. 7g–i),
and Ob (Fig. 7j–l) river basins were used for this analysis
because their hydrology is well understood and a success-
ful model should maintain its rigor in these significant areas.
Blue, red, and green markers (Fig. 7a, d, g, and j) represent
randomly selected cell locations along the river; measured
and modeled climatologies are represented with solid and
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Table 1. Model validation results. QC: quality control; RMSE: root mean squared error.

Model Lag R2 RMSE Coverage R2/Coverage R2 RMSE Coverage R2/ Coverage
Correction No QC No QC (%) (–) QC ≥ 50 QC ≥ 50 (%) (–)

GPCP+GRACE None 0.760 3.64 97.25 0.78 0.896 1.94 77.71 1.15
GPCP+GRACE 0 to 5 0.732 3.83 97.12 0.75 0.900 1.89 77.58 1.16
GPCP+GRACE 0 to 11 0.730 3.85 97.12 0.75 0.901 1.89 77.58 1.16
GPCP None 0.911 3.37 97.64 0.93 0.974 1.46 78.10 1.25
GRACE None 0.788 3.42 97.25 0.85 0.899 1.90 77.71 1.16
GPCP 0 to 5 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24
GRACE 0 to 5 0.692 4.11 97.12 0.71 0.856 2.28 77.58 1.10
GPCP 0 to 11 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24
GRACE 0 to 11 0.692 4.12 97.12 0.72 0.856 2.28 77.58 1.10

Figure 5. Example of multi-linear regression model validation
plots. (a) Measured versus modeled SWAMPS data with a time lag
correction of 0 to 5 months. (b) Fig. 5a after locations with less than
50 % probability of validity are removed.

Figure 6. Visual comparison of monthly modeled and measured
SWAMPS data. (a) Modeled surface inundation. (b) Measured sur-
face inundation. (c) The absolute difference between modeled and
measured surface inundation. Modeled SWAMPS data have a time
lag correction of 0 to 5 months.
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dashed lines using the same color scheme (Fig. 7b, e, h, and
k); the cell coordinates are in Table 2. Red boxes (Fig. 7a, d,
g, and j) outline the cells used in the scatterplots (Fig. 7c, f,
i, and l), and their boundary coordinates are also in Table 2.
Climatology correlation statistics are in Table 3. Similar to
Fig. 5b, the scatterplots relate measured and modeled inun-
dation between April 2002 to October 2015 with QC applied
for the cells within the boundaries. The red line displays the
best-fit line along with the calculated R2. The multi-linear
regression model with a time lag correction between 0 and 5
months is used to calculate modeled inundation. The major-
ity of the basins’ domains display strong statistics between
the measured and modeled inundation (Table 3). Basins that
experience varying snow seasons (Mississippi and Ob) have
the largest modeled and measured inundation discrepancies
(Fig. 7i and l). These two river basins have the largest spread
in modeled versus measured data about the best-fit line and
have reducedR2 correlations (0.511 and 0.629, respectively).
Inadequate data during the snow season limit model perfor-
mance during these times (no available measurements during
winter months, as seen in Fig. 7e and k).

To assess global model performance, we calculate the
RMSE (Fig. 8a) between the measured and modeled time
series at each grid cell. Low RMSE values represent
small differences between long-term modeled and measured
SWAMPS data, while high RMSE values tell us there are
more considerable differences in the signals. Grey represents
low error values, while red displays more substantial error.
White locations have no value. Long-term surface inunda-
tion (Fig. 8b) values range from 0 % to 8 % with high values
in green; low values and no values are in white. Figure 8c
displays errors (Eq. 4) in our modeled SWAMPS relative to
the measured SWAMPS signal. Locations with heavy snow
(northern parts of North America, Europe, and central Asia)
and regular annual cycles of inundation (India and Amazon)
have more significant RMSE values compared to other loca-
tions.

Depending on the global location, either GRACE, GPCP,
or both control surface inundation for the model without
a time lag correction (Fig. 9a) and for the models with a
time lag correction of 0 to 5 months (Fig. 9b) and 0 to 11
months (Fig. 9c). Precipitation dominate locations are red,
and groundwater storage controls blue locations. Grey areas
represent locations controlled by both GRACE and GPCP.
Areas shown in white represent no values. Overall, we de-
termined that both GPCP and GRACE control the major-
ity of surface inundation developments across the world. By
taking the standard deviation (σ ) of the standardized mod-
eled SWAMPS data (σ = 1.04), we determined the percent-
age of cells controlled by GRACE, GPCP, or both. Cells
with a difference less than our calculated standard deviation
(−σ ) were considered GRACE dominate. Cells with a dif-
ference greater than our calculated standard deviation (+σ )
were GPCP dominate. Both groundwater- and precipitation-
controlled cells have values within ±σ . Using these stan-

dards, we found groundwater storage controlled 8.3 % of
cells which produced Dunne flows. Precipitation controlled
6.9 % of cells and generated Horton flows. Both variables
controlled approximately 84.8 % of cells.

Maps with correlation values (Figs. 10, 11a, and b) have
a color axis from 0 to 1. Correlations closer to 1, dis-
played in yellow, represent stronger relationships between
SWAMPS and the other dataset(s). Correlations closer to 0,
presented in blue, represent weaker relationships between
SWAMPS and the other dataset(s). We provided five correla-
tion maps with different inputs: the model with SWAMPS
and GRACE without a time lag correction (Fig. 10a), the
model with SWAMPS and GPCP without a time lag cor-
rection (Fig. 10b), the model with SWAMPS, GRACE, and
GPCP without a time lag correction (Figs. 10c and 11a), and
the model with SWAMPS, GRACE, and GPCP with a time
lag correction of 0 to 5 months (Fig. 11b).

Correlation maps from the single-linear regressions
demonstrate limitations in correlation strengths (Fig. 10a and
b). Using GRACE alone, there is a stronger relationship be-
tween total water storage and surface inundation within the
Amazon River in South America. Precipitation and surface
inundation display stronger correlations within the Middle
East compared to groundwater storage and surface inunda-
tion. It is clear that these single-linear models are capable
of describing some surface inundation developments within
specific regions but not on a global scale.

There is a significant statistical improvement across the
globe when including both groundwater storage and pre-
cipitation measurements in estimating surface inundation
(Fig. 10c). Locations such as the Amazon, Mississippi, and
the Middle East have a higher representation compared to
the single-linear models. The time lag adjustment further im-
proves our global correlations. Figure 11a and b display cor-
relations without a time lag correction and with a time lag
correction of 0 to 5 months, respectively. We can see vi-
sual improvements within the multi-linear regression’s cor-
relations east of the Andes and between the Sierra and the
Rocky Mountains after the applied time lag correction.

Regression coefficient maps (Fig. 11c–f) have a color axis
between −1 and 1. Grey displays negative values, and red
represents large values. Regression coefficients for GPCP
and GRACE from the model without a time lag correction
are shown in Fig. 11c and e, while regression coefficients for
GPCP and GRACE from the model with a time lag correction
of 0 to 5 months are displayed in Fig. 11d and f, respectively.
White locations represent no data. The time lag correction
moderates the extreme GPCP slopes around northern Canada
and the midwestern region of North America. GRACE slopes
around the Great Lakes and Australia also reflect this rela-
tionship.
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Figure 7. Cells included in scatter plots are outlined by the red boxes, and red, blue, and green dots denote the cell used for measured and
modeled climatologies. Modeled inundation has a time lag correction of 0 to 5 months. (a) Amazon map. (b) Amazon measured and modeled
climatologies. (c) Amazon scatterplot. (d) Mackenzie map. (e) Mackenzie measured and modeled climatologies. (f) Mackenzie scatterplot.
(g) Mississippi map. (h) Mississippi measured and modeled climatologies. (i) Mississippi scatterplot. (j) Ob map. (k) Ob measured and
modeled climatologies. (l) Ob scatterplot.

Table 2. Coordinates for basin sites and the boundaries for cells included in the scatterplots.

Site
Amazon Mackenzie Mississippi Ob

Longitude Latitude Longitude Latitude Longitude Latitude Longitude Latitude

Green −52.25 −1.25 −119.25 61.25 −89.75 32.75 71.25 60.75
Blue −65.25 −2.25 −125.75 63.75 −88.75 37.25 80.75 56.25
Red −56.25 −2.25 −131.25 66.25 −89.75 35.35 76.25 59.25
Boundary −76.25 to −52.25 −9.75 to 3.25 −134.25 to −112.75 56.75 to 67.75 −91.25 to −87.75 31.25 to 38.75 69.25 to 81.75 55.75 to 65.25
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Table 3. Basin climatology correlation statistics.

Site
Amazon Mackenzie Mississippi Ob

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Green 0.817 1.275 0.967 0.290 0.776 0.082 0.868 0.947
Blue 0.889 0.455 0.955 0.009 0.855 0.389 0.886 0.544
Red 0.916 1.356 0.994 0.148 0.855 0.466 0.909 0.265

Figure 8. (a) RMSE between modeled and measured SWAMPS
data with a time lag correction of 0 to 5 months. (b) Long-term av-
erage (LTA) surface inundation. (c) Error relative to the measured
SWAMPS signal.

4 Discussion

The surface water formation across the majority of locations
within our study domain are controlled almost equally by
groundwater storage and precipitation forcings. In our re-
sults, for the locations where precipitation has a substantial

Figure 9. Control variable maps (a) without a time lag correction,
(b) with a time lag correction of 0 to 5 months, and (c) with a time
lag correction of 0 to 11 months.

lag time, groundwater storage tends to have a smaller lag
time. The converse is also true, and an inverse relationship
follows for a considerable GRACE lag and a slight GPCP
lag. Sites such as the Amazon, Middle East, North America,
and parts of Asia reflect this pattern. Asia and the Middle
East have larger lag times with groundwater storage com-
pared to precipitation, while the Amazon and North America

www.hydrol-earth-syst-sci.net/24/1415/2020/ Hydrol. Earth Syst. Sci., 24, 1415–1427, 2020
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Figure 10. Correlation maps for regression models without a time
lag correction. (a) Single-linear regression between SWAMPS and
GRACE values. (b) Single-linear regression between SWAMPS
and GPCP values. (c) Multi-linear regression between SWAMPS,
GRACE, and GPCP values.

have larger lag times with rainfall compared to groundwater
storage.

By emphasizing the climatology, we created a model of
inundation based on precipitation and storage that captures
and estimates the average seasonal cycle. In areas that are
profoundly affected by interannual variability, such as that
during El Niño–Southern Oscillation (ENSO) events in lo-
cations such as Australia and Africa (Nicholson and Kim,
1997; Power et al., 1999; Ropelewski and Halpert, 1987),
our model underestimates these infrequent anomalous fluxes.
Heavy snow cover also creates detection issues within the
SWAMPS surface water product. The effects of both snow
and interannual variability may have influenced RMSE in
these locations, and in general, the highest relative error oc-
curs at high elevations and in locations that receive large
amounts of snow, especially along the Rocky Mountains

(Bales et al., 2006; Berghuijs et al., 2016; Yan et al., 2018).
Rain-on-snow events or rapid snowmelt could contribute to a
rise in surface inundation without a relative increase in pre-
cipitation or groundwater storage. These types of situations
are not considered or captured by our model.

No previous literature has attempted to determine inunda-
tion developments with TWSA and precipitation measure-
ments rather than just precipitation (Power et al., 1999; Pri-
gent et al., 2007). However, there are studies on the water-
shed scale that have known control mechanisms. Papa et al.
(2010) relate precipitation and river stage height to surface
inundation extents within the Amazon. They report precipi-
tation to lead inundation with an influence of snowmelt and
glacier melt. We determined precipitation and storage are
equally accountable for the inundation developments in the
Amazon. Strong correlations between inundation, precipita-
tion, and storage support our result. Papa et al. (2007) relate
snowmelt and river discharge to surface inundation within
the Ob basin. Maximum inundation is reported to occur be-
tween May and June with little to no lag between river dis-
charge and maximum inundation. We report inundation in
the Ob basin as driven by water storage, and our reported
lags (maximum of 1 month) and modeled surface inundation
climatology match their results. Temimi et al. (2005) predict
flooding in the Mackenzie River basin by relating river dis-
charge to water surface fraction (WSF). The maximum flood-
ing occurs during the spring when the snowpack melts and
ice jams drive flooding. We report inundation developments
to be controlled by both water storage and precipitation, and
the basin’s modeled climatology reflects the same peak sea-
son.

Time lags between inundation and other variables have
been well studied in hydrology (Hamilton et al., 2002; Power
et al., 1999; Prigent et al., 2007). Our reported precipita-
tion time lags show similarity with those reported by Prigent
et al. (2007) in the Amazon and South America. Instead of
GRACE observations, Hamilton et al. (2002) correlated river
stage observations to inundated areas. For the Roraima and
Pantanal floodplains in South America, they report time lags
between river stage and inundation of 1 and 1.5 months. We
report the lags for those areas to be 2 months. Their use of
the nearest river stage station and 0.25◦ cells of the Scan-
ning Multichannel Microwave Radiometer (SMMR) dataset
compared to the 0.5◦ cells of GRACE may account for this
difference.

Our modeled inundation generally overestimated locations
with low surface inundation values. Areas along the Rocky
Mountains, northern parts of Russia, and Asia all experi-
enced overestimations. Other studies on surface inundation
have also reported overestimations at locations with low in-
undation values (Prigent et al., 2007; Ticehurst et al., 2014).
Issues such as cloud coverage, fire scars, heavily snowed ar-
eas, and large variation in topography could contribute to
these overestimations.
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Figure 11. (a) Multi-linear regression correlations without a time lag correction. (b) Multi-linear regression correlations with a time lag
correction of 0 to 5 months. (c) GPCP regression coefficients for the model in Fig. 11a. (d) GPCP regression coefficients for the model in
Fig. 11b. (e) GRACE regression coefficients for the model in Fig. 11a. (f) GRACE regression coefficients for the model in Fig. 11b.

5 Conclusions

This work relates global surface inundation developments
to measurements of total water storage and precipitation us-
ing NASA remote sensing observations. The novelty of this
work is the combined application of the GRACE, GPCP, and
SWAMPS data products to study and classify runoff gen-
eration mechanisms. We determine a majority of the global
surface inundation developments to be equally controlled by
total water storage and precipitation. Our methods have the
most significant errors at locations with low values of inun-
dation, which agrees with the current literature. Remote sens-
ing has provided novel approaches to study general hydrol-

ogy concepts on a global scale and holds much promise to
further study phenomena in areas with limited in situ data.

Data availability. The data used in this work are publicly
available. SWAMPS stable fractional surface inundation data
can be downloaded from Columbia University’s Interna-
tional Research Institute for Climate and Society data library
(https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.JPL/.wetlands/
.dailyinundation/.swamps_v3p1/?Set-Language=en; Schroeder
et al., 2014b). GPCP monthly average precipitation data are
provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
at https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
(Adler et al., 2003). GRACE Mascon data are available at
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